CN114555791A - Il-1超家族时空限制性活性细胞因子铠装的免疫应答细胞 - Google Patents

Il-1超家族时空限制性活性细胞因子铠装的免疫应答细胞 Download PDF

Info

Publication number
CN114555791A
CN114555791A CN202080071952.6A CN202080071952A CN114555791A CN 114555791 A CN114555791 A CN 114555791A CN 202080071952 A CN202080071952 A CN 202080071952A CN 114555791 A CN114555791 A CN 114555791A
Authority
CN
China
Prior art keywords
cell
seq
polynucleotide
cells
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080071952.6A
Other languages
English (en)
Inventor
J·马海拉
C·M·赫尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kings College London
Original Assignee
Kings College London
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kings College London filed Critical Kings College London
Publication of CN114555791A publication Critical patent/CN114555791A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464403Receptors for growth factors
    • A61K39/464406Her-2/neu/ErbB2, Her-3/ErbB3 or Her 4/ ErbB4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464469Tumor associated carbohydrates
    • A61K39/46447Mucins, e.g. MUC-1
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/545IL-1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0646Natural killers cells [NK], NKT cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6467Granzymes, e.g. granzyme A (3.4.21.78); granzyme B (3.4.21.79)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6472Cysteine endopeptidases (3.4.22)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6489Metalloendopeptidases (3.4.24)
    • C12N9/6491Matrix metalloproteases [MMP's], e.g. interstitial collagenase (3.4.24.7); Stromelysins (3.4.24.17; 3.2.1.22); Matrilysin (3.4.24.23)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/31Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/22Cysteine endopeptidases (3.4.22)
    • C12Y304/22061Caspase-8 (3.4.22.61)

Abstract

本文提供具有时空限制的IL‑1超家族活性的免疫应答细胞。免疫应答细胞可进一步表达调节IL‑1超家族活性的蛋白酶和嵌合抗原受体(CAR)或并行的CAR。本文还提供了制备免疫应答细胞的方法以及使用免疫应答细胞指导T细胞介导的免疫应答的方法。

Description

IL-1超家族时空限制性活性细胞因子铠装的免疫应答细胞
技术领域
本发明属于生物医药领域,涉及一种IL-1超家族时空限制性活性细胞因子铠装的免疫应答细胞。
背景技术
肿瘤微环境对免疫效应子活性施加限制,包括由肿瘤浸润淋巴细胞、被设计用于表达非天然T细胞受体的T细胞(TCR)和被设计用于表达嵌合抗原受体的T细胞(CAR)介导的效应子活性。为了解决肿瘤基质内的这种免疫抑制,人们对免疫应答细胞工程化以进一步表达一种或多种促炎细胞因子(如白细胞介素(IL)-12和/或IL-1超家族成员)感兴趣。
IL-1超家族由11名成员组成。见Baker等人“IL-1 family members in cancer;two sides to every story,”Front.Immunol.10:Article 1197(2019)。促炎症成员包括IL-1α、IL-1β、IL-18、IL-33、IL-36α、IL-36β和IL-36γ。相比之下,IL-1受体拮抗剂(IL-1Ra)、IL-36Ra、IL-37和IL-38具有拮抗或抗炎作用。重要的是,一些IL-1超家族成员以前体形式合成,这些前体需要蛋白水解切割以证明其生物活性。以这种方式调节的具有抗肿瘤活性的细胞因子包括IL-1β、IL-18和IL-36α-γ。
与IL-1β和IL-36α-γ一样,IL-18缺乏一个常规的信号或先导序列,无法在翻译后将蛋白引导到涉及内质网(ER)和高尔基体的分泌途径。相反,IL-18是作为一种生物活性前体(pro-IL-18)产生的,该前体通过在N端区域切割36个氨基酸的前肽来活化。这种切割反应主要由半胱天冬酶-1介导,半胱天冬酶-1存在于被称为炎症小体的可诱导多分子细胞器中。促炎症IL-36家族成员(IL-36α、IL-36β、IL-36γ)也被合成为非活性前体,在N端区域的蛋白水解裂解时被活化。促IL-36细胞因子的活化酶包括组织蛋白酶G、弹性蛋白酶和蛋白酶3。
许多实验室已经设计了CAR-或TCR-工程T细胞来表达IL-18。Hu等人.,“Augmentation of antitumour immunity by human and mouse CAR T cells secretingIL18,”Cell Rep.20(13):3025-3033(2017);Chmielewski等人.“CAR T cells releasingIL-18 convert to T-Bethigh FoxO1low effectors that exhibit augmented activityagainst solid tumors,”Cell Rep.21(11):3205-3219(2017);Avanzi等人.,“Engineeredtumor-targeted T cells mediate enhanced anti-tumor efficacy both directly andthrough activation of the endogenous immune system,”Cell Rep.23(7):2130-2141(2018);Kunert等人.,“Intra-tumoral production of IL18,but not IL12,by TCR-engineered T cells is non-toxic and counteracts immune evasion of solidtumors,”Oncoimmunology 7(1):e1378842(2017)。
Hu等人表明,除了抗肿瘤活性外,CAR T细胞对成熟IL-18的组成型表达增强了其体内T细胞受体依赖性扩增。在该研究中,没有详细描述IL-18是如何被设计用于分泌的。尽管如此,补充数据表明IL-18既有组成型释放(图S1b)又有组成型活性(图S1c),这表明IL-18的成熟(18kD)形式与常规信号肽或先导肽融合。
Avanzi等人还证明了IL-18包被的CAR T细胞增强的抗肿瘤活性,并伴随着自分泌CAR T细胞的增殖和持续存在。肿瘤内细胞浸润的有利调节表明了对内源性免疫监控的积极影响。此外,表位扩散导致内源性T细胞的抗肿瘤活性增强。以这种方式使用IL-18避免了淋巴细胞耗竭以实现抗肿瘤活性的需要。巨噬细胞耗竭显著阻碍了治疗效果,证实这些细胞在肿瘤微环境调节中的重要作用。由于天然IL-18缺乏常规信号序列,Avanzi发表的文章中使用的IL-18结构是用IL-2信号肽组成型表达的成熟IL-18。
尽管在各种实验中,IL-18在CAR-T细胞中的表达已被证明能提高疗效,但IL-18组成型表达的安全性和治疗效益尚未得到充分研究。
考虑到IL-18等IL-1家族成员与巨噬细胞活化综合征等自身炎症综合征之间的紧密联系(Weiss等人.“Interleukin-18 diagnostically distinguishes andpathogenically promotes human and murine macrophage activation syndrome,”Blood 131(13):1442-1455(2018)),人们担心成熟的IL-18或IL-1超家族的其他成员的不受调控的表达可能具有毒性。因此,需要改进策略,免疫应答细胞针对抗肿瘤微环境的抑制作用将免疫应答细胞进行“铠装”,而不会对非癌组织造成显著毒性。
Chmielewski等人使用NFAT反应启动子,试图限制成熟IL-18向活化的CAR T细胞的释放。他们发现,产生IL-18的CAR T细胞调节肿瘤微环境,有利于促进炎症状态,从而有助于消除疾病。肿瘤特异性T细胞和NK细胞在该部位增加,而免疫抑制M2极化巨噬细胞和调节性T细胞减少。此外,肿瘤中表达的共刺激和共抑制受体的分布也发生了有利的改变。Kunert等人在TCR工程化T细胞中获得了大致相似的结果。从概念上讲,限制成熟IL-18释放到活化(NFAT表达)T细胞应使该方法更安全。然而,这个解决方案的实现需要一个繁琐的双重转换过程。这是因为CAR表达是组成型的(使用第一个载体实现),而IL-18表达是诱导型的(使用第二个载体实现)。一个包含两个启动子的单个载体可能会克服这一限制,但鉴于众所周知的启动子干扰问题,其生产将具有挑战性。此外,这种诱导型的载体表现出一定程度的“泄漏”,在无瘤小鼠中观察到的毒性表明,IL-12的释放受到类似的调节。
发明内容
本发明提供了具有抗肿瘤活性的IL-1超家族成员,尤其是IL-18、IL-36α、IL-36β和IL-36γ的时空限制活性的免疫应答细胞。具体地说,本发明提供了表达IL-1超家族经修饰的前细胞因子的免疫应答细胞,其中所述经修饰的前细胞因子从N端到C端包括:(a)前肽;(b)由除半胱天冬酶-1、组织蛋白酶G、弹性蛋白酶或蛋白酶3以外的蛋白酶识别的切割位点;(c)IL-1超家族的生物活性细胞因子片段。
CAR T细胞–包括αβCAR-T细胞和γδCAR-T细胞–是由一种编码前细胞因子的外源性多核苷酸生成的,该多核苷酸的切割位点由除胱天蛋白酶-1、组织蛋白酶G、弹性蛋白酶或蛋白酶3之外的位点特异性蛋白酶识别。在一些实验中,细胞进一步表达位点特异性蛋白酶。特别地,本申请提供的前细胞因子包含由蛋白酶颗粒酶B(GzB)识别的切割位点。申请人发现,具有调节活性的IL-1超家族成员的表达可以以受控方式增强T细胞反应和CAR T细胞的抗肿瘤活性。
具有调节活性的前细胞因子可与现有技术中的各种CAR T细胞结合使用。例如,具有与靶细胞上存在的一种或多种抗原结合的并行CAR(pCAR)构建体的pCAR-T细胞可以进一步修饰以表达具有调节活性的前细胞因子。
因此,根据一些实施方案,本文提供了一种免疫应答细胞,其表达:IL-1超家族的经修饰的前细胞因子,其中所述经修饰的前细胞因子从N端到C端包括:(a)前肽;(b)由除半胱天冬酶-1、组织蛋白酶G、弹性蛋白酶或蛋白酶3以外的蛋白酶识别的切割位点;(c)IL-1超家族的细胞因子片段。
在一些实施方案中,蛋白酶为颗粒酶B(GzB)。在一些实施方案中,切割位点具有如SEQ ID NO:26所示的序列。在一些实施方案中,经修饰的前细胞因子是经修饰的pro-IL-18,并且具有如SEQ ID NO:26所示的序列。在一些实施方案中,经修饰的pro-IL-18由SEQID NO:103或111所示的多核苷酸表达。
在一些实施方案中,蛋白酶为半胱天冬酶-3。在一些实施方案中,切割位点具有如SEQ ID NO:28所示的序列。在一些实施方案中,经修饰的前细胞因子是经修饰的pro-IL-18,并且具有如SEQ ID NO:29所示的序列。在一些实施方案中,经修饰的pro-IL-18由SEQID NO:109所示的多核苷酸表达。
在一些实施方案中,蛋白酶为半胱天冬酶-8。在一些实施方案中,切割位点具有如SEQ ID NO:30所示的序列。在一些实施方案中,经修饰的前细胞因子是经修饰的pro-IL-18,并且具有如SEQ ID NO:31所示的序列。在一些实施方案中,经修饰的pro-IL-18由SEQID NO:107所示的多核苷酸表达。
在一些实施方案中,蛋白酶为膜1型基质金属蛋白酶(MT1-MMP)。在一些实施方案中,切割位点具有如SEQ ID NO:32所示的序列。在一些实施方案中,经修饰的前细胞因子是经修饰的pro-IL-18,并且具有如SEQ ID NO:33所示的序列。在一些实施方案中,经修饰的pro-IL-18由SEQ ID NO:113所示的多核苷酸表达。
在一些实施方案中,细胞因子片段是与SEQ ID:24具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,细胞因子片段是与SEQID:24具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
在一些实施方案中,前肽是与SEQ ID:25具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,前肽是与SEQ ID:25具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
在一些实施方案中,经修饰的前细胞因子是经修饰的pro-IL-36α,并且具有如SEQID NO:37所示的序列。在一些实施方案中,细胞因子片段是与SEQ ID:42具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,细胞因子片段是与SEQ ID:42具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
在一些实施方案中,经修饰的前细胞因子是经修饰的pro-IL-36β,并且具有如SEQID NO:39所示的序列。在一些实施方案中,细胞因子片段是与SEQ ID:43具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,细胞因子片段是与SEQ ID:43具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
在一些实施方案中,经修饰的前细胞因子是经修饰的pro-IL-36γ,并且具有如SEQ ID NO:41的序列。在一些实施方案中,细胞因子片段是与SEQ ID:44具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,细胞因子片段是与SEQ ID:44具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
在一些实施方案中,免疫应答细胞进一步包括编码蛋白酶的外源性多核苷酸。
在一些实施方案中,所述免疫应答细胞是αβT细胞、γδT细胞或自然杀伤(NK)细胞。在一些实施方案中,所述T细胞是αβT细胞。在一些实施方案中,所述T细胞是γδT细胞。
在一些实施方案中,所述免疫应答细胞进一步包括嵌合抗原受体(CAR)。在一些实施方案中,所述CAR是第二代嵌合抗原受体(CAR),其中所述CAR包括:(a)信号区;(b)第一共刺激信号区;(c)跨膜结构域;和(d)与第一靶抗原上的第一表位特异性相互作用的第一结合元件。
在一些实施方案中,第一表位是MUC1靶抗原上的表位。在一些实施方案中,所述第一结合元件包括HMFG2抗体的CDR。在一些实施方案中,所述第一结合元件包括HMFG2抗体的VH和VL结构域。在一些实施方案中,所述第一结合元件包括HMFG2单链可变片段(scFv)。
在一些实施方案中,免疫应答细胞还包括嵌合共刺激受体(CCR),其中CCR包括:(a)第二共刺激信号区;(b)跨膜结构域;和(c)与第二靶抗原上的第二表位特异性相互作用的第二结合元件。
在一些实施方案中,第二共刺激域不同于第一共刺激域。在一些实施方案中,包括所述第二表位的第二靶抗原选自由ErbB同源二聚体和异二聚体组成的组。在一些实施方案中,所述第二靶抗原为HER2。在一些实施方案中,所述第二靶抗原是EGF受体。在一些实施方案中,所述第二结合元件包括T1E、ICR12的结合部分或ICR62的结合部分。
在一些实施方案中,本发明提供了一种表达经修饰的pro-IL-18的免疫应答细胞,其中经修饰的pro-IL-18是SEQ ID NO:27的多肽,其中该细胞进一步包括:(a)编码GzB的外源性多核苷酸;(b)一种嵌合抗原受体(CAR),包括:i.信号区;ii.第一共刺激信号区;iii.跨膜结构域;和iv.与MUC1靶抗原上的第一表位特异性相互作用的第一结合元件;和(c)嵌合共刺激受体(CCR),包括:i.第二共刺激信号区;ii.跨膜结构域;和iii.与第二靶抗原上的第二表位特异性相互作用的第二结合元件。
在一些实施方案中,本发明提供了一种表达经修饰的pro-IL-36α、pro-IL-36β或pro-IL-36γ的免疫应答细胞,其中经修饰的pro-IL-36α、pro-IL-36β或pro-IL-36γ是SEQID NO:37、39或41所示的多肽,其中该细胞还包括:(a)编码GzB的外源性多核苷酸;(b)一种嵌合抗原受体(CAR),包括:i.信号区;ii.第一共刺激信号区;iii.跨膜结构域;和iv.与MUC1靶抗原上的第一表位特异性相互作用的第一结合元件;和(c)嵌合共刺激受体(CCR),包括:i.第二共刺激信号区;ii.跨膜结构域;和iii.与第二靶抗原上的第二表位特异性相互作用的第二结合元件。
在另一方面,本发明提供了一种多核苷酸或一组多核苷酸,其包括编码经修饰的细胞因子的第一核酸,其中IL-1超家族的经修饰的前细胞因子从N端到C端包括:(a)前肽;(b)由除半胱天冬酶-1、组织蛋白酶G、弹性蛋白酶或蛋白酶3以外的蛋白酶识别的切割位点;(c)IL-1超家族的细胞因子片段。
在一些实施方案中,蛋白酶为GzB。在一些实施方案中,切割位点具有如SEQ IDNO:26所示的序列。在一些实施方案中,经修饰的前细胞因子是具有如SEQ ID NO:27所示的序列的经修饰的pro-IL-18。在一些实施方案中,所述多核苷酸或一组多核苷酸包括如SEQID NO:103或11所示的序列。
在一些实施方案中,蛋白酶为半胱天冬酶-3。在一些实施方案中,切割位点具有如SEQ ID NO:28所示的序列。在一些实施方案中,经修饰的细胞因子是经修饰的pro-IL-18,并且具有如SEQ ID NO:29所示的序列。在一些实施方案中,多核苷酸或一组多核苷酸包括如SEQ ID NO:109所示的序列。
在一些实施方案中,蛋白酶为半胱天冬酶-8。在一些实施方案中,切割位点具有如SEQ ID NO:30所示的序列。在一些实施方案中,经修饰的细胞因子是经修饰的pro-IL-18,并且具有如SEQ ID NO:31所示的序列。在一些实施方案中,所述多核苷酸或一组多核苷酸包括如SEQ ID NO:107所示的序列。
在一些实施方案中,蛋白酶为MT1-MMP。在一些实施方案中,切割位点具有如SEQID NO:32所示的序列。在一些实施方案中,经修饰的前细胞因子是经修饰的pro-IL-18,并且具有如SEQ ID NO:33所示的序列。在一些实施方案中,所述多核苷酸或一组多核苷酸包括如SEQ ID NO:113所示的序列。
在一些实施方案中,多核苷酸或一组多核苷酸进一步包括编码蛋白酶的第二核酸。
在一些实施方案中,第一核酸和第二核酸在单个载体中。
在一些实施方案中,细胞因子片段是与SEQ ID:24具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,细胞因子片段是与SEQID:24具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,当切割位点被切割时,细胞因子片段可结合并活化IL-18受体。在一些实施方案中,前肽是与SEQ ID:25具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,前肽是与SEQ ID:25具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
在一些实施方案中,经修饰的前细胞因子是经修饰的pro-IL-36α,并且具有如SEQID NO:37所示的序列。在一些实施方案中,细胞因子片段是与SEQ ID:42具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,细胞因子片段是与SEQ ID:42具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
在一些实施方案中,经修饰的前细胞因子是经修饰的pro-IL-36β,并且具有如SEQID NO:39所示的序列。在一些实施方案中,细胞因子片段是与SEQ ID:43具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,细胞因子片段是与SEQ ID:43具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
在一些实施方案中,经修饰的前细胞因子是经修饰的pro-IL-36γ,并且包括SEQID NO:41所示的序列。在一些实施方案中,细胞因子片段是与SEQ ID:44具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,细胞因子片段是与SEQ ID:44具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
在一些实施方案中,所述多核苷酸或一组多核苷酸包括编码经修饰的pro-IL-36α、β或γ的第一核酸,其中经修饰的pro-IL-36α、β或γ从N端到C端包括:(a)前肽;(b)由组织蛋白酶G、弹性蛋白酶或蛋白酶3以外的蛋白酶识别的切割位点;和(c)IL-36α、β或γ片段。
在一些实施方案中,蛋白酶为颗粒酶B(GzB)。在一些实施方案中,切割位点具有如SEQ ID NO:26所示的序列。在一些实施方案中,经修饰的pro-IL-36α、β或γ包括如SEQ IDNO:37、39或41所示的序列。
在一些实施方案中,所述多核苷酸或一组多核苷酸进一步包括编码所述蛋白酶的第二核酸。在一些实施方案中,第一核酸和第二核酸在单个载体中。
在一些实施方案中,IL-36片段是与SEQ ID:42、43或44具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,IL-36片段是与SEQ ID:42、43或44具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,当切割位点被切割时,IL-36片段可结合并活化IL-36受体。
在一些实施方案中,该多核苷酸或一组多核苷酸进一步包括编码嵌合抗原受体(CAR)的第三核酸。在一些实施方案中,CAR是第二代嵌合抗原受体(CAR),包括:(a)信号区;(b)第一共刺激信号区;(c)跨膜结构域;和(d)与第一靶抗原上的第一表位特异性相互作用的第一结合元件。
在一些实施方案中,第一表位是MUC1靶抗原上的表位。在一些实施方案中,所述第一结合元件包括HMFG2抗体的CDR。在一些实施方案中,所述第一结合元件包括HMFG2抗体的VH和VL结构域。在一些实施方案中,所述第一结合元件包括HMFG2单链可变片段(scFv)。
在一些实施方案中,所述多核苷酸或一组多核苷酸进一步包括编码嵌合共刺激受体(CCR)的第四核酸,其中所述CCR包括:(a)第二共刺激信号区;(b)跨膜结构域;和(c)与第二靶抗原上的第二表位特异性相互作用的第二结合元件。
在一些实施方案中,包括所述第二表位的第二靶抗原选自由ErbB同源二聚体和异二聚体组成的组。在一些实施方案中,所述第二靶抗原为HER2。在一些实施方案中,所述第二靶抗原是EGF受体。在一些实施方案中,所述第二结合元件包括T1E、ICR12的结合部分或ICR62的结合部分。
在一些实施方案中,第三核酸和第四核酸在单个载体中。
在一些实施方案中,所述多核苷酸或一组多核苷酸包括:(a)编码经修饰的pro-IL-18的第一核酸,其中所述经修饰的pro-IL-18是SEQ ID NO:27的所示多肽;(b)编码GzB的第二核酸;(c)编码嵌合抗原受体(CAR)的第三核酸,其中所述CAR包括:i.信号区;ii.第一共刺激信号区;iii.跨膜结构域;和iv.与MUC1靶抗原上的第一表位特异性相互作用的第一结合元件;(d)编码嵌合共刺激受体(CCR)的第四核酸,其中CCR包括:i.第二共刺激信号区;ii.跨膜结构域;和iii.与第二靶抗原上的第二表位特异性相互作用的第二结合元件。在一些实施方案中,所述多核苷酸或一组多核苷酸包括如SEQ ID NO:103所示的多核苷酸。
在一些实施方案中,所述多核苷酸或一组多核苷酸包括:(a)编码经修饰的pro-IL-36的第一核酸,其中所述经修饰的pro-IL-36是SEQ ID NO:37、39或41所示的多肽;(b)编码GzB的第二核酸;(c)编码嵌合抗原受体(CAR)的第三核酸,其中所述CAR包括:i.信号区;ii.第一共刺激信号区;iii.跨膜结构域;和iv.与MUC1靶抗原上的第一表位特异性相互作用的第一结合元件;(d)编码嵌合共刺激受体(CCR)的第四核酸,其中CCR包括:i.第二共刺激信号区;ii.跨膜结构域;和iii.与第二靶抗原上的第二表位特异性相互作用的第二结合元件。
在一些实施方案中,所述第一核酸和所述第三核酸位于单个载体中。在一些实施方案中,所述第一核酸和所述第四核酸从单个载体表达。在一些实施方案中,所述第一核酸、所述第二核酸、所述第三核酸和所述第四核酸从单个载体表达。
在一个方面,本发明提供一种制备免疫应答细胞的方法,所述方法包括将本文提供的多核苷酸或一组多核苷酸转染或转导到免疫应答细胞中。
在另一方面,本发明提供了一种用于将T细胞介导的免疫应答引导至需要T细胞的患者的靶细胞的方法,所述方法包括向患者施用本发明中提供的免疫应答细胞。
在一些实施方案中,靶细胞表达MUC1。
在又一方面,本发明提供了一种治疗癌症的方法,所述方法包括向患者施用有效量的本发明中提供的免疫应答细胞。在一些实施方案中,患者的癌细胞表达MUC1。
在一些实施方案中,患者患有乳腺癌、卵巢癌、胰腺癌、结直肠癌、肺癌、胃癌、膀胱癌、骨髓瘤、非霍奇金淋巴瘤、前列腺癌、食管癌、子宫内膜癌、肝胆癌、十二指肠癌、甲状腺癌和肾细胞癌。在一些实施方案中,患者患有乳腺癌。在一些实施方案中,患者患有卵巢癌。
在一个方面,本发明提供了一种γδT细胞表达:
(a)第二代嵌合抗原受体(CAR),包括
i.信号区;
ii.共刺激信号区;
iii.跨膜结构域;
iv.与第一靶抗原上的第一表位特异性相互作用的第一结合元件;和
(b)一种嵌合共刺激受体(CCR),包括
v.与ii不同的共刺激信号区;
vi.跨膜结构域;和
vii.第二结合元件,其与第二靶抗原上的第二表位特异性相互作用。
在一些实施方案中,第一靶抗原与第二靶抗原相同。
在一些实施方案中,第一靶抗原是MUC抗原。在一些实施方案中,所述第一结合元件包括HMFG2抗体的CDR。在一些实施方案中,所述第一结合元件包括HMFG2抗体的VH和VL结构域。在一些实施方案中,所述第一结合元件包括HMFG2单链可变片段(scFv)。
在一些实施方案中,包括所述第二表位的所述第二靶抗原选自由ErbB同源二聚体和异二聚体组成的组。在一些实施方案中,所述第二靶抗原为HER2。在一些实施方案中,所述第二靶抗原是EGF受体。在一些实施方案中,所述第二结合元件包括T1E、ICR12或ICR62。在一些实施方案中,所述第二结合元件为T1E。在一些实施方案中,所述第二靶抗原为αvβ6整合素。在一些实施方案中,所述第二结合元件为A20肽。
在又一方面,本公开提供了一种制备免疫应答细胞的方法,包括引入转基因的步骤。在一些实施方案中,转基因编码CAR或pCAR。在一些实施方案中,转基因编码IL-1超家族的经修饰的前细胞因子,其中经修饰的前细胞因子从N端到C端包括:(a)前肽;(b)由除半胱天冬酶-1、组织蛋白酶G、弹性蛋白酶或蛋白酶3以外的蛋白酶识别的切割位点;(c)IL-1超家族的细胞因子片段。在一些实施方案中,该方法还包括用抗γδTCR抗体活化γδT细胞的前一步骤。在一些实施方案中,抗γδTCR抗体是固定化的。
附图说明
附图不一定按比例绘制,而是强调说明本发明各种实施方案的原理。
图1提供了显示本文所述实验中使用的某些第二代CAR和pCAR构造的显著特征的示意图。细胞膜显示为平行的水平线,胞外域显示在膜上方,胞内域显示在膜下方。对于pCAR,嵌合共刺激受体(CCR)被首先命名,CAR被识别在斜线或斜杠标记(/)的右侧。
H2是Wilkie等人,J.Immunol.180:4901-9(2008)最初描述的第二代CAR,通过引用将其全部内容并入本文。从胞外到胞内,它由一个人类MUC1-靶向HMFG2单链抗体(scFv)结构域、CD28跨膜结构域和共刺激结构域以及一个CD3z信号区组成。仅用H2转导的细胞是标准的第二代CAR-T细胞,对HMFG2单链抗体识别的MUC1肿瘤相关糖型具有特异性。
TBB/H是一种pCAR。它利用MUC1靶向第二代“H2”CAR,但具有共表达的嵌合共刺激受体(CCR)。TBB/H pCAR中的CCR具有一个融合到CD8α跨膜结构域的T1E结合结构域和一个4-1BB共刺激结构域。T1E是一种来源于转化生长因子-α(TGF-α)和表皮生长因子(EGF)的嵌合肽,是一种混杂ErbB配体。见Wingens等人,“Structural analysis of an epidermalgrowth factor/transforming growth factor-alpha chimera with unique ErbBbinding specificity,”J.Biol.Chem.278:39114-23(2003)和Davies等人.,“Flexibletargeting of ErbB dimers that drive tumorigenesis by using geneticallyengineered T cells”,其公开内容通过引用的方式整体并入本文。
图2为展示了在本文使用的各种构建体中的pro-IL-18经修饰的卡通图。IL-18以非活性pro-IL-18的形式分泌。天然的pro-IL-18需要在前肽和成熟的IL-18蛋白片段之间的切割位点进行半胱天冬酶-1裂解来活化。然而,半胱天冬酶-1在T细胞中不表达。半胱天冬酶-3和半胱天冬酶-8在活化T细胞的细胞质中上调(Alam等人,“Early activation ofcaspases during T lymphocyte stimulation results in selective substratecleavage in nonapoptotic cells,”J.Exp.Med 190(12):1879-1890(1999);Chun等人.“Pleiotropic defects in lymphocyte activation caused by caspase-8 mutationslead to human immunodeficiency,”Nature 419(6905):395-9(2002))。在底部显示的构建体中,pro-IL-18内的天然半胱天冬酶-1切割位点已被半胱天冬酶-3切割位点或半胱天冬酶-8切割位点、GzB切割位点或MT1-MMP切割位点所取代。这些经修饰的衍生物分别被命名为pro-IL-18(casp 3)、pro-IL-18(casp 8)、pro-IL-18(GzB)和pro-IL-18(MT1-MMP)。将其与组成型活性形式的IL-18进行比较,称为“组成的IL-18”,其中成熟的IL-18位于CD4信号肽的下游。
图3提供流式细胞术(FACS)结果,证实第二代H2 CAR(“H28z”)和TBB CCR(“TIE”)(一起,TBB/H pCAR)和IL-18变体在T细胞中的共表达,这些T细胞通过编码第二代TBB/HpCAR和图顶部识别的IL-18变体的逆转录病毒载体转染。分析转染的T细胞中pCAR两种成分的表达,使用FACS分别测量H28z CAR(H-2)和TIE-4-1BB CCR的表达。
图4A显示通过ELISA分析的转导T细胞中分泌pro-IL-18或经修饰的pro-IL-18。图4B显示了通过IL-18响应性比色报告试验测量的分泌的IL-18的功能活性。
图5A-5D提供MDA-MB-468乳腺癌细胞与pro-IL-18或经修饰的pro-IL-18(图5A为pro-IL-18;图5B为组成型(组成的)IL-18的pCAR T细胞共培养后的存活率百分比;图5C为pro-IL-18(casp 8);图5D中的pro-IL-18(casp 3)在不同的效应子:靶细胞(T细胞:肿瘤细胞)比率(x轴)下的表达。
图6A提供T细胞数量,图6B提供了MDA-MB-468乳腺癌细胞在用表达TBB/H pCAR和pro-IL-18或经修饰的pro-IL-18(组成的IL-18、pro-IL-18(casp 8)或pro-IL-18(casp3))的T细胞进行指定次数的再刺激循环后的存活率百分比。
图7A提供通过ELISA检测的IL-18分泌水平,图7B提供在不使用刺激(未刺激),或在使用抗CD3/CD28抗体进行刺激的情况下,仅表达TBB/H MUC1 pCAR、TBB/H和pro-IL-18(GzB)或TBB/H和组成的IL-18的CAR T细胞中的IL-18功能活性。
图8比较MDA-MB-468乳腺癌细胞与未转化T细胞、TBB/H pCAR T细胞、表达pro-IL-18的TBB/H pCAR T细胞或与附加的颗粒酶B共表达pro-IL-18(GzB)的TBB/H pCAR T细胞共培养后的存活率。
图9A提供IL-18水平,图9B提供TBB/H pCAR T细胞分泌的IFN-γ水平。比较了TBB/H单独(不表达外源性IL-18)和共表达pro-IL-18或与附加的颗粒酶B共表达pro-IL-18(GzB)的TBB/H pCAR T细胞。
图10A提供MDA-MD-468细胞的存活率百分比,图10B提供了T细胞再刺激循环后BxPC-3细胞的存活率百分比。对未转化的T细胞、TBB/H pCAR T细胞(不表达外源性IL-18)和共表达pro-IL-18、组成的IL-18或pro-IL-18(GzB)与附加的颗粒酶B的组合的TBB/HpCAR T细胞进行了比较。
图11A-11B提供用MDA-MD-468肿瘤靶细胞(图11A)或BxPC-3肿瘤靶细胞(图11B)对CAR-T细胞进行抗原刺激的成功周期数。受试细胞为不表达外源性IL-18(TBB/H)的TBB/HpCAR T细胞,或表达pro-IL-18或pro-IL-18(GzB)以及额外的颗粒酶B的TBB/H pCAR T细胞。导致靶肿瘤细胞20%以上细胞毒性的再刺激被认为是一个成功的再刺激周期。
图12提供不表达外源性IL-18(TBB/H)的pCAR T细胞或表达pro-IL-18或pro-IL-18(GzB)以及附加的颗粒酶B的TBB/H pCAR T细胞在第4个再刺激周期的T细胞数量。
图13用PBS或不表达外源性IL-18(TBB/H)的pCAR T细胞或表达pro-IL-18、组成的IL-18或pro-IL-18(GzB)以及附加的颗粒酶B的TBB/H pCAR T细胞治疗的肿瘤注射小鼠的生物发光发射(“总通量”)。
图14提供FACS数据,显示在用编码单独的TBB/H pCAR(TBB/H)或与四种IL-18变体(pro-IL-18+pCAR;pro-IL-18(GzB)+pCAR;组成的IL-18+pCAR;或pro-IL-18(GzB)+pCAR和附加的颗粒酶B)之一共表达的TBB/H pCAR的逆转录病毒载体转导的γδT-细胞中的pCAR(上部)或γδTCR(下部)的T细胞表达。
图15A提供了MDA-MD-468细胞的存活率百分比,图15B提供了在不同浓度下与未诱导的T细胞或不表达外源性IL-18(TBB/H)或表达IL-18变体(pro-IL-18、组成的IL-18、pro-IL-18(GzB)或pro-IL-18(GzB)及附加的颗粒酶B)的TBB/H pCAR T细胞共培养后,在不同效应子:靶比下BxPC-3细胞的存活率百分比。
图16提供了说明编码具有被MT1-MMP(MMP14)识别的切割位点的pro-IL-18构建体的结构图。
图17A-17C显示用50万T4 CAR T细胞(图17A)、T1NA CAR T细胞(T4的信号缺陷胞内域截短对照,图17B)或共表达T4+pro-IL-18(MT1-MMP)的T细胞(图17C)处理的SKOV-3肿瘤注射小鼠的生物发光发射(“总通量”)。
图18提供了说明编码TBB/H pCAR和pro-IL-18的SFG逆转录病毒构建体的结构图。
图19提供了说明编码TBB/H pCAR和具有GzB切割位点的经修饰的pro-IL-18的SFG逆转录病毒构建体的结构图,命名为pro-IL-18(GzB)。
图20提供了说明编码TBB/H pCAR和组成型活性IL-18的SFG逆转录病毒构建体的结构图,命名为组成的IL-18。
图21提供了说明编码TBB/H pCAR和具有半胱天冬酶-8切割位点的经修饰的pro-IL-18的SFG逆转录病毒构建体的结构图,命名为pro-IL-18(casp 8)。
图22提供了说明编码TBB/H pCAR和具有半胱天冬酶-3切割位点的经修饰的pro-IL-18的SFG逆转录病毒构建体的结构图,命名为pro-IL-18(casp 3)。
图23提供了SFG逆转录病毒构建体的结构图,该构建体编码TBB/H pCAR、具有GzB切割位点的经修饰的pro-IL-18及附加的颗粒酶B,命名为pro-IL-18(GzB)+颗粒酶B。
图24提供了编码T4 pCAR和具有MP1-MMP切割位点的经修饰的pro-IL-18的SFG逆转录病毒构建体的结构图,命名为pro-IL-18(MT1-MMP)。
图25提供了可用于本申请公开的免疫应答细胞的各种实施方案中的各种第一代CAR、共刺激嵌合受体和第二代CAR的图示。
图26提供了可用于本申请公开的免疫应答细胞的各种实施方案中的各种第三代CAR以及顺式和反式共刺激嵌合受体的图示。
图27提供了可用于本申请所公开的免疫应答细胞的各种实施方案中的各种双靶向CAR、抑制性CAR/非门、组合CAR/与门和TanCAR的图示。
图28提供了可用于本申请所公开的免疫应答细胞的各种实施方案中的Go-CART、Trucks、铠装CAR和具有工程化共刺激CAR的图示。
图29提供了可用于本申请所述免疫应答细胞的各种实施方案中的SynNotch/连续与门CAR和并行(p)CAR的图示。
图30A显示了用PBS或100万不表达外源性IL-18的TBB/H pCAR-αβT细胞(TBB/H)、表达pro-IL-18或表达pro-IL-18(GzB)以及附加的颗粒酶B的TBB/H pCAR-αβT细胞处理的肿瘤注射小鼠中的总通量。图30B显示了用PBS或80万不表达外源性IL-18的TBB/H pCAR-γδT细胞(TBB/H)、表达pro-IL-18或表达pro-IL-18(GzB)以及附加的颗粒酶B的TBB/H pCAR-γδT细胞处理的肿瘤注射小鼠中的总通量。图30C显示了用PBS或40万不表达外源性IL-18的TBB/H pCAR-γδT细胞(TBB/H)、表达pro-IL-18或表达pro-IL-18(GzB)以及附加的颗粒酶B的TBB/H pCAR-γδT细胞处理的肿瘤注射小鼠中的总通量。所有图均显示了来自3只小鼠的汇总数据。
图31显示了用PBS作为对照处理的三只个体肿瘤注射小鼠中的总通量。
图32A-32B提供用8×106TBB/H pCAR-γδT细胞(图32A)或4×106TBB/H pCAR-γδT细胞(图32B)处理的单个肿瘤注射小鼠的总通量。在每种情况下,T细胞都没有外源性IL-18的表达。
图33A-33B提供用8×106TBB/H pCAR-γδT细胞(图33A)或4×106TBB/H pCAR-γδT细胞(图33B)治疗的单个肿瘤注射小鼠的总通量。在每种情况下,T细胞均产生外源性pro-IL-18。
图34A-34B提供用8×106TBB/H pCAR-γδT细胞(图34A)或4×106TBB/H pCAR-γδT细胞(图34B)处理的单个肿瘤注射小鼠的总通量。在每种情况下,T细胞均产生外源性pro-IL-18(GzB)和外源性颗粒酶B。
图35显示了用MUC1+MDA-MB-468乳腺癌细胞(“+468”)或包被有抗CD3和抗CD28抗体的珠子(“aCD3/28珠子”)刺激后在αβT细胞培养中测得的IL-18活性。被检测的αβT细胞未经翻译或转导表达(i)TBBH,(ii)TBBH和pro-IL-18(GzB),(iii)TBBH和pro-IL-18(GzB),(iv)TBBH、pro-IL-18(GzB)和颗粒酶B,或(iv)TBBH和组成的IL-18。
图36A-36F为注射或不注射αβT细胞的肿瘤小鼠的生物发光发射(“总通量”)。图显示了用PBS(图36A)或表达TBB/H(图36B)、TBB/H+pro-IL-18(图36C)、TBB/H+pro-IL-18(GzB)(图36D)、TBB/H+组成的IL-18(图36E)或TBB/H+pro-IL-18(GzB)+颗粒酶B(图36F)的αβT细胞处理小鼠的结果。
图37显示了用αβTBB/H pCAR T细胞或进一步表达pro-IL-18(GzB)、组成的IL-18或pro-IL-18(GzB)以及颗粒酶B的αβTBB/H pCAR T细胞处理的肿瘤注射小鼠的存活曲线。
图38提供不表达外源性IL-18的TBB/H pCAR-T细胞(TBB/H)或表达pro-IL-18、pro-IL-18(GzB)、pro-IL-18(GzB)以及附加的颗粒酶B或组成的IL-18的TBB/H pCAR T细胞成功再刺激周期数。pCAR T细胞与MDA-MD-468肿瘤靶细胞(图38A)或BxPC-3肿瘤靶细胞(图38B)一起培养。对靶肿瘤细胞产生30%以上细胞毒性的再刺激被认为是一个成功的再刺激周期。
图39显示用MUC1+MDA-MB-468乳腺癌细胞(“+468”)或包被有抗CD3和抗CD28抗体的珠子(“aCD3/28珠子”)刺激γδT细胞培养后测得的IL-18活性。γδT细胞未经翻译或转导表达(i)TBBH,(ii)TBBH和pro-IL-18(GzB),(iii)TBBH和pro-IL-18(GzB),(iv)TBBH,pro-IL-18(GzB)和颗粒酶B,或(iv)TBBH和组成的IL-18。
图40A-40F显示了用或不用γδT细胞处理肿瘤注射的小鼠中显示生物发光发射(“总通量”)。图显示了用PBS(图40A)或表达TBB/H(图40B)、TBB/H+pro-IL-18(图40C)、TBB/H+pro-IL-18(GzB)(图40D)、TBB/H+组成的IL-18(图40E)和TBB/H+pro-IL-18(GzB)+颗粒酶B(图40F)的γδT细胞处理小鼠的结果。
图41显示了用γδTBB/H pCAR T细胞或进一步表达pro-IL-18(GzB)、组成的IL-18或pro-IL-18(GzB)以及颗粒酶B的γδTBB/H pCAR T细胞处理的肿瘤注射小鼠的存活曲线。
图42A提供MDA-MD-468LT细胞的存活率百分比,图42B提供了用TBB/H pCAR T细胞再刺激周期后BxPC-3 LT细胞的存活率百分比。在TBB/H pCAR T细胞(不表达外源性IL-36)和共表达pro-IL-36γ以及颗粒酶B、或者共表达pro-IL-36γ(GzB)以及颗粒酶B的TBB/HpCAR T细胞之间进行比较。
图43在针对不表达外源性IL-36的pCAR T细胞(TBB/H)、表达pro-IL36γ以及颗粒酶B或表达pro-IL36γ(GzB)以及颗粒酶B的TBB/H pCAR T细胞的MDA-MB-468细胞(图43A)或BxPC-3细胞(图43B)的检测中,提供每个再刺激周期的T细胞数量。
图44A和图44B提供了与MDA-468-LT细胞(图44A)或BxPC3-LT细胞(图44B)共同培养的TBB/H pCAR T细胞分泌的IFN-γ水平。对TBB/H pCAR T细胞(不表达外源性IL-36)和共表达pro-IL-36γ以及颗粒酶B、或者共表达pro-IL-36γ(GzB)以及颗粒酶B的TBB/HpCAR T细胞之间进行了比较。
图45比较了在一定范围的初始效应子与靶细胞比率范围(E:T)下,将癌细胞与未转化的T细胞、TBB/H pCAR T细胞或进一步表达pro-IL-36γ以及颗粒酶B或pro-IL-36γ(GzB)以及颗粒酶B的TBB/H pCAR T细胞共培养后,MDA-MB-468-LT细胞的存活率百分比。
图46比较了一定范围的初始效应子与靶细胞比率范围(E:T)下,将癌细胞与未转化的T细胞、TBB/H pCAR T细胞或进一步表达pro-IL-36γ以及颗粒酶B或pro-IL-36γ(GzB)以及颗粒酶B的TBB/H pCAR T细胞共培养后,BxPC3-LT细胞的存活率百分比
图47A-47D显示了注射或不注射αβT细胞的肿瘤小鼠的生物发光发射(“总通量”)。图显示了用PBS(图47A)、TBB/H(图47B)、TBB/H+pro-IL-36γ+颗粒酶B(图47C)或TBB/H+pro-IL-36γ(GzB)+颗粒酶B(图47D)处理的小鼠的结果。
图48A-48B提供了确认TBB CCR(“TIE”)(在TBB/H pCAR内)的表达,以及在未转化的(图48A)或TBB/H pCARγδT细胞中γδTCR的表达(图48B)的流式细胞术(FACS)结果。
图49A提供了在培养未转化或TBB/H pCARγδT细胞15天后的细胞扩增倍数。图49B提供了在三个不同时间点(第1天、第8天和第15天)从三个个体供体获得和培养的细胞数量。
图50A-50B提供了MDA-MB-468肿瘤细胞(图50A)或BxPC-3肿瘤细胞(图50B)在与未转化的或TBB/H pCAR-γδT细胞(以1∶1的比例)一起培养后,与单独培养的肿瘤细胞相比的存活率(%)。
图51A-51B提供了未转化或TBB/H pCARγδT细胞的成功再刺激周期数。T细胞与MDA-MD-468肿瘤靶细胞(图51A)或BxPC-3肿瘤靶细胞(图51B)一起培养。图51C-51D提供了MDA-MB-468肿瘤细胞(图51C)或BxPC-3肿瘤细胞(图51D)在未转化或TBB/H pCAR-γδT细胞连续成功再刺激周期中的存活率(%)。
图52提供了用PBS、未转导的γδT细胞(“UT”)或TBB/H pCARγδT细胞(“TBBH”)处理的BxPC-3肿瘤注射的NSG小鼠的随时间的生物发光发射(“总通量”)。
图53提供了用PBS或TBB/H pCARγδT细胞(“TBBH”)处理的MDA-MB-468肿瘤注射的SCID Beige小鼠的随时间的生物发光发射(“总通量”)。
4.详细描述
本发明的各种实施方案的细节在下面的描述中阐述。本发明的其他特征、目的和效果将从说明书、说明书附图以及权利要求书中显而易见。
4.1.定义
除非本文另有定义,否则本文中使用的所有技术和科学术语具有本发明所属领域的技术人员通常理解的含义。如本文所用,以下术语的含义如下。
术语“IL-1家族成员”指IL-1家族的成员,包括具有促炎活性的七种蛋白(IL-1α和IL-1β、IL-18、IL-33、IL-36α、IL-36β和IL-36γ)和具有抗炎活性的四种蛋白(IL-1受体拮抗剂(IL-1Ra)、IL-36Ra、IL-37和IL-38)。在一些实施方案中,IL-1家族成员为IL-18、IL-36α、IL-36β或IL-36γ。IL-36α、IL-36β和IL-36γ统称为“IL-36”。
“前细胞因子”一词指IL-1家族成员的非活性前体。前细胞因子通常包括(i)前肽,(ii)一个被蛋白酶识别的切割位点,以及(iii)一个成熟的、具有生物活性的细胞因子片段。细胞因子片段的活性可以通过切割位点的加工来调节。在优选实施方案中,前细胞因子为pro-IL-18、pro-IL-36α、pro-IL-36β或pro-IL-36γ。
术语“pro-IL-18”指IL-18的天然24-kDa非活性前体。pro-IL-18从N端到C端包括,(i)前肽,(ii)半胱氨酸蛋白酶1识别的切割位点,以及(iii)成熟的、具有生物活性的IL-18蛋白片段。在优选实施方案中,pro-IL-18为人pro-IL-18,其为193aa的24.2kDa蛋白。人pro-IL-18的cDNA序列由GenBank/EBI数据库登录号AF077611(核苷酸1-579)提供。人pro-IL-18的蛋白序列由GenBank登录号AAC27787提供。
术语“pro-IL-36α”是指IL-36α的天然17.7kDa非活性前体。Pro-IL-36α从N端到C端包括,(i)前肽,(ii)由包括组织蛋白酶G和弹性蛋白酶在内的中性粒细胞蛋白酶识别的切割位点,以及(iii)成熟的、具有生物活性的IL-36α蛋白片段。在优选实施方案中,pro-IL-36α是指人pro-IL-36α,其为158aa的17.7kDa蛋白。人pro-IL-36α的cDNA序列由GenBank/EBI数据库登录号AF201831.1(核苷酸1-477)提供。人pro IL-36α的蛋白序列由GenBank登录号AAY14988.1提供,本文如SEQ ID NO:36所示。
术语“pro-IL-36β”是指IL-36β的天然18.5kDa非活性前体。Pro-IL-36β从N端到C端包括,(i)前肽,(ii)由包括组织蛋白酶G和弹性蛋白酶在内的中性粒细胞蛋白酶识别的切割位点,以及(iii)成熟的、具有生物活性的IL-36β蛋白片段。在优选实施方案中,pro-IL-36β是系指人pro-IL-36β,其为164aa的18.5kDa蛋白。人pro-IL-36β的cDNA序列由GenBank/EBI数据库登录号AF200494.1(核苷酸1-1190)提供。人pro-IL-36β的蛋白序列由GenBank登录号NP_055253提供,本文如SEQ ID NO:38所示。
术语“pro-IL-36γ”是指IL-36γ的天然18.7kDa非活性前体。Pro-IL-36γ从N端到C端包括,(i)前肽,(ii)一个由包括蛋白酶3和弹性蛋白酶的中性粒细胞蛋白酶识别的切割位点,以及(iii)成熟的、具有生物活性的IL-36γ蛋白片段。在优选实施方案中,pro-IL-36γ是指人类pro-IL-36γ,其为169aa的18.7kDa蛋白。人pro-IL-36γ的cDNA序列由GenBank/EBI数据库登录号AF200492(核苷酸1-1183)提供。人pro-IL-36γ的蛋白序列由GenBank登录号NP_062564提供,本文如SEQ ID NO:40所示。
本文所使用的术语“经修饰的前细胞因子”是指通过插入、删除和/或替换前细胞因子蛋白的一个或多个氨基酸而产生的蛋白。在优选实施方案中,经修饰的前细胞因子包括由蛋白酶识别和切割的新切割位点,该位点被除未经修饰的细胞因子原切割以释放细胞因子片段的蛋白酶以外的蛋白酶识别和切割。
本文使用的术语“经修饰的pro-IL-18”是指通过pro-IL-18蛋白的一个或多个氨基酸的插入、缺失和/或取代而产生的蛋白。在优选实施方案中,经修饰的pro-IL-18包括由半胱天冬酶-1以外的蛋白酶识别的新切割位点,且经修饰的pro-IL-18可由半胱天冬酶-1以外的蛋白酶切割以释放生物活性的IL-18蛋白片段。
本文使用的术语“经修饰的pro-IL-36”是指通过pro-IL-36蛋白的一个或多个氨基酸的插入、缺失和/或取代而产生的蛋白。在优选实施方案中,经修饰的pro-IL-36包括由除组织蛋白酶G、弹性蛋白酶和蛋白酶3以外的蛋白酶识别的新切割位点,且经修饰的pro-IL-36可由除组织蛋白酶G、弹性蛋白酶或蛋白酶3以外的蛋白酶切割以释放生物活性IL-36蛋白片段。
本文使用的术语“pro-IL-18([蛋白酶])是指含有由括号中确定的蛋白酶识别的切割位点的经修饰的pro-IL-18。例如,pro-IL-18(GzB)指含有可被颗粒酶B(GzB)切割的切割位点的经修饰的pro-IL-18,pro-IL-18(casp-3)指含有可被半胱天冬酶-3切割的切割位点的经修饰的pro-IL-18,pro-IL-18(casp-8)指含有可被半胱天冬酶-8切割的切割位点的经修饰的pro-IL-18。
本文使用的术语“pro-IL-36(GzB)”指含有GzB识别的切割位点的经修饰的pro-IL-36。
本文中使用的术语“切割位点”是指可被蛋白酶识别的氨基酸序列。如本文所用,蛋白酶“识别”的切割位点是在体内存在或可实现的条件下可被蛋白酶切割的氨基酸序列。
本文所使用的术语“生物活性细胞因子片段”和“细胞因子片段”是指由识别细胞因子片段上游(其N端)切割位点的蛋白酶切割前细胞因子而产生的生物活性多肽。生物学活性意味着细胞因子片段可以结合并活化相应的受体。细胞因子片段可以是天然细胞因子蛋白片段或其经修饰。在一些实施方案中,与天然成熟细胞因子相比,细胞因子片段具有改进的生物活性。在一些实施方案中,细胞因子片段指下文定义的IL-18片段或IL-36片段。
本文所使用的术语“IL-18片段”和“IL-18蛋白片段”是指通过识别IL-18片段上游(其N端)的切割位点的蛋白酶裂解pro-IL-18而产生的生物学活性IL-18多肽。生物学活性意味着IL-18片段可以结合并活化IL-18受体。IL-18片段可以是天然成熟的IL-18蛋白片段或其经修饰物。在一些实施方案中,与天然成熟IL-18相比,IL-18片段具有改进的生物活性。
本文所使用的术语“IL-36片段”和“IL-36蛋白片段”是指通过识别IL-36片段上游(其N端)的切割位点的蛋白酶裂解pro-IL-36而产生的生物学活性IL-36多肽。生物学活性意味着IL-36片段可以结合并活化IL-36受体。IL-36片段可以是天然成熟的IL-36蛋白片段或其修饰物。在一些实施方案中,与天然成熟IL-36相比,IL-36片段具有改进的生物活性。IL-36片段可指成熟的IL-36α、β或γ蛋白。
本文使用的术语“IL-18变体”统称为pro-IL-18蛋白、经修饰的pro-IL-18和IL-18片段,包括天然成熟的IL-18片段。
本文使用的术语“IL-36变体”统称为pro-IL-36蛋白、经修饰的pro-IL-36蛋白和IL-36片段,包括天然成熟的IL-36α、β或γ片段。
如本文所述,关于工程化T细胞受体(TCR)或嵌合抗原受体(CAR)的结合元件,以及工程化以表达此类TCR或CAR的免疫应答细胞,术语“识别”,“特异性结合”、“特异性结合至”、“特异性相互作用”、“对…特异性的”、“选择性结合”、“选择性相互作用”和“对…选择性的”特定抗原或其表位–可以是蛋白质抗原、糖肽抗原,或肽MHC复合物–指与非特异性或非选择性相互作用(例如与非靶分子)在可测量范围内不同的结合。例如,可以通过测量与目标分子的结合并将其与非目标分子的结合进行比较来测量特异性结合。特异性结合也可以通过与模拟靶分子上识别的表位的对照分子竞争来确定。
4.2.其他解释惯例
在权利要求中,“一个”等冠词可以指一个或多个,除非另有相反指示或从上下文中明显可见。如果一个、一个以上或所有组的成员出现在给定的产品或工艺中,或在给定的产品或工艺中使用,或以其他方式与给定的产品或工艺相关,则认为一个组的一个或多个成员之间包含“或”的权利要求或描述已得到满足,除非另有相反指示或从上下文中明显可见。本发明包括实施方案,其中该组中正好有一个成员存在于给定产品或工艺中、用于给定产品或工艺中或以其他方式与给定产品或工艺相关。本发明包括多个或所有组成员存在于给定产品或工艺中、用于给定产品或工艺中或以其他方式与给定产品或工艺相关的实施方案。
还应注意,术语“包括”旨在表示开放的,允许但不要求包含额外的要素或步骤。当在本文中使用术语“包括”时,术语“由…组成”也因此被包含并公开。
如果给定了范围,则包括端点。此外,应当理解,除非从本领域普通技术人员的上下文和理解中另有指示或以其他方式显而易见,否则在本发明的不同实施方案中,表示为范围的值可以采用所述范围内的任何特定值或子范围,直到该范围下限的十分之一单位,除非上下文另有明确规定。
所有引用的来源,例如本文引用的参考文献、出版物、数据库、数据库条目和技术,均通过引用并入本申请,即使在引用中未明确说明。如果引用来源的陈述与本申请存在冲突,以即时申请中的陈述为准。
章节和表格标题不具有限制性。
4.3.免疫应答细胞
在第一方面中,提供免疫应答细胞。所述免疫应答细胞表达IL-1超家族的经修饰的前细胞因子,其中所述经修饰的前细胞因子从N端到C端包括:(a)前肽;(b)由除半胱天冬酶-1、组织蛋白酶G、弹性蛋白酶或蛋白酶3以外的蛋白酶识别的切割位点;(c)IL-1超家族的细胞因子片段。
在一些实施方案中,免疫应答细胞表达经修饰的pro-IL-18,其中经修饰的pro-IL-18从N端到C端包括:(a)前肽;(b)由除半胱天冬酶-1以外的蛋白酶识别的切割位点;(c)具有生物活性的IL-18片段。
在一些实施方案中,免疫应答细胞表达经修饰的pro-IL-36,其中经修饰的pro-IL-36从N端到C端包括:(a)前肽;(b)由除组织蛋白酶G、弹性蛋白酶和蛋白酶3以外的蛋白酶识别的切割位点;和(c)具有生物活性的IL-36α、β或γ片段。
4.3.1.细胞
在典型实施方案中,免疫应答细胞为T细胞。
在某些实施方案中,免疫应答细胞为αβT细胞。在特定实施方案中,免疫应答细胞为细胞毒性αβT细胞。在特定实施方案中,免疫应答细胞为αβ辅助性T细胞。在特定实施方案中,免疫应答细胞为调节性αβT细胞(Treg)。
在某些实施方案中,免疫应答细胞为γδT细胞。在特定实施方案中,免疫应答细胞为Vδ2+γδT细胞。在特定实施方案中,免疫应答细胞为Vδ2–T细胞。在特定实施方案中,Vδ2–T细胞是Vδ1+细胞。
在某些实施方案中,免疫应答细胞是自然杀伤(NK)细胞。
在一些实施方案中,免疫应答细胞不表达额外的外源蛋白。在其他实施方案中,免疫应答细胞被工程化以表达额外的外源蛋白,例如工程化T细胞受体(TCR)或嵌合抗原受体(CAR)。进一步表达工程化TCR和CAR的免疫应答细胞将在下文进一步描述。
在一些实施方案中,免疫应答细胞从外周血单个核细胞(PBMC)获得。在一些实施方案中,免疫应答细胞从肿瘤中获得。在特定实施方案中,从肿瘤获得的免疫应答细胞是肿瘤浸润淋巴细胞(TIL)。在特定实施方案中,TIL为αβT细胞。在其他特定实施方案中,TIL是γδT细胞,尤其是Vδ2–γδT细胞。
4.3.2.经修饰的pro-IL-18
在一些实施方案中,免疫应答细胞表达经修饰的pro-IL-18。
经修饰的pro-IL-18从N端到C端包括:(i)前肽;(ii)由除半胱天冬酶-1以外的蛋白酶识别的切割位点;(iii)IL-18片段。经修饰的pro-IL-18可被蛋白酶切割,该蛋白酶可识别切割位点以释放前肽和生物活性IL-18片段。
4.3.2.1.前肽
在典型实施方案中,前肽是pro-IL-18蛋白的未经修饰的天然前肽。在特定实施方案中,前肽是人pro-IL-18蛋白的未经修饰的天然前肽。
在其他实施方案中,前肽由pro-IL-18蛋白的天然前肽修饰。在某些实施方案中,与天然pro-IL-18前肽相比,经修饰的前肽包含一个或多个氨基酸修饰。在某些实施方案中,前肽是来自非pro-IL-18蛋白的前肽。在某些实施方案中,前肽具有非天然合成氨基酸序列。
在一些实施方案中,前肽是与SEQ ID:25具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,前肽是与SEQ ID:25具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
4.3.2.2.切割位点
经修饰的pro-IL-18中的切割位点被除半胱天冬酶-1以外的蛋白酶识别。
在典型实施方案中,经修饰的pro-IL-18中仅存在由除半胱天冬酶-1以外的蛋白酶识别的单一切割位点。在其他实施方案中,引入由除半胱天冬酶-1之外的蛋白酶识别的多个切割位点。在这些实施方案中,多个切割位点可以是由除半胱天冬酶-1之外的相同或不同蛋白酶识别的切割位点。
在各种实施方案中,由除半胱天冬酶-1以外的蛋白酶识别的切割位点被引入(a)半胱天冬酶-1的前肽和切割位点之间,(b)代替半胱天冬酶-1的切割位点,或(c)半胱天冬酶-1的切割位点和IL-18片段之间。
在一些实施方案中,切割位点取代pro-IL-18的半胱天冬酶-1切割位点。在一些实施方案中,切割位点是半胱天冬酶-1切割位点以外的位点。
在典型实施方案中,经修饰的pro-IL-18中的切割位点选自本领域已知的蛋白酶切割位点。在典型实施方案中,蛋白酶是已知在活化T细胞或NK细胞中表达的蛋白酶。在某些实施方案中,切割位点由颗粒酶B(GzB)、半胱天冬酶-3、半胱天冬酶-8或膜1型基质金属蛋白酶(MT1-MMP,也称为MMP14)、替代性肿瘤相关基质金属蛋白酶(MMP1-13)、去整合素和金属蛋白酶(ADAM)家族成员(尤其是ADAM 10或ADAM17),组织蛋白酶B、L或S,成纤维细胞活化蛋白(FAP),激肽释放酶相关肽酶(KLK),如KLK2、3、6或7,二肽基肽酶(DPP)4,肝素或尿激酶纤溶酶原活化剂(Dudani等人.,“Harnessing protease activity to improve cancercare,”Annu.Rev.Cancer Biol.,2:353-76(2018))。在特定实施方案中,切割位点由颗粒酶B(GzB)识别。在特定实施方案中,切割位点由半胱天冬酶-3识别。在特定实施方案中,切割位点由半胱天冬酶-8识别。在特定实施方案中,切割位点由MT1-MMP识别。
在一些实施方案中,切割位点包括选自SEQ ID NO:26、28、30和32的序列。在一些实施方案中,经修饰的pro-IL-18包括选自SEQ ID NO:27、29、31和33的序列。
在其他实施方案中,切割位点是非天然存在的合成切割位点。
4.3.2.3.IL-18片段
在各种实施方案中,IL-18片段是天然IL-18片段。在优选实施方案中,天然IL-18片段是人IL-18片段。
在其他实施方案中,IL-18片段由天然IL-18片段修饰,但当通过蛋白酶切割切割位点从经修饰的pro-IL-18切割时,仍保留结合和活化IL-18受体的能力。在各种实施方案中,IL-18片段具有与天然成熟IL-18蛋白相似、小于或优于其的生物学活性。
在一些实施方案中,IL-18片段是与SEQ ID:24具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,IL-18片段是与SEQ ID:24具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,经修饰的pro-IL-18蛋白从导入T细胞的外源序列表达。在一些实施方案中,外源序列选自由序列SEQ ID NO:102、103、105、107、109、111和113组成的组。在一些实施方案中,外源序列是在表达载体(例如,病毒载体或非病毒载体)中克隆的编码序列。
4.3.3.经修饰的pro-IL-36
在一些实施方案中,免疫应答细胞表达经修饰的pro-IL-36α、β或γ蛋白。
经修饰的pro-IL-36从N端到C端包括:(i)前肽;(ii)由除组织蛋白酶G、弹性蛋白酶和蛋白酶3以外的蛋白酶识别的切割位点;(iii)IL-36片段。经修饰后的pro-IL-36可被蛋白酶切割,该蛋白酶可识别切割位点以释放前肽和生物活性IL-36α、β或γ片段。
4.3.3.1.前肽
在典型实施方案中,前肽是pro-IL-36α、β或γ蛋白的未经修饰的天然前肽。在特定实施方案中,前肽是人类pro-IL-36蛋白的未经修饰的天然前肽。
在其他实施方案中,前肽由pro-IL-36蛋白的天然前肽修饰。在某些实施方案中,与天然pro-IL-36前肽相比,经修饰的前肽包含一个或多个氨基酸修饰。在某些实施方案中,前肽是来自非pro-IL-36蛋白的前肽。在某些实施方案中,前肽具有非天然合成氨基酸序列。
在一些实施方案中,前肽来自pro-IL-36α(SEQ ID NO:45)。在一些实施方案中,前肽来自经修饰的pro-IL-36α(SEQ ID NO:46)。在一些实施方案中,前肽来自pro-IL-36β(SEQ ID NO:47)。在一些实施方案中,前肽来自经修饰的pro-IL-36β(SEQ ID NO:48)。在一些实施方案中,前肽来自pro-IL-36γ(SEQ ID NO:49)。在一些实施方案中,前肽来自经修饰的pro-IL-36γ(SEQ ID NO:50)。
4.3.3.2.切割位点
经修饰的pro-IL-36中的切割位点由除组织蛋白酶G、弹性蛋白酶和蛋白酶3以外的蛋白酶识别。
在典型实施方案中,经修饰的pro-IL-36中仅存在由除组织蛋白酶G、弹性蛋白酶和蛋白酶3以外的蛋白酶识别的单个切割位点。在其他实施方案中,引入除组织蛋白酶G、弹性蛋白酶和蛋白酶3之外的蛋白酶识别的多个切割位点。在这些实施方案中,多个切割位点可以是由组织蛋白酶G、弹性蛋白酶和蛋白酶3以外的相同或不同蛋白酶识别的切割位点。
在各种实施方案中,将除组织蛋白酶G、弹性蛋白酶和蛋白酶3之外的蛋白酶识别的切割位点引入(a)组织蛋白酶G、弹性蛋白酶或蛋白酶3的前肽和切割位点之间,(b)代替组织蛋白酶G、弹性蛋白酶或蛋白酶3的切割位点,或(c)组织蛋白酶G、弹性蛋白酶或蛋白酶3的切割位点和IL-36片段之间。
在一些实施方案中,切割位点取代了天然存在于pro-IL-36α、β或γ中的组织蛋白酶G、弹性蛋白酶或蛋白酶3的切割位点。在一些实施方案中,切割位点是对天然存在于pro-IL-36α、β或γ中的组织蛋白酶G、弹性蛋白酶和/或蛋白酶3的切割位点的补充。
在典型实施方案中,经修饰的pro-IL-36中的切割位点选自本领域已知的蛋白酶切割位点。在典型实施方案中,蛋白酶是已知在活化T细胞或NK细胞中表达的蛋白酶。在某些实施方案中,切割位点由颗粒酶B(GzB)、半胱天冬酶-3、半胱天冬酶-8或膜1型基质金属蛋白酶(MT1-MMP,也称为MMP14)、替代性肿瘤相关基质金属蛋白酶(MMP1-13)、去整合素和金属蛋白酶(ADAM)家族成员(尤其是ADAM 10或ADAM17),组织蛋白酶B、L或S,成纤维细胞活化蛋白(FAP),激肽释放酶相关肽酶(KLK),如KLK2、3、6或7,二肽基肽酶(DPP)4,肝素或尿激酶纤溶酶原活化剂(Dudani等人.,“Harnessing protease activity to improve cancercare,”Annu.Rev.Cancer Biol.,2:353-76(2018))。在特定实施方案中,切割位点由颗粒酶B(GzB)识别。在特定实施方案中,切割位点由半胱天冬酶-3识别。在特定实施方案中,切割位点由半胱天冬酶-8识别。在特定实施方案中,切割位点由MT1-MMP识别。
在一些实施方案中,切割位点包括选自SEQ ID NO:26、28、30和32的序列。在一些实施方案中,经修饰的pro-IL-36包括选自SEQ ID NO:37、39和41的序列。
在其他实施方案中,切割位点是非天然存在的合成切割位点。
4.3.3.3.IL-36片段
在各种实施方案中,IL-36片段是天然IL-36α(SEQ ID NO:42)、β(SEQ ID NO:43)或γ(SEQ ID NO:44)片段。在优选实施方案中,天然IL-36片段是人IL-36片段。
在其他实施方案中,IL-36片段由天然IL-36片段修饰,但当通过蛋白酶切割位点从经修饰的pro-IL-36切割时,仍保留结合和活化IL-36受体的能力。在各种实施方案中,IL-36片段具有与天然成熟IL-36α、β或γ蛋白相似、小于或优于其的生物学活性。
在一些实施方案中,IL-36α、β或γ片段是分别与SEQ ID:42、43或44具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,IL-36α、β或γ片段是分别与SEQ ID:4 2、43或44具有至少约85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。在一些实施方案中,经修饰的pro-IL-36蛋白从导入T细胞的外源序列表达。在一些实施方案中,外源序列是在表达载体(例如,病毒载体或非病毒载体)中克隆的编码序列。
4.3.4.表达蛋白酶
在一些实施方案中,免疫应答细胞被工程化以进一步表达蛋白酶,该蛋白酶识别共表达的经修饰的pro-IL-18或经修饰的pro-IL-36的切割位点。
在一些实施方案中,蛋白酶选自GzB、半胱天冬酶-3、半胱天冬酶-8和MT1-MMP组成的组。
在特定实施方案中,表达的蛋白酶为GzB。在优选实施方案中,表达的蛋白酶是人GzB。在特定实施方案中,表达的蛋白酶包括如SEQ ID NO:20或其修饰物。
在特定实施方案中,表达的蛋白酶为半胱天冬酶-3。在优选实施方案中,表达的蛋白酶是人半胱氨酸蛋白酶-3。在特定实施方案中,表达的蛋白酶包括如SEQ ID NO:21或其修饰物。
在特定实施方案中,所表达的蛋白酶为半胱天冬酶-8。在优选实施方案中,表达的蛋白酶是人半胱氨酸蛋白酶-8。在特定实施方案中,表达的蛋白酶包括如SEQ ID NO:22或其修饰物。
在特定实施方案中,表达的蛋白酶为MT1-MMP。在优选实施方案中,表达的蛋白酶为人MT1-MMP。在特定实施方案中,表达的蛋白酶包括如SEQ ID NO:23或其修饰物。
在一些实施方案中,表达的蛋白酶是替代性肿瘤相关基质金属蛋白酶(MMP1-13),去整合素和金属蛋白酶(ADAM)家族成员(尤其是ADAM 10或ADAM17),组织蛋白酶B、L或S,成纤维细胞活化蛋白(FAP),激肽释放酶相关肽酶(KLK),如KLK2、3、6或7,二肽基肽酶(DPP)4,肝素或尿激酶纤溶酶原活化剂(Dudani等人.,“Harnessing protease activity toimprove cancer care,”Annu.Rev.Cancer Biol.,2:353-76(2018))。
表达的蛋白酶从导入表达载体内免疫应答细胞的外源序列表达。在一些实施方案中,免疫应答细胞表达来自单个表达载体表达经修饰的前细胞因子和蛋白酶。在一些实施方案中,免疫应答细胞表达来自多个表达载体的经修饰的前细胞因子和蛋白酶。在特定实施方案中,免疫应答细胞表达来自第一表达载体的经修饰的前细胞因子和来自第二表达载体的蛋白酶。
4.3.5.CAR
在典型实施方案中,免疫应答细胞被工程化以进一步表达嵌合抗原受体(CAR)。
4.3.5.1.CAR特异性
在典型实施方案中,CAR对癌症中存在的至少一种抗原具有特异性。在典型实施方案中,CAR对实体瘤中存在的至少一种抗原具有特异性。
在各种实施方案中,抗原是人类端粒酶逆转录酶(hTERT)、存活素、小鼠双微体2同源物(MDM2)、细胞色素P450 1B1(CYP1B)、HER2/neu、威尔姆斯肿瘤基因1(WT1)、活素(livin)、甲胎蛋白(AFP)、癌胚抗原(CEA)、粘蛋白16(MUC16)、MUC1、前列腺特异性膜抗原(PSMA),p53或细胞周期蛋白(D1)。例如,靶抗原是hTERT或生存素(survivin)。在一些实施方案中,靶抗原为CD38。在一些实施方案中,靶抗原是B细胞成熟抗原(BCMA,BCM)。在一些实施方案中,靶抗原是BCMA、B细胞活化因子受体(BAFFR、BR3)和/或跨膜活化因子和CAML相互作用因子(TACI)或其相关蛋白。例如,在一些实施方案中,靶抗原是或与BAFFR或TACI相关。在一些实施方案中,靶抗原为CD33或TIM-3。在一些实施方案中,它是CD26、CD30、CD53、CD92、CD100、CD148、CD150、CD200、CD261、CD262或CD362。
在一些实施方案中,CAR对α叶酸受体5T4、αvβ6整联蛋白、BCMA、B7-H3、B7-H6、CAIX、CD19、CD20、CD22、CD30、CD33、CD44、CD44v6、CD44v7/8、CD70、CD79a、CD79b、CD123、CD138、CD171、CEA、CSPG4、CMV、EBV、EGFR、EGFR家族,包括ErbB2(HER2)、ErbB家族同源和异二聚体、EGFRvIII、EGP2、EGP40、EPCAM、EPA2、EPCAM、FAP、胎儿AchR、FR.alpha、GD2、GD3、磷脂酰肌醇蛋白聚糖-3(GPC3)、HLA-A1+MAGE1、HLA-A2+MAGE1、HLA-A3+MAGE1、HLA-A1+NY-ESO-1、HLA-A2+NY-ESO-1、HLA-A3+NY-ESO-1、HPV、IL-11R.α、IL-13R.α2、Lambda、Lewis-Y、Kappa、间皮素、Muc1、Muc16、NCAM、NKG2D配体、NY-ESO-1、PRAME、PSCA、PSMA、ROR1、SSX、生存素、TAG72、TEMs或VEGFR2具有特异性。
在一些实施方案中,CAR对TSHR、CD19、CD123、CD22、CD30、CD171、CS-1、CLL-1、CD33、EGFRIII、GD2、GD3、BCMA、Tn-Ag、PSMA、ROR1、FLT3、FAP、TAG72、CD38、CD44v6、CEA、EPCAM、B7H3、KIT、IL-13Ra2、间皮素、IL-11Ra、PSCA、PRSS21、VEGFR2、LewisY、CD24、PDGFRβ、SSEA-4、CD20、叶酸受体α、ERB2(Her2/neu)、MUC1、EGFR、NCAM、前列腺酶、PAP、ELF2M、EphrinB2、IGF-I受体、CAIX、LMP2、gp100、bcr-abl、酪氨酸酶、EphA2、岩藻糖基GM1、sLe、GM3、TGS5、HMWMAA、o-乙酰基-GD2、叶酸受体β、TEM1/CD248、TEM7R、CLDN6、GPRC5D、CXORF61、CD97、CD179a、ALK、聚唾液酸、PLAC1、GloboH、NY-BR-1、UPK2、HAVCR1、ADRB3、PANX3、GPR20、LY6K、OR51E2、TARP、WT1、NY-ESO-1、LAGE-1a、MAGE-A1、豆荚蛋白(legumain)、HPV E6、E7、MAGEA1、ETV6-AML、精子蛋白17、XAGE1、Tie 2、MAD-CT-1、MAD-CT-2、Fos相关抗原1、p53、p53突变体、前列腺素、存活素和端粒酶、PCTA-1/Galectin 8、MelanA/MART1、Ras突变体、hTERT、肉瘤易位断点、ML-IAP、ERG(TMPRSS2-ETS融合基因)、NA17、PAX3、雄激素受体、细胞周期蛋白B1、MYCN、RhoC、TRP-2、CYP1B1、BORIS、SART3、PAX5、OY-TES1、LCK、AKAP-4、SSX2、RAGE-1、人类端粒酶逆转录酶、RU1、RU2、肠羧酸酯酶、mut hsp70-2、CD79a、CD79b、CD72、LAIR1、FCAR、LILRA2、CD300LF、CLEC12A、BST2、EMR2、LY75、GPC3、FCRL5或IGLL1具有特异性。
在一些实施方案中,CAR对MUC1靶抗原具有特异性。在特定实施方案中,CAR对肿瘤相关的MUC1表位具有特异性。在特定实施方案中,CAR的靶向结构域包括HMFG2抗体的CDR。见Wilkie等人.,“Retargeting of human T cells to tumor-associated MUC1:theevolution of a chimeric antigen receptor,”J.Immunol.180(7):4901-4909(2008),通过引用将其全部内容并入本文。在一些实施方案中,CAR包括HMFG2抗体的VH和VL结构域。在一些实施方案中,CAR包括HMFG2单链可变片段(scFv)。
在一些实施方案中,CAR对ErbB同源和/或异二聚体具有特异性。在特定实施方案中,CAR的靶向结构域包括各种ErbB肽配体T1E。T1E是由转化生长因子-α(TGF-α)和表皮生长因子(EGF)衍生的嵌合肽。见Wingens等人.“Structural analysis of an epidermalgrowth factor/transforming growth factor-alpha chimera with unique ErbBbinding specificity,”J.Biol.Chem.278:39114-23(2003)和Davies等人.,“Flexibletargeting of ErbB dimers that drive tumorigenesis by using geneticallyengineered T cells,”Mol.Med.18:565-576(2012),通过引用将其披露的全部内容并入本文。
4.3.5.2.CAR构型
在一些实施方案中,CAR是第一代CAR。第一代CAR可以提供TCR样信号,最常见的是使用CD3 zeta(CD3z或CD3ζ)或Fcer1g胞内信号结构域,从而激发肿瘤杀伤功能。然而,在没有伴随共刺激信号的情况下,CD3z链融合受体的参与可能不足以诱导大量IL-2分泌和/或T细胞增殖。在生理性T细胞反应中,最佳的淋巴细胞活化可能需要一个或多个共刺激受体,如CD28或4-1BB的参与。在一些实施方案中,如Eshhar等人所公开的第一代CAR,“Specificactivation and targeting of cytotoxic lymphocytes through chimeric singlechains consisting of antibody-binding domains and the gamma or zeta subunitsof the immunoglobulin and T-cell receptors,”PNAS 90(2):720-4(1993)或Alvarez-Vallina等人中披露的共刺激嵌合受体,“Antigen-specific targeting of CD28-mediated T cell co-stimulation using chimeric single-chain antibody variablefragment-CD28 receptors.”Eur.J.Immunol.26(10):2304-9(1996)和Krause等人.,“Antigen-dependent CD28 signalling selectively enhances survival andproliferation in genetically modified activated human primary T lymphocytes,”J.Exp.Med.188(4):619-26(1998),在本文所述的免疫应答细胞中表达(图25);通过引用这两个参考文献全部内容并入本文。
在一些实施方案中,CAR是第二代CAR。第二代CAR除了抗原依赖性TCR样信号外,还可以在人类原代T细胞中转导功能性抗原依赖性共刺激信号,从而允许T细胞在具有杀瘤活性的同时增殖。第二代CAR通常使用源自CD28或4-1BB的共刺激域(同义词,共刺激信号区)提供共刺激。共刺激加上CD3 zeta信号的联合传递可以使第二代CAR在功能上优于第一代CAR。美国专利号7446190中公开了可在本文所述免疫应答细胞中有效表达的示例性第二代CAR;Finney等人.,“Chimeric receptors providing both primary and costimulatorysignaling in T cells from a single gene product,”J.Immunol 161(6):2791-7(1998);Maher等人.,“Human T-lymphocyte cytotoxicity and proliferation directedby a single chimeric TCRzeta/CD28 receptor,”Nat.Biotechnol.20(1):70-5(2002);Finney等人.,“Activation of resting human primary T cells with chimericreceptors:costimulation from CD28,inducible costimulator,CD134,and CD137 inseries with signals from the TCR zeta chain,”J.Immunol.172(1):104-13(2004);and Imai等人.,“Chimeric receptors with 4-1BB signaling capacity provokepotent cytotoxicity against acute lymphoblastic leukemia,”Leukemia 18(4):676-84(2004),通过引用并入本文。
图25中提供了可在本文所述免疫应答细胞中有效表达的又一示例性第二代CAR。
本文中的实例提供可在本文所述免疫应答细胞中有效表达的额外的第二代CAR。在特定实施方案中,使用名为“H”、“H2”或“H28z”的第二代CAR。H2 CAR从胞外到胞内由一个靶向HMFG2单链抗体的MUC-1、CD28跨膜和共刺激结构域以及一个CD3z信号区组成。见图1。Wilkie等人.,“Retargeting of human T cells to tumor-associated MUC1:theevolution of a chimeric antigen receptor,”J.Immunol.180:4901-9(2008)中描述了H2 CAR。通过引用全文并入本文。在特定实施方案中,使用称为T1E28z的第二代CAR。T1E28zCAR从胞外到胞内由ErbB靶向T1E肽、CD28跨膜和共刺激结构域以及CD3z信号区组成。见图1。Davies,“Flexible targeting of ErbB dimers that drive tumourigenesis byusing genetically engineered T cells,”Mol.Med.18:565-576(2012)中描述了T1E28z第二代CAR。通过引用全文并入本文。
在一些实施方案中,使用第三代CAR。第三代CAR可以将多个共刺激域(同义词,共刺激信号区)与cis中的TCR样信号域(同义词,信号区)相结合,例如CD28+4-1BB+CD3z或CD28+OX40+CD3z,以进一步增强效力。在一些实施方案中,第三代CAR包括在CAR内域中串联排列的共刺激域,通常位于CD3z或其等效物的上游。Pule等人.,“A chimeric T cellantigen receptor that augments cytokine release and supports clonal expansionof primary human T cells,”Mol Ther.12(5):933-41(2005)中公开了一些可在本文所述免疫应答细胞中有效表达的示例性第三代CAR;Geiger等人.,“Integrated src kinaseand costimulatory activity enhances signal transduction through single-chainchimeric receptors in Tlymphocytes,”Blood 98:2364-71(2001);Wilkie等人.,“Retargeting of human T cells to tumor-associated MUC1:the evolution of achimeric antigen receptor,”J.Immunol.180(7):4901-9(2008),其披露内容通过引用全部并入本文和图26中。在一些实施方案中,使用顺式和反式共刺激信号的CAR,如Stephan等人.,“T cell-encoded CD80 and 4-1BBL induce auto-and transcostimulation,resulting in potent tumor rejection,”Nat.Med.13(12)1440-9(2007)所述,通过引用并入本文,并在图26中提供。
本领域中可用和已知的其他CAR格式可在本文所述免疫应答细胞的各种实施方案中表达。尤其是图27-29公开了可在本公开的免疫抑制细胞中表达的其他CAR形式,包括Wilkie等人.,“Dual Targeting of ErbB2 and MUC1 in Breast Cancer Using ChimericAntigen Receptors Engineered to Provide Complementary Signaling,”J.Clin.Immunol.32(5)1059-70(2012);Fedorov等人.“PD-1-and CTLA-4-basedinhibitory chimeric antigen receptors(iCARs)divert off-target immunotherapyresponses,”Sci.Transl.Med.5(215)215ra172(2013);Kloss等人.“Combinatorialantigen recognition with balanced signaling promotes selective tumoreradication by engineered T cells,”Nat.Biotechnol.31(1):71-6(2013);Grada等人.“TanCAR:A Novel Bispecific Chimeric Antigen Receptor for CancerImmunotherapy,”Mol.Ther.Nucleic Acids.2:e105(2013);Foster等人.“RegulatedExpansion and Survival of Chimeric Antigen Receptor-Modified T Cells UsingSmall Molecule-Dependent Inducible MyD88/CD40,”Mol Ther.25(9):2176-2188(2017);Chmielewski等人.“IL-12release by engineered T cells expressingchimeric antigen receptors can effectively muster an antigen-independentmacrophage response on tumor cells that have shut down tumor antigenexpression,”Cancer Research,71:5697-5706(2011);Pegram等人.,“Tumor-targeted Tcells modified to secrete IL-12 eradicate systemic tumors without need forprior conditioning,”Blood 119:4133-4141(2012);Curran等人.“Enhancing antitumorefficacy of chimeric antigen receptor T cells through constitutive CD40Lexpression,”Mol.Ther.23(4):769-78(2015);Zhao等人.,“Structural design ofengineered costimulation determines tumor rejection kinetics and persistenceof CAR T cells,”Cancer Cell 28:415-28(2015);Roybal等人.,“Precision tumorrecognition by T Cells with combinatorial antigen-sensing circuits,Cell 164:770-9(2016);Whilding等人.,“CAR T-Cells targeting the integrin alphavbeta6 andco-expressing the chemokine receptor CXCR2 demonstrate enhanced homing andefficacy against several solid malignancies,”Cancers 11(5),674(2019)和Kosti等人.,“Perspectives on Chimeric Antigen Receptor T-Cell immunotherapy for solidtumors,”Front Immunol 9:1104,(2018),通过引用并入本文。
4.3.5.2.1.pCAR构型
在特定实施方案中,并行CAR(pCAR)在免疫应答细胞中表达。
在pCAR实施方案中,免疫应答细胞被设计成并行表达两种构建体,第二代CAR和嵌合共刺激受体(CCR)。第二代CAR从胞内到胞外结构域包括:(a)信号区;(b)第一共刺激信号区;(c)跨膜结构域;和(d)与第一靶抗原上的第一表位特异性相互作用的第一结合元件。从胞内到胞外,CCR包括:(a)共刺激信号区;(b)跨膜结构域;和(c)与第二靶抗原上的第二表位特异性相互作用的第二结合元件。通常,CCR缺少类似TCR的信号区,例如CD3z。在一些实施方案中,CCR的共刺激域(第二共刺激域)不同于CAR的共刺激域(第一共刺激域)。在一些实施方案中,第二表位不同于第一表位。与第一代CAR-T细胞、第二代CAR-T细胞和第三代CAR-T细胞相比,并行CAR(pCAR)工程化T细胞具有更高的活性和抗衰竭能力。参见US pre-grant publication 2019/0002521,通过引用全文并入本文。
在一些实施方案中,第二靶抗原不同于第一靶抗原。在一些实施方案中,第二靶抗原与第一靶抗原相同。
在一些实施方案中,第一抗原是MUC1抗原。在特定实施方案中,第一表位是MUC1靶抗原上的肿瘤相关表位。在一些实施方案中,第一结合元件包括HMFG2抗体的CDR。在一些实施方案中,第一结合元件包括HMFG2抗体的VH和VL结构域。在一些实施方案中,第一结合元件包括HMFG2单链可变片段(scFv)。
在特定实施方案中,CAR是H2第二代CAR,其从胞外到胞内结构域包括靶向HMFG2单链抗体的MUC-1、CD28跨膜和共刺激结构域以及CD3z信号区。见图A。Wilkie等人.,“Retargeting of human T cells to tumor-associated MUC1:the evolution of achimeric antigen receptor,”J.Immunol.180:4901-9(2008),通过引用全文并入本文。
在特定实施方案中,CAR是T1E28z第二代CAR,其从胞外到胞内结构域包括ErbB靶向T1E肽、CD28跨膜和共刺激结构域以及CD3z信号区。见图A。Davies,“Flexible targetingof ErbB dimers that drive tumourigenesis by using genetically engineered Tcells,”Mol.Med.18:565-576(2012)中描述了T1E28z第二代CAR,通过引用全文并入本文。
在一些实施方案中,第二靶抗原选自由ErbB同源二聚体和异二聚体组成的组。在特定实施方案中,第二靶抗原为HER2。在特定实施方案中,所述第二靶抗原是EGF受体。在一些实施方案中,第二结合元件包括T1E、ICR12的结合部分或ICR62的结合部分。
在一些实施方案中,pCAR“TBB/H”或“I12BB/H”在免疫应答细胞中表达。这些pCAR利用MUC1靶向第二代“H”(同义词为“H2”)CAR,但具有不同的共表达CCR。TBB/H pCAR中的CCR具有与CD8α跨膜结构域融合的T1E结合结构域和4-1BB共刺激结构域。T1E是一种由转化生长因子-α(TGF-α)和表皮生长因子(EGF)衍生的嵌合肽,是一种混杂的ErbB配体。见Wingens等人.,“Structural analysis of an epidermal growth factor/transforminggrowth factor-alpha chimera with unique ErbB binding specificity,”J.Biol.Chem.278:39114-23(2003)和Davies等人.,“Flexible targeting of ErbBdimers that drive tumourigenesis by using genetically engineered T cells,”Mol.Med.18:565-576(2012),其公开内容通过引用全部并入本文。I12BB/H pCAR中的CCR具有一个融合到CD8α跨膜结构域和4-1BB共刺激结构域的ICR12结合结构域。ICR12是靶向单链抗体结构域的HER2(ErbB2)。见Styles等人.,“Rat monoclonal antibodies to theexternal domain of the product of the C-erbB-2 proto-oncogene,”Int.J.Cancer45(2):320-24(1990),通过引用全文并入本文。在一些实施方案中,可以使用PCT/GB2020/050590中描述的“TBB/H”或其他PCAR,通过引用全文并入本文。
在一些实施方案中,使用ABB/H和I62BB/H PCAR。ABB/H和I62BB/H中的CAR都是针对第二代“H”的MUC1CAR。ABB/H pCAR中的CCR含有一个与CD8α跨膜结构域和一个4-1BB共刺激结构域融合的A20肽。A20肽与αvβ6整合素结合。见DiCara等人.,“Structure-functionanalysis of Arg-Gly-Asp helix motifs in alpha v beta 6 integrin ligands,”JBiol Chem.282(13):9657-9665(2007),通过引用全文并入本文。I62BB/H pCAR中的CCR具有一个融合到CD8α跨膜结构域和4-1BB共刺激结构域的ICR62结合结构域。ICR62是一个EGFR靶向单链抗体结构域。参见Modjtahedi等人.,“Antitumor activity ofcombinations of antibodies directed against different epitopes on theextracellular domain of the human EGF receptor,”Cell Biophys.22(1-3):129-146(1993),通过引用全文并入本文。
在一些实施方案中,免疫应答细胞表达来自单个表达构建体的经修饰的前细胞因子(例如,经修饰的pro-IL-18或经修饰的pro-IL-36)、任选表达的蛋白酶和任选的CAR或pCAR。在一些实施方案中,免疫应答细胞表达来自多个不同构建体的经修饰的前细胞因子(例如,经修饰的pro-IL-18或经修饰的pro-IL-36)、任选蛋白酶、CAR或pCAR。
4.3.5.2.2.信号区
CAR构建体包括一个信号区(即类似TCR的信号区)。在一些实施方案中,信号区包含免疫受体酪氨酸基活化基序(ITAM),如Love等人.,“ITAM-mediated signaling by theT-cell antigen receptor,”Cold Spring Harbor Perspect.Biol 2(6)1a002485(2010)所述。在一些实施方案中,信号区包括人类CD3 zeta链的胞内结构域(如通过引用并入本文的美国专利号7446190中所述)或其变体。在特定实施方案中,信号区包括跨越全长人类CD3zeta链的氨基酸残基52-163的结构域。CD3 zeta链包含许多已知的多态形式(例如Sequence ID:gb|AAF34793.1和gb|AAA60394.1),所有这些在本文中都是有用的,分别如SEQ ID NO:1和2所示:
RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR(SEQ ID NO:1);
RVKFSRSAEPPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR(SEQ ID NO:2).
CD3 zeta结构域的替代信号区包括,例如FceR1γ、CD3ε和多ITAM。见Eshhar Z等人.,“Specific activation and targeting of cytotoxic lymphocytes throughchimeric single chains consisting of antibody-binding domains and the gammaor zeta subunits of the immunoglobulin and T-cell receptors,”Proc Natl AcadSci U S A 90:720-724(1993);Nolan等人.,“Bypassing immunization:optimizeddesign of"designer T cells"against carcinoembryonic antigen(CEA)-expressingtumors,and lack of suppression by soluble CEA,”Clin Cancer Res 5:3928-3941(1999);Zhao等人.,“A herceptin-based chimeric antigen receptor with modifiedsignaling domains leads to enhanced survival of transduced T lymphocytes andantitumor activity,”J Immunol 183:5563-5574(2009);and James JR,“Tuning ITAMmultiplicity on T cell receptors can control potency and selectivity toligand density,”Sci Signal 11(531)eaan1088(2018),其公开内容通过引用全部并入本文。
4.3.5.2.3.共刺激信号区
在CAR中,共刺激信号区适当地位于信号区和跨膜结构域之间,并且远离结合元件。
在CCR中,共刺激信号区适当地位于跨膜结构域附近且远离结合元件。
合适的共刺激信号区在本领域是众所周知的,并且包括B7/CD28家族成员的共刺激信号区,例如B7-1、B7-2、B7-H1、B7-H2、B7-H3、B7-H4、B7-H6、B7-H7、BTLA、CD28、CTLA-4、Gi24、ICOS、PD-1、PD-L2或PDCD6;或ILT/CD85家族蛋白,如LILRA3、LILRA4、LILRB1、LILRB2、LILRB3或LILRB4;或肿瘤坏死因子(TNF)超家族成员,如4-1BB、BAFF、BAFF R、CD27、CD30、CD40、DR3、GITR、HVEM、LIGHT、淋巴毒素α、OX40、RELT、TACI、TL1A、TNFα或TNF RII;或SLAM家族成员,如2B4、BLAME、CD2、CD2F-10、CD48、CD8、CD84、CD229、CRACC、NTB-A或SLAM;或TIM家族成员,如TIM-1、TIM-3或TIM-4;或其他共刺激分子,如CD7、CD96、CD160、CD200、CD300a、CRTAM、DAP12、Dectin-1、DPPIV、EphB6、整合素α4β1、整合素α4β7/LPAM-1、LAG-3或TSLP R。见Mondino A等人.,“Surface proteins involved in T cell costimulation,”J LeukocBiol.55:805-815(1994);Thompson CB,“Distinct roles for the costimulatoryligands B7-1 and B7-2 in T helper cell differentiation?,”Cell.81:979-982(1995);Somoza C and Lanier LL,“T-cell costimulation via CD28-CD80/CD86 andCD40-CD40 ligand interactions,”Res Immunol.146:171-176(1995);Rhodes DA等人.,“Regulation of immunity by butyrophilins,”Annu Rev Immunol.34:151-172(2016);Foell J等人.,“T cell costimulatory and inhibitory receptors as therapeutictargets for inducing anti-tumor immunity”,Curr Cancer Drug Targets.7:55-70(2007);Greenwald RJ等人.,Annu Rev Immunol.,“The B7 family revisited,”23:515-548(2005);Flem-Karlsen K等人.,“B7-H3 in cancer–beyond immune regulation,”Trends Cancer.4:401-404(2018);Flies DB等人.,“The new B7s:playing a pivotalrole in tumor immunity,”J Immunother.30:251-260(2007);Gavrieli M等人.,“BTLAabd HVEM cross talk regulates inhibition and costimulation,”Adv Immunol.92:157-185(2006);Zhu Y等人.,“B7-H5 costimulates human T cells via CD28H,”NatCommun.4:2043(2013);Omar HA等人.,“Tacking molecular targets beyond PD-1/PD-L1:Novel approaches to boost patients’response to cancer immunotherapy,”CritRev Oncol Hematol.135:21-29(2019);Hashemi M等人.,“Association of PDCD6polymorphisms with the risk of cancer:Evidence from a meta-analysis,”Oncotarget.9:24857-24868(2018);Kang X等人.,“Inhibitory leukocyteimmunoglobulin-like receptors:Immune checkpoint proteins and tumor sustainingfactors,”Cell Cycle.15:25-40(2016);Watts TH,“TNF/TNFR family members incostimulation of T cell responses,”Annu Rev Immunol.23:23-68(2005);BrycesonYT等人.,“Activation,coactivation,and costimulation of resting human naturalkiller cells,”Immunol Rev.214:73-91(2006);Sharpe AH,“Analysis of lymphocytecostimulation in vivo using transgenic and‘knockout’mice,”Curr OpinImmunol.7:389-395(1995);Wingren AG等人.,“T cell activation pathways:B7,LFA-3,and ICAM-1shape unique T cell profiles,”Crit Rev Immunol.15:235-253(1995),其公开通过引用全部并入本文。
可根据免疫应答细胞的特定用途选择共刺激信号区。具体而言,可以选择共刺激信号区来进行额外或协同工作。在一些实施方案中,共刺激信号区选自CD28、CD27、ICOS、4-1BB、OX40、CD30、GITR、HVEM、DR3和CD40的共刺激信号区。
在特定实施方案中,pCAR的一个共刺激信号区是CD28的共刺激信号区,另一个是4-1BB的共刺激信号区。
4.3.5.2.4.跨膜结构域
CAR和CCR构建体的跨膜结构域可能相同或不同。在当前优选实施方案中,当CAR和CCR构建体由单个载体表达时,CAR和CCR的跨膜结构域不同,以确保细胞表面上的构建体分离。选择不同的跨膜结构域也可以增强表达载体的稳定性,因为在病毒载体中包含直接重复核酸序列使其易于重排,并在直接重复序列之间删除序列。在pCAR的CAR和CCR的跨膜结构域被选择为相同的实施方案中,可以通过修饰或“摆动”选择编码相同蛋白序列的密码子来降低这种风险。
本领域已知合适的跨膜结构域包括例如CD8α、CD28、CD4或CD3z的跨膜结构域。选择CD3z作为跨膜结构域可能导致CAR或CCR与TCR/CD3复合物的其他元件结合。这种关联可能会募集更多的ITAM,但也可能导致CAR/CCR和内源性TCR/CD3之间的竞争。
4.3.5.2.5.共刺激信号域和跨膜结构域
在CAR或CCR的共刺激信号域是或包括CD28的共刺激信号域的实施方案中,CD28跨膜结构域代表跨膜结构域的合适的、通常的优选选项。全长CD28蛋白是如SEQ ID NO:3所示的220个氨基酸的蛋白,其中跨膜结构域以粗体显示:
Figure BDA0003594564990000351
在一些实施方案中,共刺激信号域之一基于铰链区,并且适当地还基于CD28的跨膜结构域和胞内结构域。在一些实施方案中,共刺激信号域包括如SEQ ID NO:3的氨基酸114-220,如下SEQ ID NO:4所示:
IEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS(SEQ ID NO:4)。
在特定实施方案中,共刺激信号域之一是经修饰的SEQ ID NO:4,其包括SEQ IDNO:5的c-myc标签:
EQKLISEEDL(SEQ ID NO:5)。
c-myc标签可以通过插入到胞外域或通过替换胞外域中的一个区域而添加到共刺激信号区,因此该区域位于SEQ ID NO:3的氨基酸1-152的区域内。
在特别优选的实施方案中,c-myc标签取代了CD28序列中的MYPPPY基序。该基序代表了一个潜在的危险序列。它负责CD28与其天然配体CD80和CD86之间的相互作用,因此当CAR-T细胞或pCAR-T细胞遇到表达这两种配体之一的靶细胞时,它提供了潜在的脱靶毒性。通过如上所述用标签序列替换该基序,降低了产生不必要副作用的可能性。因此,在特定实施方案中,CAR构造的共刺激信号区包括如SEQ ID NO:6所示的序列:
IEVEQKLISEEDLLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS(SEQ ID NO:6)。
此外,包含c-myc表位有助于使用c-myc表位的单克隆抗体检测pCAR-T细胞。这是非常有用的,因为流式细胞术检测在使用一些可用抗体时被证明是不可靠的。
此外,提供c-myc表位标签可促进靶向CAR-T细胞的非抗原依赖性扩增,例如通过使用适当的单克隆抗体在溶液中或固定在固相(例如袋)上交联CAR。
此外,抗人c-myc抗体的表位9e10在TCR的可变区内的表达,之前已经证明足以在体外和体内实现抗体介导和补体介导的细胞毒性(Kieback等人.Proc.Natl.Acad.Sci.USA,“A safeguard eliminates T cell receptor gene-modifiedautoreactive T cells after adoptive transfer,”105(2)623-8(2008))。因此,提供这种表位标签也可以用作“自杀系统”,可使用抗体在体内耗竭pCAR-T细胞。
4.3.5.2.6.结合元件
pCAR的CAR和CCR构建体的结合元件分别结合第一表位和第二表位。
在典型实施方案中,CAR和CCR构建体的结合元件彼此不同。
在各种实施方案中,CAR和CCR的结合元件特异性结合到同一抗原的第一表位和第二表位。在这些实施方案中的某些实施方案中,CAR和CCR的结合元件特异性结合到相同抗原的相同、重叠或不同表位。在第一和第二表位相同或重叠的实施方案中,CAR和CCR上的结合元件可以在其结合中竞争。
在各种实施方案中,pCAR的CAR和CCR构建体的结合元件结合到不同的抗原。在某些实施方案中,抗原不同,但可能与相同疾病相关,例如相同的特定癌症。
因此,合适的结合元件可以是为pCAR提供识别感兴趣目标的能力的任何元件。本发明的pCAR所针对的靶点可以是希望引导T细胞反应的任何临床靶点。
在各种实施方案中,本文所述pCAR的CAR和CCR中使用的结合元件是抗体的抗原结合位点(ABS)。在典型实施方案中,用作结合元件的ABS形成单链抗体(scFv)或来自骆驼、人类或其他物种的单域抗体。
或者,pCAR的结合元件可包括结合到感兴趣的表面蛋白的配体。
在一些实施方案中,结合元件与促进细胞表面表达的先导(信号肽)序列相关联。本领域已知许多先导序列,其中包括但不限于CD8α先导序列、免疫球蛋白κ轻链序列、巨噬细胞集落刺激因子受体(FMS)先导序列或CD124先导序列。
MUC1 pCARs
在特定实施方案中,至少一个结合元件与MUC1靶抗原上的表位特异性相互作用。在一些实施方案中,CAR的结合元件与MUC1抗原上的表位特异性相互作用。在一些实施方案中,CCR的结合元件与MUC1靶抗原上的表位或替代肿瘤相关分子(例如NKG2D配体、αvβ6整合素或ErbB同源或异二聚体)特异性相互作用。在某些实施方案中,CAR的结合元件与MUC1抗原上的表位特异性相互作用,CCR的结合元件与MUC1靶抗原上的相同、重叠或不同表位特异性相互作用。
在当前优选实施方案中,CAR的结合元件与MUC1靶抗原上的第一表位特异性相互作用。在一些实施方案中,CAR结合元件包括HMFG2抗体的抗原结合位点。在某些实施方案中,CAR结合元件包括HMFG2抗体的CDR。使用www.abysis.org上提供的工具测定HMFG2抗体的CDR序列。如以下SEQ ID NO:8-13所示:
VH CDR1 GFTFSNY(SEQ ID NO:8);
VH CDR2 RLKSNNYA(SEQ ID NO:9);
VH CDR3 GNSFAY(SEQ ID NO:10);
VL CDR1 RSSTGAVTTSNYAN(SEQ ID NO:11);
VL CDR2 GTNNRAP(SEQ ID NO:12);
VL CDR3 ALWYSNHWV(SEQ ID NO:13)。
在某些实施方案中,CAR结合元件包括HMFG2抗体的VH和VL结构域。HMFG2抗体的VH和VL结构域序列如以下SEQ ID NO:14-15所示:
EVQLQQSGGGLVQPGGSMKLSCVASGFTFSNYWMNWVRQSPEKGLEWVAEIRLKSNNYATHYAESVKGRFTISRDDSKSSVYLQMNNLRAEDTGIYYCTFGNSFAYWGQGTTVTVSS(SEQ ID NO:14)
QAVVTQESALTTSPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGGTNNRAPGVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWYSNHWVFGGGTKLTVLGSE(SEQ ID NO:15)。
在特别优选的实施方案中,CAR结合元件包括形成为单链抗体的HMFG2抗体的抗原结合位点,以VH-间隔区-VL或VL-间隔区VH的顺序配置。在某些实施方案中,HMGF2抗体的scFv的氨基酸序列与以下所示的SEQ ID NO:16有70%、75%、80%、85%、90%、95%、97%、99%或100%的同一性:
EVQLQQSGGGLVQPGGSMKLSCVASGFTFSNYWMNWVRQSPEKGLEWVAEIRLKSNNYATHYAESVKGRFTISRDDSKSSVYLQMNNLRAEDTGIYYCTFGNSFAYWGQGTTVTVSSGGGGSGGGGSGGGGSQAVVTQESALTTSPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGGTNNRAPGVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWYSNHWVFGGGTKLTVLGSE(SEQ ID NO:16)。
在某些实施方案中,编码HMGF2抗体的单链抗体的核酸为如以下的SEQ ID NO:17所示:
GAGGTGCAGCTGCAGCAGTCTGGAGGAGGCTTGGTGCAACCTGGAGGATCCATGAAACTCTCCTGTGTTGCCTCTGGATTCACTTTCAGTAACTACTGGATGAACTGGGTCCGCCAGTCTCCAGAGAAGGGGCTTGAGTGGGTTGCTGAAATTAGATTGAAATCTAATAATTATGCAACACATTATGCGGAGTCTGTGAAAGGGAGGTTCACCATCTCAAGAGATGATTCCAAAAGTAGTGTCTACCTGCAAATGAACAACTTAAGAGCTGAAGACACTGGCATTTATTACTGTACCTTTGGTAACTCCTTTGCTTACTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGGTGGAGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGCAGGCCGTGGTCACTCAGGAATCTGCACTCACCACATCACCTGGTGAAACAGTCACACTCACTTGTCGCTCAAGTACTGGGGCTGTTACAACTAGTAACTATGCCAACTGGGTCCAAGAAAAACCAGATCATTTATTCACTGGTCTAATAGGTGGTACCAACAACCGAGCACCAGGTGTTCCTGCCAGATTCTCAGGCTCCCTGATTGGAGACAAGGCTGCCCTCACCATCACAGGGGCACAGACTGAGGATGAGGCAATATATTTCTGTGCTCTATGGTACAGCAACCATTGGGTGTTCGGTGGAGGAACCAAACTGACTGTCCTAGGATCAGAG(SEQ ID NO:17)。
在一些实施方案中,CCR结合元件为ICR12,其结合HER2。见Styles等人.,“Ratmonoclonal antibodies to the external domain of the product of the C-erbB-2proto-oncogene,”Int.J.Cancer 45(2):320-24(1990),通过引用全文并入本文。在一些实施方案中,CCR结合元件为ICR62,其结合EGFR。见Modjtahedi等人.,“Antitumor activityof combinations of antibodies directed against different epitopes on theextracellular domain of the human EGF receptor,”Cell Biophys.22(1-3):129-46(1993),通过引用全部并入本文。在一些实施方案中,CCR结合元件是A20肽,其结合αvβ6整合素。见DiCara等人.,“Structure-function analysis of Arg-Gly-Asp helix motifsin alpha v beta 6 integrin ligands,”J Biol Chem.282(13):9657-9665(2007),通过引用全文并入本文。
在一些实施方案中,CCR结合元件为T1E肽,其结合ErbB同源二聚体和异二聚体。T1E是一种由转化生长因子-α(TGF-α)和表皮生长因子(EGF)衍生的嵌合肽,是一种混杂的ErbB配体。T1E肽是一种嵌合融合蛋白,由完整的成熟人类EGF蛋白组成,不包括五种最末端的氨基酸(前表皮生长因子前体(NP 001954.2)的氨基酸971-975),已被成熟人类TGF-α蛋白的七种最N端氨基酸(促转化生长因子α亚型1(NP 003227.1)的氨基酸40-46)所取代。见Wingens等人.,“Structural analysis of an epidermal growth factor/transforminggrowth factor-alpha chimera with unique ErbB binding specificity,”J.Biol.Chem.278:39114-23(2003)和Davies等人.,“Flexible targeting of ErbBdimers that drive tumorigenesis by using genetically engineered T cells,”Mol.Med.18:565-576(2012),其披露内容通过引用全部并入本文。T1E的序列如下SEQ IDNO:18所示:
VVSHFNDCPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR(SEQ ID NO:18)。
在某些实施方案中,编码T1E的核酸序列为如下的SEQ ID NO:19所示:
GTGGTGAGCCACTTCAACGACTGCCCTCTGAGCCACGACGGCTACTGCCTGCACGACGGCGTGTGCATGTACATCGAGGCCCTGGACAAGTACGCCTGCAACTGCGTGGTGGGCTACATCGGCGAGAGATGCCAGTACAGAGACCTGAAGTGGTGGGAGCTGAGA(SEQ ID NO:19)。
TBB/H pCAR的蛋白序列如下SEQ ID NO:7所示。TBB/H pCAR包括一个CCR,该CCR包括一个融合到CD8α间隔区和跨膜结构域的T1E结合结构域和一个4-1BB共刺激结构域(“TBB”),以及一个第二代CAR,该第二代CAR包括一个人类MUC1靶向HMFG2结构域(“H”)。CCR和CAR通过furin切割位点、丝氨酸-甘氨酸连接子(SGSG)和T2A核糖体跳跃肽连接。HMFG2序列的VH和VL序列用粗体加下划线:
Figure BDA0003594564990000401
在一些实施方案中,pCAR的一个结合元件对与各种类型的癌症相关的标记物具有特异性,包括例如一个或多个ErbB同源二聚体或异源二聚体,例如EGFR和HER2。在一些实施方案中,结合元件结合与前列腺癌(例如使用结合到前列腺特异性膜抗原(PSMA)的结合元件)、乳腺癌(例如使用靶向HER2(也称为ErbB2)的结合元件)或神经母细胞瘤(例如使用靶向GD2的结合元件),黑色素瘤、小细胞或非小细胞肺癌、肉瘤、脑瘤、卵巢癌、胰腺癌、结直肠癌、胃癌、膀胱癌、骨髓瘤、非霍奇金淋巴瘤、食管癌、子宫内膜癌、肝胆癌、十二指肠癌、甲状腺癌或肾细胞癌相关的标记物。
4.3.5.3.嵌合细胞因子受体
在另一系列实施方案中,表达CAR和CCR的细胞被工程化以共表达嵌合细胞因子受体,尤其是4αβ嵌合细胞因子受体(图1)。在4αβ中,IL-4受体a链的外结构域与IL-2/15受体β的跨膜和胞内结构域连接。这允许通过在合适的支持培养基中培养这些基因工程T细胞来选择性地体外扩增和富集这些细胞,对于4αβ,支持培养基将包括IL-4作为唯一的细胞因子支持。见Wilkie等人.,“Selective expansion of chimeric antigen receptor-targetedT-cells with potent effector function using interleukin-4”,J.Biol.Chem.285(33):25538-44(2010)和Schalkwyk等人.,“Design of a Phase 1clinical trial toevaluate intratumoural delivery of ErbB-targeted chimeric antigen receptor T-cells in locally advanced or recurrent head and neck cancer,”Human GeneTher.Clin.Devel.24:134-142(2013),通过引用全文并入本文。
类似地,该系统可与嵌合细胞因子受体一起使用,其中IL-4受体α链的外结构域连接到另一个受体的跨膜和胞内结构域,该受体由也结合到共同γ链的细胞因子自然结合。
4.3.6.工程化TCR
在一些实施方案中,免疫应答细胞被工程化以进一步表达工程化(非天然)T细胞受体(TCR)。
美国专利9,512,197;9,822,163和10,344,074中描述了可在本文所述免疫应答细胞中有效表达的工程化TCR,其公开内容通过引用全部并入本文。US pre-grantpublication 2019/0161528;2019/0144521;2019/0135892;2019/0127436;2018/0218043;2017/0088599;2016/0159771和2016/0137715中描述了可在本文所述免疫应答细胞中有效表达的工程化TC,其公开内容通过引用全部并入本文。
4.3.7.核酸和制备pCAR-T细胞的方法
本文还提供了一种多核苷酸或一组多核苷酸,其包括编码经修饰的前细胞因子的第一核酸,其中所述经修饰的前细胞因子从N端到C端包括:(a)前肽;(b)由除半胱天冬酶-1、组织蛋白酶G、弹性蛋白酶或蛋白酶3以外的蛋白酶识别的切割位点;(c)细胞因子片段。切割位点是蛋白酶识别的特定序列。
在一些实施方案中,第一核酸编码经修饰的pro-IL-18,其中经修饰的pro-IL-18从N端到C端包括:(a)前肽;(b)由除半胱天冬酶-1以外的蛋白酶识别的切割位点;(c)IL-18片段。切割位点是蛋白酶识别的特定序列。在一些实施方案中,切割位点位于pro-IL-18的下游、上游或取代半胱天冬酶-1识别位点。在一些实施方案中,切割位点后接终止密码子。经修饰的pro-IL-18中的切割位点可从本领域已知的各种蛋白酶切割位点中选择。例如,切割位点可由颗粒酶B(GzB)、半胱天冬酶-3、半胱天冬酶-8、MT1-MMP(MMP14)、替代性肿瘤相关基质金属蛋白酶(MMP1-13)、去整合素和金属蛋白酶(ADAM)家族成员(尤其是ADAM 10或ADAM17)、组织蛋白酶B、L或S,成纤维细胞活化蛋白(FAP)识别,激肽释放酶相关肽酶(KLK),如KLK2、3、6或7,二肽基肽酶(DPP)4、肝素或尿激酶纤溶酶原活化剂(见Dudani等人.,“Harnessing protease activity to improve cancer care,”Annu.Rev.Cancer Biol.,2:353-76(2018)。在一些实施方案中,切割位点包括选自SEQ ID NO:26、28、30和32所示的序列。在一些实施方案中,经修饰的pro-IL-18包括选自SEQ ID NO:27、29、31和33所示的序列的多肽。在特定实施方案中,经修饰的pro-IL-18包括如SEQ ID NO:27序列所示的多肽。
在一些实施方案中,第一核酸选自由SEQ ID NO:102、103、105、107、109、111和113组成的组。在特定实施方案中,第一核酸包括如SEQ ID NO:103的多核苷酸。在一些实施方案中,第一核酸是在表达载体(例如,病毒载体或非病毒载体)中克隆的编码序列。
或者,经修饰的前细胞因子是经修饰的pro-IL-36α、β或γ蛋白,其中经修饰的pro-IL-36从N端到C端包括:(a)前肽;(b)由除组织蛋白酶G、弹性蛋白酶和蛋白酶3以外的蛋白酶识别的切割位点;(c)IL-36片段。切割位点是蛋白酶识别的特定序列。在一些实施方案中,切割位点位于下游、上游,或取代pro-IL-36α、β或γ的组织蛋白酶G、弹性蛋白酶和/或蛋白酶3识别位点。在一些实施方案中,切割位点后接终止密码子。经修饰的pro-IL-36中的切割位点可从本领域已知的各种蛋白酶切割位点中选择。例如,切割位点可由颗粒酶B(GzB)、半胱天冬酶-3、半胱天冬酶-8、MT1-MMP(MMP14)、替代性肿瘤相关基质金属蛋白酶(MMP1-13)、去整合素和金属蛋白酶(ADAM)家族成员(尤其是ADAM 10或ADAM17),组织蛋白酶B、L或S,成纤维细胞活化蛋白(FAP)识别,激肽释放酶相关肽酶(KLK),如KLK2、3、6或7,二肽基肽酶(DPP)4,肝素或尿激酶纤溶酶原活化剂(见Dudani等人.,“Harnessing proteaseactivity to improve cancer care,”Annu.Rev.Cancer Biol.,2:353-76(2018)。在一些实施方案中,切割位点包括选自SEQ ID NO:26、28、30和32所示的序列。在一些实施方案中,经修饰的pro-IL-36α、β或γ包括分别选自如SEQ ID NO:37、39和41的序列所示的多肽。
在一些实施方案中,该多核苷酸或该组多核苷酸进一步包括编码蛋白酶的第二核酸,该蛋白酶识别第一核酸上的切割位点。蛋白酶可以是颗粒酶B(GzB)、半胱天冬酶-3、半胱天冬酶-8、MT1-MMP(MMP14)、替代性肿瘤相关基质金属蛋白酶(MMP1-13)、去整合素和金属蛋白酶(ADAM)家族成员(尤其是ADAM 10或ADAM17),组织蛋白酶B、L或S,成纤维细胞活化蛋白(FAP)、激肽释放酶相关肽酶(KLK),如KLK2、3、6或7,二肽基肽酶(DPP)4,肝素或尿激酶纤溶酶原活化剂(见Dudani等人.,“Harnessing protease activity to improve cancercare,”Annu.Rev.Cancer Biol.,2:353-76(2018)。在一些实施方案中,第一核酸和第二核酸在单个载体或两个不同载体中。
在一些实施方案中,该多核苷酸或该组多核苷酸进一步包括编码嵌合抗原受体(CAR)的第三核酸。在一些实施方案中,CAR是如上所述的第二代CAR,包括(a)信号区;(b)第一共刺激信号区;(c)跨膜结构域;和(d)与第一靶抗原上的第一表位特异性相互作用的第一结合元件。
在一些实施方案中,所述多核苷酸或一组多核苷酸进一步包括如上所述编码CCR的第四核酸。在一些实施方案中,CCR包括:(a)第二共刺激信号区;(b)跨膜结构域;和(c)与第二靶抗原上的第二表位特异性相互作用的第二结合元件。
如上所述,为方便起见,本文将CAR和CCR的组合单数称为pCAR,尽管CAR和CCR是分离的、共表达的蛋白。第三和第四核酸可从单个载体或两个或多个载体表达。根据上述CAR和CCR的描述,核酸的合适序列对技术人员来说是显而易见的。这些序列可以优化以用于所需的免疫应答细胞。然而,在某些情况下,如上所述,为了避免重复序列,密码子可能会偏离最佳值或“摆动”。此类核酸的特定实例将编码上述优选实施方案。
为了实现转导,将编码pCAR的核酸适当地引入一个或多个载体中,例如质粒或逆转录病毒或慢病毒载体。此类载体,包括质粒载体或包含有它们的细胞系,构成本发明的另一方面。
在典型实施方案中,免疫应答细胞经受基因修饰,例如通过逆转录病毒或慢病毒介导的转导,以将第一、第二、第三和/或第四核酸引入宿主T细胞基因组,从而允许分别稳定表达经修饰的前细胞因子(例如,经修饰的pro-IL-18或经修饰的pro-IL-36)、蛋白酶、CAR和/或CCR。第一、第二、第三和/或第四核酸可以作为单个载体或多个载体引入,每个载体包括一个或多个核酸。然后可以选择性地在扩张后将其重新引入患者体内,以提供有益的治疗效果,如下所述。
在一些实施方案中,免疫应答细胞是γδT细胞,并且γδT细胞在基因修饰之前被抗γδ-TCR抗体活化。在一些实施方案中,固定化抗γδ-TCR抗体用于活化。
编码经修饰的前细胞因子(例如,经修饰的pro-IL-18或经修饰的pro-IL-36)和蛋白酶的第一和第二核酸可从同一载体或多个载体表达。编码CAR和CCR的第三和第四核酸可从同一载体或多个载体表达。在一个实施方案中,从同一载体表达第一、第二、第三和第四核酸。含有它们的一种或多种载体可以组合在试剂盒中,提供该试剂盒是为了生产本文所公开的第一方面的免疫应答细胞。
在一些实施方案中,当T细胞被工程化以共表达嵌合细胞因子受体(例如4αβ)时,扩增步骤可包括在包含细胞因子的培养基中的体外培养步骤,例如在4αβ的情况下包括IL-4作为唯一细胞因子载体的培养基。或者,嵌合细胞因子受体可包括IL-4受体的α外结构域,该外结构域与具有独特性质的普通γ细胞因子(例如IL-7)使用的内结构域相连。与使用IL-7相比,IL-4中细胞的扩增可能导致细胞分化较少。通过这种方式,可以确保具有所需分化状态的基因工程T细胞的选择性扩增和富集。
4.4.治疗方法
如上所述,表达经修饰的前细胞因子(例如,经修饰的pro-IL-18或经修饰的IL-36)的免疫应答细胞可用于将T细胞介导的免疫应答引导至免疫抑制降低的靶细胞的治疗。因此,在另一个方面,提供了用于在有需要的患者中将T细胞介导的免疫应答导向靶细胞的方法。该方法包括给患者施用如上所述的免疫应答细胞群,其中所述结合元件对所述靶细胞具有特异性。在典型的实施方案中,靶细胞表达MUC1。
在另一方面,提供了在有需要的患者中治疗癌症的方法。所述方法包括向患者施用如上所述的免疫应答细胞群,其中所述结合元件对所述靶细胞具有特异性。在典型实施方案中,靶细胞表达MUC1。在各种实施方案中,患者患有乳腺癌、卵巢癌、胰腺癌、结直肠癌、肺癌、胃癌、膀胱癌、骨髓瘤、非霍奇金淋巴瘤、前列腺癌、食管癌、子宫内膜癌、肝胆癌、十二指肠癌、甲状腺癌或肾细胞癌。在一些实施方案中,患者患有乳腺癌。
在各种实施方案中,向患者施用治疗有效数量的免疫应答细胞。在某些实施方案中,通过静脉输注来施用免疫应答细胞。在某些实施方案中,通过肿瘤内注射给予免疫应答细胞。在某些实施方案中,通过瘤周注射给予免疫应答细胞。在某些实施方案中,通过腹腔注射给予免疫应答细胞。在某些实施方案中,通过从静脉输注、瘤内注射和瘤周注射中选择的多个途径施用免疫应答细胞。
在另一方面,本发明提供了用于治疗或作为药物的免疫应答细胞、多核苷酸或γδT细胞。本发明还提供了用于治疗病理性疾病的免疫应答细胞、多核苷酸或γδT细胞。本发明还提供了免疫应答细胞、多核苷酸或γδT细胞在制造用于治疗病理性疾病的药物中的用途。在一些实施方案中,病理性疾病是癌症。
具体实施方式
下面是用于实施本发明的具体实施例的示例。提供的示例仅用于说明目的,并不用以任何方式限制本发明的范围。已经尽力确保所用数字(例如,数量、温度等)的准确性,但当然应该考虑一些实验误差和偏差。
5.1.方法
细胞系的培养
所有肿瘤细胞和293T细胞均在添加L-谷氨酰胺和10%FBS(D10培养基)的DMEM中培养。根据指示,转导肿瘤细胞以表达萤火虫荧光素酶(LT)SFG载体,然后进行荧光活化细胞分选(FACS)以表达红色荧光蛋白(RFP)。MDA-MB-468-HER2++细胞是通过用编码人类HER2的SFG逆转录病毒载体转导MDA-MB-468-LT细胞产生的。使用ICR12大鼠抗人HER2抗体和山羊抗鼠PE对转导细胞进行FACS分类。
逆转录病毒产生
293T细胞在GeneJuice(MilliporeSigma,Merck KGaA,Darmstadt,Germany)中进行三重转染:(i)编码经修饰的pro-IL-18、一种蛋白酶和/或CAR/pCAR的SFG逆转录病毒载体;(ii)编码RD114包膜的RDF质粒和(iii)编码gag-pol的Peq Pam质粒。在100mm平板上转染1.5×106 293T细胞时,使用4.6875μg SFG逆转录病毒载体、4.6875μg Peq Pam质粒和3.125μg RDF质粒。在转染后48小时和72小时收集含有病毒载体的培养基,快速冷冻并在-80℃下储存。在某些情况下,通过将编码经修饰的pro-IL-18(一种蛋白酶)和/或CAR/pCAR的瞬时产生的逆转录病毒载体转导293 VEC GALV细胞,产生稳定的包装细胞系。从任一来源制备的病毒可以互换地用于靶细胞的转导。
αβT细胞的培养与转导
通过密度梯度离心法使用Ficoll Paque(Ethical approval no.18/WS/0047)从健康供者外周血样本中分离外周血单个核细胞(PBMC)。在含有5%人AB血清的谷氨酰胺的RPMI中培养T细胞。通过在5μg/mL植物血凝素-白细胞凝集素(PHA-L)存在下培养24-48小时来实现T细胞的活化,之后在基因转移之前将细胞在IL-2(100U/mL)中再培养24小时。根据制造商的方案,使用逆转录连接蛋白(Takara Bio)包被板实现T细胞转导。将活化的PBMC(1×106个细胞)添加到逆转录连接蛋白涂层的6孔板的每个孔中。然后以每孔3mL的量加入含有逆转录病毒的培养基,并加入100U/mL IL-2。
γδT细胞的扩增与转导
为了产生γδT细胞,使用6孔板,每个孔涂覆2.4μg活化抗γ/δ-1TCR抗体(BDbiosciences),每个孔活化9×106个PBMC。24小时后,细胞在100U/mL IL-2和5ng/mL TGF-β中再生长48小时。每孔加入3×106个活化的PBMC,将逆转录连接蛋白涂覆的6孔板预先涂覆上3mL含逆转录病毒的培养基。细胞在100U/mL IL-2和5ng/mL TGF-β(R&D系统)中培养14天。根据PBMC的起始数量计算倍数增长。
细胞毒性分析
将MDA-MB-468肿瘤细胞或BxPC-3肿瘤细胞以1×104细胞/孔的密度接种在96孔板中,并与T细胞在效应子与靶细胞比率为4到0.03的范围内孵育72小时(例如,图3A-3D)。用MTT法定量T细胞对肿瘤细胞单层的破坏。将MTT(σ)以500μg/ml的浓度添加到D10培养基中,在37℃和5%CO2下培养2小时。去除上清液后,甲臜(formazan)晶体重悬在100μL DMSO中。在560nm处测量吸光度。肿瘤细胞存活率的计算公式为(与T细胞一起培养的单层细胞的吸光度/单独未经处理的单层细胞的吸光度)×100%。
IFN-γ和IL-2的检测
在第24小时从MDA-MB-468肿瘤细胞与上述CAR-T/pCAR-T细胞的共培养物中收集上清液。根据制造商的方案,使用人IFN-γ(Bio-Techne)或人IL-2 ELISA试剂盒(Invitrogen)对细胞因子水平进行定量。数据显示从6个独立实验中检测到的平均值±SEM细胞因子,每个实验重复两次。
活性人IL-18的检测
收集T细胞,洗涤并在没有刺激或细胞因子的情况下培养48小时。然后以效应子与肿瘤的10:1比例或T细胞与抗CD3/28磁珠的200:1比例刺激T细胞24小时。然后收集上清液,与5×104HEK blue IL-18细胞/孔在96孔板中培养24小时。然后从共培养物中提取20μl上清液并添加到180μl QUANTI-Blue溶液中,并在620-650nm处测量吸光度。
重复抗原刺激试验
MDA-MB-468肿瘤细胞与CAR-T/pCAR-T细胞以1个CAR-T/pCAR-T细胞:1个肿瘤细胞或1个CCR+/γδTCR+T细胞:1个肿瘤细胞的初始效应子:靶比共培养72-96小时。然后移除所有T细胞,以400g离心5分钟,重悬在补充有谷氨酰胺和5%人血清的3ml新鲜RPMI中,并添加到新的肿瘤细胞单层中。在每次共培养后,通过MTT法评估残余肿瘤细胞活力。如果与未经处理的细胞相比,肿瘤细胞被杀死的比例大于20%(或γδT细胞的比例大于30%),则将T细胞添加到新鲜的肿瘤细胞单层中。数据显示抗原刺激轮数的平均值±SEM。通过汇集三个重复的孔并计数细胞总数来进行细胞计数。
或者,在添加T细胞前24小时,将肿瘤细胞系以每孔1×105个细胞的速度在24孔培养板中铺三份。CAR-T/pCAR-T细胞以效应子:靶为1:1的比例添加。72小时后,使用荧光素酶测定法测定肿瘤细胞的杀伤作用,其中在发光读数之前立即以150mg/mL的浓度添加D-荧光素(Perkinlemer)。如果与未经治疗的细胞相比,肿瘤细胞被杀死的比例大于20%,则通过添加新的肿瘤细胞单层重新刺激所有T细胞。肿瘤细胞存活率计算为(与T细胞培养的单层细胞的发光/未处理单层细胞的发光)×100%。
体内研究
来自健康志愿者的PBMC被工程化成表达指定的CARs/PCAR,或者未被转化。在IL-2(100U/mL,每2-3天添加一次)或IL-2+TGF-b中扩增11天(αβT细胞)或14天(αβT细胞)后,通过流式细胞术分析细胞中CCR或CCR和αβTCR的表达。
雌性严重联合免疫缺陷(SCID)Beige小鼠通过腹腔(i.p.)途径注射1×106MDA-MB-468LT细胞(图13)。肿瘤细胞注射后12天,向小鼠腹腔注射200μl PBS中的10×106CCR阳性或CCR、γδTCR双阳性(或未转化)T细胞,或单独使用PBS作为对照。在200μl PBS(150mg/kg)中注射StayBriteTM D-荧光素钾盐20分钟后,在异氟醚麻醉下,通过生物发光成像监测肿瘤状态。在指定的时间点使用
Figure BDA0003594564990000471
Lumina III(Perkinlemer)和实时图像软件(Perkinlemer)进行图像采集,该软件设置为自动优化曝光时间、分档和F/stop。当达到实验终点时,动物被人道地处死。
通过腹腔(i.p.)途径向雌性NOD SCID gammanull(NSG)小鼠注射0.5×106SKOV3卵巢癌细胞(图15)。分别在肿瘤细胞注射18天后,向小鼠腹腔注射200μl PBS中的0.5×106CAR T细胞。如上所述,通过生物发光成像监测肿瘤状态。当达到实验终点时,动物被人道地处死。
通过腹腔(i.p.)途径向雌性NSG小鼠注射1×105BxPC-3 LT细胞。肿瘤细胞注射9天后,向小鼠腹腔注射200μl PBS中的10×106CCR/γδTCR双阳性(或未转化)T细胞,或单独使用PBS作为对照。如上所述,通过生物发光成像监测肿瘤状态。当达到实验终点时,动物被人道地处死。
5.2.实施例1:产生表达IL-18的CAR/pCAR T细胞
包括如上所述的TBB/H pCAR(SEQ ID NO:7)的编码序列的载体经修饰以进一步包括各种人类IL-18构建体的编码序列。
编码TBB/H和pro-IL-18(图18;SEQ ID NO:102)的构建体是通过将合成多核苷酸(SEQ ID NO:101)插入TBB/H载体中独有的Kfl1和Xho1限制性位点,替换Kfl1和Xho1限制性位点之间的224bp片段而生成的。pro-IL-18的插入位点位于第二个摆动的T2A下游,后接一个终止密码子。该构建体预计不会在T细胞中表达活性IL-18,因为前肽的切割需要半胱氨酸蛋白酶-1,而半胱氨酸蛋白酶-1在T细胞中不表达。
编码TBB/H和经修饰的pro-IL-18(pro-IL-18(GzB))(图19;SEQ ID NO:103)的构建体是通过将MUC1-13的GAC GAC GAG AAC CTG GAG AGC GAC TAC(SEQ ID NO:34)替换为GAC GAC GAG AAC ATC GAG CCC GAC TAC(SEQ ID NO:35;更改为下划线)生成的。这种经修饰的pro-IL-18用颗粒酶B(GzB)切割位点(IEPD)取代了IL-18前肽和成熟IL-18蛋白(LESD)之间的天然半胱天冬酶-1切割位点。
编码TBB/H和组成型(constitt)IL-18(图20;SEQ ID NO:105)的构建体是通过将合成多核苷酸(SEQ ID NO:104)插入TBB/H载体中独有的Kfl1和Xho1限制性位点,替换Kfl1和Xho1限制性位点之间的224bp片段而生成的。IL-18的插入位点位于CD4前导的下游,后接一个终止密码子。IL-18插入物编码不含IL-18前肽的成熟IL-18蛋白。据预测,该构建体可在T细胞中表达具有组成型活性的IL-18蛋白。
编码TBB/H和经修饰的pro-IL-18(pro-IL-18(casp 8))(图19;SEQ ID NO:107)的构建体是通过将合成的多核苷酸(SEQ ID NO:106)插入TBB/H构建体中独有的Kfl1和Xho1限制性位点,替换Kfl1和Xho1限制性位点之间的224bp片段而生成的。经修饰的pro-IL-18的插入位点位于第二个摆动的T2A下游,后接一个终止密码子。这种经修饰的pro-IL-18用半胱天冬酶-8切割位点(IETD)取代了IL-18前肽和成熟IL-18蛋白(LESD)之间的天然半胱天冬酶-1切割位点。
编码TBB/H和经修饰的pro-IL-18(pro-IL-18(casp 3))(图22;SEQ ID NO:109)的构建体是通过将合成多核苷酸(SEQ ID NO:108)插入TBB/H构建体中独有的Kfl1和Xho1限制性位点,替换被移除的224bp片段而生成的。经修饰后的pro-IL-18序列的插入位点位于第二个摆动的T2A下游,后接一个终止密码子。经修饰的pro-IL-18用半胱天冬酶-3切割位点(DEVD)取代前肽和成熟蛋白之间的天然半胱天冬酶-1切割位点。
编码具有经修饰的pro-IL-18(GzB)和附加颗粒酶B的TBB/H的构建体(图23;SEQID NO:111)是通过将合成多核苷酸(SEQ ID NO:110)插入TBB/H GzB Pfn构建体(编码颗粒酶B、穿孔素和TBBH;SEQ ID NO:112),替换被移除的1788bp片段。
编码T4和经修饰的pro-IL-18(MT1-MMP)(SEQ ID NO:113)的构建体是通过将插入MT1-MMP切割位点(SEQ ID NO:32)的合成多核苷酸来代替pro-IL-18的半胱天冬酶-1位点而产生的(图16和24)。
如上所述生成包括构建体编码序列的SFG逆转录病毒载体,然后将其转导到PBMC中。如上所述,T细胞在IL-2存在下,从PMBC中扩增。T细胞表达经修饰的pro-IL-18。IL-18活性取决于蛋白酶在T细胞中的表达,该蛋白酶识别经修饰的pro-IL-18中的切割位点。
5.3.实施例2:用IL-18铠装的pCAR T细胞的体外抗肿瘤活性
用编码TBB/H pCAR和实施例1中所述的一种IL-18变体的SFG逆转录病毒载体转染的T细胞分析IL-18变体(图4A)和pCAR的表达,使用流式细胞术分别测量H28z CAR(H-2)和TIE-4-1BB CCR(图3)的表达。结果显示,大多数转导的T细胞表达TBB/H pCAR的两种成分。
通过ELISA分析转染的T细胞分泌的IL-18(图4A),并通过报道试验测试表达的IL-18的功能活性(图4B),其中使用可商购的报道细胞系检测功能性IL-18(即,前肽裂解后产生的活性IL-18片段)。
在未受刺激的T细胞中检测到IL-18的分泌(图4A),所述T细胞已通过逆转录病毒转导进行工程化改造以表达每一种测试的IL-18变体,即(天然)pro-IL-18;组成的IL-18;pro-IL-18(casp-8)和pro-IL-18(casp-3)。然而,IL-18活性仅在用组成的变体(“组成的IL-18”)转导的T细胞中检测到,其中成熟的IL-18片段位于CD4信号肽的下游(图4B)。在由表达pro-IL-18或经修饰的pro-IL-18的未受刺激pCAR T细胞生成的条件培养基中未检测到活性IL-18,其中切割位点已切换到由半胱天冬酶-3(pro-IL-18(casp3))或半胱天冬酶-8(pro-IL-18(casp8))识别的位置。
将共表达TBB/H pCAR和每个IL-18变体的T细胞与MDA-MB-468乳腺癌细胞在体外共培养72小时。效应子:靶细胞(工程化T细胞:肿瘤细胞)的比例范围为4到0,包括4、2、1、0.5、0.25、0.125、0.06和0.03。终止共培养后剩余的活癌细胞通过MTT法进行定量。MDA-MB-468乳腺癌细胞与pCAR-T细胞共培养后的存活率如图5A-5D所示。MDA-MB-468乳腺癌细胞同时表达MUC-1和ErbB二聚体,HER2水平非常低。如图5A-5D所示,表达TBB/H pCAR和每种IL-18变体的T细胞在效应子:靶细胞比为4和2时,与效应子:靶细胞比为1或0.5时相比,显示出更大的细胞毒性抗肿瘤活性。表达不同IL-18变体的T细胞之间没有明显差异。
用MUC1+MDA-MB-468乳腺癌细胞反复再刺激表达TBB/H pCAR和IL-18变体的T细胞(图6A-6B)。虽然活性IL-18片段的组成型表达能够使pCAR T细胞经历更多的再刺激周期,并保留细胞毒性活性,但在pro-IL-18或可切割半胱天冬酶-3(pro-IL-18(casp 3))或可切割半胱天冬酶-8(pro-IL-18(casp 8))衍生物中未发现这种情况。组成型IL-18(但不是pro-IL-18或半胱天冬酶3/8可切割衍生物)介导了CAR T细胞增殖的显著增加(图6A)。基于这些数据,我们得出结论,在CAR T细胞刺激下,可切割半胱天冬酶3或可切割半胱天冬酶8的IL-18突变蛋白均未被活化。不希望受到理论的约束,对此最可能的解释是,当在活化的T细胞中发现了活性的半胱氨酸蛋白酶3和半胱氨酸蛋白酶8时,两种蛋白都无法进入胞浆(Alam等人.,“Early activation of caspases during T lymphocyte stimulationresults in selective substrate cleavage in nonapoptotic cells,”J.Exp.Med 190(12):1879-1890(1999);Chun等人.“Pleiotropic defects in lymphocyte activationcaused by caspase-8 mutations lead to human immunodeficiency,”Nature 419(6905):395-9(2002))。
如上文所述,接下来对pro-IL-18(MUC1-13b)的GzB可切割变体(以下简称“pro-IL-18(GzB)”)进行测试。与可切割半胱天冬酶3或可切割半胱天冬酶8pro-IL-18修饰的突变蛋白不同,当T细胞被活化时,pro-IL-18(GzB)在功能上具有活性,但在未受刺激的状态下不具有活性(图7A-7B)。这通过使用抗CD3和抗CD28抗体的组合刺激CAR T细胞得到证实(图7B)。尽管如此,当在再刺激试验中测试共表达pCAR和IL-18(GzB)的T细胞时,其抗肿瘤活性低于IL-18活性为组成型的T细胞。
我们推断GzB本身可能是一个限制因素,因为它主要在CD8 T细胞中表达,而IL-18的自分泌刺激主要在CD4+T细胞中发挥作用,后者自然表达的GzB要少得多。为了解决这个问题,我们设计了TBB/H pCAR T细胞,其除了IL-18(GzB)外,还共表达天然GzB。该逆转录病毒构建体被导入PBMC,PBMC与MDA-MB-468肿瘤细胞以1:1的效应子:靶细胞共同培养。72小时后测定抗肿瘤活性。
经工程改造的共表达TBB/H和pro-IL-18的T细胞或TBB/H、pro-IL-18(GzB)和其他颗粒酶B蛋白酶的组合可诱导类似的肿瘤细胞杀伤。图8提供了来自五名独立供体的数据,每名供体一式三份。
在表达TBB/H+pro-IL-18或TBB/H+pro-IL-18(GzB)+颗粒酶B的T细胞中检测IL-18(图9A)和IFN-γ(图9B)的产生。在72小时时取T细胞培养物的上清液,并测量IL-18和IFN-γ的浓度。
经ELISA检测,共表达TBB/H和pro-IL-18或TBB/H、pro-IL-18(GzB)和颗粒酶B组合的未刺激T细胞分泌的IL-18水平相似(图9A)。然而,在用靶向表达肿瘤细胞活化后,表达TBB/H、pro-IL-18(GzB)+颗粒酶B的T细胞产生的IFN-γ量明显高于表达TBB/H和pro-IL-18的T细胞(图9B)。显示的数据来自4名独立供体,每名供体一式三份。(**p=0.008)。
在没有外源性IL-2的情况下,进一步对转导的T细胞进行连续几轮抗原刺激。使用MDA-MD-468细胞(图10A)或BxPC-3细胞(图10B)作为靶细胞群,以初始效应子与靶细胞1:1比例培养细胞。72-96小时后,通过MTT法每周测量两次肿瘤细胞存活率。以MDA-MD-468细胞为靶细胞群,与单独表达TBB/H或与pro-IL-18一起表达/H的T细胞相比,共表达TBB/H和组成的IL-18或TBB/H、pro-IL-18(GzB)和颗粒酶B组合的T细胞成功地被再刺激了显著更多的周期数(图10A)。使用BxPC-3细胞作为靶群体也可以看到类似的模式(图10B)。所示数据由图10A的1名供体和图10B的1名供体生成,每个供体一式三份。
测量了每个pCAR T细胞群的成功再刺激次数,数据如图11A和11B所示。如果观察到超过20%的细胞毒性,则pCAR T细胞进入下一轮刺激。使用MDA-MD-468细胞(图11A)或BxPC-3细胞(图11B)作为靶细胞群,以效应子与靶细胞之比为1培养细胞。以MDA-MD-468细胞为靶细胞群,与共表达TBB/H+pro-IL-18(GzB)+颗粒酶B的T细胞相比,共表达TBB/H+pro-IL-18的T细胞成功地再刺激了更多的周期(图11A)。使用BxPC-3细胞作为目标群体也可以看到类似的模式(图11B)。所示数据来自5名独立供体,每名供体一式三份。(*p=0.039)。
在每个再刺激周期开始时,还对每个培养物中的T细胞数量进行计数。共表达TBB/H+pro-IL-18(GzB)+颗粒酶B但不表达TBB/H+pro-IL-18的T细胞增殖显著高于对照TBB/HpCAR T细胞。显示的计数是在第4个再刺激周期,来自3个独立供体,每个供体一式三份。(图12;*p=0.014)。
5.4.实施例3:用IL-18包裹的pCARαβT细胞的体外抗肿瘤活性
使用实施例1中所述的方法,将αβT细胞设计为单独表达TBB/H pCAR,或将TBB/HpCAR与pro-IL-18、pro-IL-18(GzB)、组成型IL-18或pro-IL-18(GzB)与颗粒酶B结合表达。使用报告细胞系检测αβT细胞的IL-18活性,其中使用商用报告细胞系检测功能性IL-18。图35中提供的结果显示,在没有刺激的情况下,在共表达组成型IL-18的TBB/H pCARαβT细胞中检测到IL-18活性,但在其他TBB/H pCARαβT细胞中未检测到IL-18活性。然而,当用MUC1+MDA-MB-468乳腺癌细胞(“+468”)或涂覆有抗CD3和抗CD28抗体的珠子(“aCD3/28珠子”)刺激αβT细胞时,共表达pro-IL18(GzB)和颗粒酶B的TBB/H pCARαβT细胞也具有IL-18活性。共表达pro-IL18(GzB)和颗粒酶B的TBB/H pCARαβT细胞比仅表达pro-IL18(GzB)的受刺激TBB/H pCARαβT细胞具有更高的IL-18活性。
5.5.实施例4:用IL-18包裹的pCAR-αβT细胞的体内抗肿瘤活性
在体内肿瘤异种移植小鼠模型中评估CAR-αβT和pCAR-αβT细胞的抗肿瘤活性。
将1×106个表达荧光素酶的MDA-MB-468肿瘤细胞注射到雌性SCID Beige小鼠的腹腔(i.p.),以建立异种移植模型。在肿瘤注射后11或12天,腹腔注射1×107个具有或不具有IL-18表达的CAR-αβT细胞。在每次治疗中测量肿瘤的总生物发光发射(“总通量”)。如图13和图36A-36F所示,与用TBB/H pCAR T细胞治疗的SCID Beige小鼠相比,用共表达TBB/H+pro-IL-18(GzB)+颗粒酶B的αβT细胞治疗的SCID Beige小鼠肿瘤衍生总通量显著降低。与共表达TBB/H和组成的IL-18的T细胞相比,共表达TBB/H+pro-IL-18(GzB)+颗粒酶B的T细胞也显示出改善肿瘤控制的趋势(图13、36E和36F)。图13所示的数据来自6只小鼠。图36B所示数据来自10只小鼠,图36C来自10只小鼠,图36D来自6只小鼠,图36E来自5只小鼠,图36F来自5只小鼠。
图37显示了用PBS、单独表达TBB/H的αβT细胞或结合const表达TBB/H的αβT细胞治疗的小鼠的存活数据。肿瘤注射后,IL-18、pro-IL-18(GzB)或pro-IL-18(GzB)与颗粒酶B一起注射。结果显示,共表达TBB/H、pro-IL-18(GzB)和颗粒酶B的αβT细胞可提高小鼠的存活率。
5.6.实施例5:pCAR-γδT细胞的体外抗肿瘤活性
γδT细胞在6孔非TC处理的平板上每孔使用2.4ng固定化抗γδTCR抗体活化,并通过逆转录病毒转导在48小时后表达TBB/H pCAR。培养并扩增未转化的γδT细胞和TBB/HpCARγδT细胞(图49A和图49B)。使用流式细胞术在未转化(图48A)或TBB/H pCARγδT细胞(图48B)中证实了第二代H2 CAR(“H28z”)和TBB CCR(“TIE”)(统称TBB/H pCAR)的共表达。
通过与MDA-MB-468乳腺癌细胞(图50A)或BxPC-3细胞(图50B)以1:1效应子:靶细胞(γδT细胞:肿瘤细胞)的比例共培养72小时,评价未转导的γδT细胞和TBB/H pCARδγT细胞的抗肿瘤作用。与未培养γδT细胞的肿瘤细胞相比,在第一个刺激周期通过MTT法测定肿瘤细胞的存活率(%)。如图50A和图50B所示,TBB/H pCARδγT细胞对肿瘤细胞具有细胞毒性作用。
未转化的γδT细胞和TBB/H pCARδγT细胞进一步接受连续几轮抗原刺激。使用MDA-MD-468细胞(图51A)或BxPC-3细胞(图51B)作为靶细胞群,以初始效应子与靶细胞1:1比例培养细胞72-96小时。在连续单层激发中,通过MTT法测定γδT细胞对肿瘤细胞的细胞毒性,对靶肿瘤细胞产生25%以上细胞毒性的再刺激被认为是一个成功的再刺激周期。如果观察到超过25%的细胞毒性,则T细胞进入下一轮刺激。测量每个转导γδT细胞群的成功再刺激次数,数据如图51A和51B所示。结果表明,TBB/H pCARδγT细胞比δγT细胞成功再刺激更多周期。
图51C和图51D提供了在多个刺激周期中测量的肿瘤细胞的存活率(%)。数据显示,在再刺激周期内,TBB/H pCARδγT细胞对MDA-MD-468肿瘤细胞(图51C)或BxPC-3肿瘤细胞(图51D)具有细胞毒性活性。
5.7.实施例6:pCAR-γδT细胞的体内抗肿瘤活性
在肿瘤异种移植小鼠模型中评估TBB/H pCARδγT细胞的抗肿瘤活性。
对于BxPC3 NSG小鼠模型,将表达荧光素酶的1×105BxPC3 LT肿瘤细胞注射到NSG小鼠的腹腔(i.p.)中,以建立异种移植模型。对于468s SCID Beige小鼠模型,向雌性SCIDBeige小鼠腹腔注射1×106个表达荧光素酶的MDA-MB-468肿瘤细胞,以建立异种移植模型。
在肿瘤注射11天后,向每个动物模型腹腔注射1×107个未转化的δγT细胞、1×107TBB/H pCARδγT细胞或PBS。在每次治疗中测量肿瘤的总生物发光发射(“总通量”)。如图52(BxPC3 NSG)和图53(468s-SCID Beige)所示,在这两种肿瘤异种移植小鼠模型中,与未转化的δγT细胞或PBS对照相比,TBB/H pCARδγT细胞诱导的肿瘤衍生总通量显著降低,显示出抗肿瘤活性。
5.8.实施例7:用IL-18包裹的pCAR-γδT细胞的体外抗肿瘤活性
γδT细胞被固定化的抗γδTCR抗体活化,并通过逆转录病毒转导来表达TBB/HpCAR,无论是单独表达,还是与pro-IL-18、pro-IL-18(GzB)、组成型IL-18或pro-IL-18(GzB)和颗粒酶B一起表达,使用流式细胞术,在与抗EGF抗体孵育后测定pCAR的表达(检测CCR;图14上图),同时也证实了γδT细胞的富集(图14下图)。
通过与MDA-MB-468乳腺癌细胞(图15A)或BxPC-3细胞(图15B)共培养72小时来评估γδT细胞的抗肿瘤作用。效应子:靶细胞(γδT细胞:肿瘤细胞)的比值范围为128到1,包括128、64、32、16、8、4、2和1。通过MTT法对共培养后残留的存活癌细胞进行定量。如图15A和15B所示。与未转染的γδT细胞相比,单独表达TBB/H pCAR或TBB/H pCAR与任何IL-18变体(pro-IL-18;组成型IL-18;pro-IL-18(GzB)或pro-IL-18(GzB)+颗粒酶B)的γδT细胞对肿瘤细胞显示出更大的细胞毒性作用。
在没有外源性IL-2的情况下,对转导的γδT细胞进行连续几轮抗原刺激。使用MDA-MD-468细胞(图38A)或BxPC-3细胞(图38B)作为靶细胞群,以初始效应子与靶细胞1:1比例培养细胞72-96小时。如果观察到超过30%的细胞毒性,则T细胞进入下一轮刺激。测量每个转导γδT细胞群的成功再刺激次数,数据如图38A和38B所示。以MDA-MD-468细胞为靶细胞群,与共表达TBB/H+pro-IL-18(GzB)+颗粒酶B的T细胞相比,共表达TBB/H+pro-IL-18的T细胞成功地再刺激了更多的周期(图38A)。使用BxPC-3细胞作为目标群体也可以看到类似的模式(图38B)。(*p<0.05**p<0.01)。
使用报告细胞系分析经工程化改造以单独表达TBB/H pCAR或与pro-IL-18、pro-IL-18(GzB)或pro-IL-18(GzB)+颗粒酶B联合表达的γδT细胞的IL-18活性。在没有刺激或用MUC1+MDA-MB-468乳腺癌细胞(“+468”)或涂覆有抗CD3和抗CD28抗体的珠子(“aCD3/28珠子”)刺激的情况下测量IL-18活性。图39中提供的结果表明,IL-18活性依赖于转导的γδT细胞的刺激。与仅共表达TBB/H和pro-IL-18(GzB)或TBB/H和pro-IL-18(图39)的受刺激T细胞相比,刺激共表达TBB/H、pro-IL-18(GzB)和颗粒酶B的T细胞可产生更高的IL-18活性。
5.9.实施例8:用IL-18包裹的pCAR-γδT细胞的体内抗肿瘤活性
在肿瘤异种移植小鼠模型体内评估pCAR-γδT细胞的抗肿瘤活性。
将1×106个表达荧光素酶的MDA-MB-468肿瘤细胞腹腔(i.p.)注射到雌性SCIDBeige小鼠,以建立异种移植模型。在肿瘤注射11天后,腹腔注射1×107TBB/H pCAR-γδT细胞(无论是否表达IL-18)。在每次治疗中测量肿瘤的总生物发光发射(“总通量”)。如图40A-40F所示,与用TBB/H pCAR T细胞治疗的SCIDBeige小鼠相比,用共表达TBB/H+pro-IL-18(GzB)+颗粒酶B的γδT细胞治疗的SCIDBeige小鼠的肿瘤衍生总通量显著降低。与共表达TBB/H和pro-IL-18(GzB)+颗粒酶B的γδT细胞相比,共表达TBB/H和组成型IL-18的γδT细胞也显示出改善肿瘤控制的趋势(图40E和40F)。图40B所示数据来自5只小鼠,图40C来自4只小鼠,图40D来自5只小鼠,图40E来自4只小鼠,图40F来自3只小鼠。
图41显示了用PBS、单独表达TBB/H的γδT细胞或与组成型表达TBB/H的γδT细胞联合治疗的小鼠的存活数据。肿瘤注射后,IL-18、pro-IL-18(GzB)或pro-IL-18(GzB)与颗粒酶B一起注射。结果表明,共表达TBB/H、pro-IL-18(GzB)和颗粒酶B的γδT细胞可提高小鼠的存活率。
5.10.实施例9:用IL-18包裹的pCARαβ或γδT细胞的体内抗肿瘤活性
在肿瘤异种移植小鼠模型中评估pCAR-T细胞的抗肿瘤活性。
将1×106个表达荧光素酶的MDA-MB-468肿瘤细胞腹腔(i.p.)注射到雌性SCIDBeige小鼠,以建立异种移植模型。注射肿瘤细胞11天后,腹腔注射TBB/H pCAR T细胞(1×107pCAR-αβ或-γδT细胞,或8×106pCAR-γδT细胞,或4×106pCAR-γδT细胞),无外源性IL-18表达(“TBB/H”)或仅外源性表达pro-IL-18或pro-IL-18(GzB)与颗粒酶B一起。从每只治疗动物中测量了肿瘤的混合生物发光发射(“总通量”)。
在每个治疗组的动物身上测量的总通量汇集在一起,并在图30A、30B和30C中提供。如图所示,与其他组(PBS、TBB/H pCAR T细胞或共表达pro-IL-18的TBB/H pCAR T细胞)的小鼠相比,用共表达pro-IL-18(GzB)和颗粒酶B的TBB/H pCAR-T细胞治疗的SCID Beige小鼠的肿瘤衍生总通量显著降低。在αβT细胞(图30A)和γδT细胞(图30B和图30C)中均观察到这种效应。
5.11.实施例10:用IL-18包裹的第二代CAR-T细胞的抗肿瘤活性
将表达荧光素酶的5×105SKOV-3肿瘤细胞腹腔(i.p.)注射到雌性SCID Beige小鼠,以建立SKOV-3异种移植模型。肿瘤细胞注射18天后,通过腹腔注射给三组小鼠注射CAR-T细胞。第一组接受CAR-T细胞,这些细胞被设计成与4αβ嵌合细胞因子受体共表达T1E28zErbB靶向的第二代CAR。这种组合被称为“T4”(见Schalkwyk等人.,“Design of a Phase 1clinical trial to evaluate intratumoural delivery of ErbB-targeted chimericantigen receptor T-cells in locally advanced or recurrent head and neckcancer,”Human Gene Ther.Clin.Devel.24:134-142(2013))。第二组小鼠接受共表达可切割的MT1-MMP(MMP14)pro-IL-18变体(pro-IL18(MT1))的T4工程化T细胞(如图16所示)。肿瘤细胞表达高水平的MT1-MMP(MMP14)蛋白酶。第三个对照组采用表达截短的胞内结构域并发出非活化信号的T1E-28z CAR(称为T1NA–T1E无活化结构域)的T细胞。
在该模型中,使用低剂量(50万)的第二代CAR T细胞或表达T1NA的CAR T细胞(一种内域截断对照)治疗无效。相比之下,共表达T4 CAR和可切割的MT1-MMP(MMP14)pro-IL-18的CAR T细胞在1/5小鼠中导致肿瘤消除,在另外2只动物中导致疾病消退(图17C)。这为限制IL-18在肿瘤微环境中的活化提供了另一种方法。
5.12.实施例11:用IL-36铠装的pCAR-T细胞的体外抗肿瘤活性
根据上述方法生成编码TBB/H和成熟的IL-36片段(pro-IL-36γ)的构建体。然后,通过将颗粒酶B(GzB)识别的切割位点添加到编码TBB/H和pro-IL-36γ的构建体中,生成编码TBB/H和经修饰的pro-IL-36γ的构建体。通过将颗粒酶B的编码序列插入编码TBB/H和经修饰的pro-IL-36γ的构建体,还生成了编码TBB/H+pro-IL-36(GzB)+颗粒酶B的构建体。
用编码TBB/H pCAR和pro-IL-36γ或经修饰的pro-IL-36γ(GzB)的SFG逆转录病毒载体转染T细胞。
用MDA-MB-468乳腺癌细胞或BxPC-3胰腺癌细胞迭代刺激表达TBB/H或共表达TBB/H、pro-IL-36γ和颗粒酶B,或TBB/H、pro-IL-36γ(GzB)和颗粒酶B蛋白酶的T细胞组合。效应子:靶细胞(工程化T细胞:肿瘤细胞)的比率范围为2至0.03,包括1、0.5、0.25、0.125和0.06。终止共培养后存在的残留活癌细胞通过MTT法进行定量。图42A(MDA-MB-468细胞)和图42B(BxPC-3细胞)所示的结果显示,表达pro-IL-36γ和颗粒酶B或pro-IL-36γ(GzB)和颗粒酶B的TBB/H T细胞具有显著的细胞毒性活性。在再刺激周期中,共表达TBB/H、pro-IL-36γ(GzB)和颗粒酶B的T细胞显著增殖(图43A和43B)。与TBB/H T细胞相比,在表达TBB/H+pro-IL-36γ+颗粒酶B或TBB/H+pro-IL-36γ(GzB)+颗粒酶B的T细胞中,IFN-γ(图44A和图44B)的产量也显著增加。
共表达TBB/H+pro-IL-36γ+颗粒酶B或TBB/H+pro-IL-36γ(GrzB)+颗粒酶B的T细胞诱导MDA-MB-468细胞(图45)和BxPC-3细胞(图46)在效应子:靶细胞(工程化T细胞:肿瘤细胞)比率范围为2到0.03,包括1、0.5、0.25、0.125和0.06的情况下杀死肿瘤细胞(所有实验一式三份)。
5.13.实施例12:用IL-36包裹的pCAR-T细胞的体内抗肿瘤活性
在体内进一步研究了IL-36包裹的pCAR-T细胞的抗肿瘤活性。将1×106个表达荧光素酶的MDA-MB-468肿瘤细胞腹腔(i.p.)注射到雌性SCID Beige小鼠,以建立异种移植模型。肿瘤注射后12天,腹腔注射不表达IL-36的1×107TBB/H pCAR-T细胞或共表达pro-IL36γ和颗粒酶B或pro-IL36γ(GzB)和颗粒酶B的TBB/H pCAR-T细胞。
在每次治疗中测量肿瘤的总生物发光发射(“总通量”)。与使用TBB/H pCAR T细胞治疗的小鼠相比,使用共表达TBB/H+pro-IL-36γ(GzB)+颗粒酶B的T细胞治疗的小鼠显示出肿瘤衍生总通量显著降低(图47A-47D)。
6.序列
Figure BDA0003594564990000571
Figure BDA0003594564990000581
Figure BDA0003594564990000591
Figure BDA0003594564990000601
Figure BDA0003594564990000611
Figure BDA0003594564990000621
Figure BDA0003594564990000631
Figure BDA0003594564990000641
Figure BDA0003594564990000651
Figure BDA0003594564990000661
Figure BDA0003594564990000671
Figure BDA0003594564990000681
Figure BDA0003594564990000691
Figure BDA0003594564990000701
Figure BDA0003594564990000711
Figure BDA0003594564990000721
Figure BDA0003594564990000731
Figure BDA0003594564990000741
Figure BDA0003594564990000751
Figure BDA0003594564990000761
Figure BDA0003594564990000771
Figure BDA0003594564990000781
Figure BDA0003594564990000791
Figure BDA0003594564990000801
Figure BDA0003594564990000811
Figure BDA0003594564990000821
Figure BDA0003594564990000831
Figure BDA0003594564990000841
Figure BDA0003594564990000851
Figure BDA0003594564990000861
Figure BDA0003594564990000871
Figure BDA0003594564990000881
Figure BDA0003594564990000891
Figure BDA0003594564990000901
Figure BDA0003594564990000911
Figure BDA0003594564990000921
Figure BDA0003594564990000931
Figure BDA0003594564990000941
Figure BDA0003594564990000951
Figure BDA0003594564990000961
Figure BDA0003594564990000971
Figure BDA0003594564990000981
Figure BDA0003594564990000991
7.等同物和范围
本领域技术人员将认识到,或者能够仅使用常规实验来确定,根据这里描述的本发明的具体实施例的许多等同物。本发明的范围并不局限于上述描述,而是如所附权利要求所述。

Claims (124)

1.一种表达IL-1超家族的经修饰的前细胞因子的免疫应答细胞,其中所述经修饰的前细胞因子从N端到C端包括:
(a)前肽;
(b)由除半胱天冬酶-1、组织蛋白酶G、弹性蛋白酶或蛋白酶3以外的蛋白酶识别的切割位点;和
(c)IL-1超家族的一种细胞因子片段。
2.如权利要求1所述的免疫应答细胞,其中所述蛋白酶为颗粒酶B(GzB)。
3.如权利要求2所述的免疫应答细胞,其中所述切割位点具有如SEQ ID NO:26所示的序列。
4.如权利要求3所述的免疫应答细胞,其中所述经修饰的前细胞因子为经修饰的pro-IL-18,其具有如SEQ ID NO:27所示的序列。
5.如权利要求4所述的免疫应答细胞,其中所述经修饰的pro-IL-18是由如SEQ ID NO:103或111所示的多核苷酸表达。
6.如权利要求1所述的免疫应答细胞,其中所述蛋白酶为半胱天冬酶-3。
7.如权利要求6所述的免疫应答细胞,其中所述切割位点具有如SEQ ID NO:28所示的序列。
8.如权利要求7所述的免疫应答细胞,其中所述经修饰的前细胞因子为经修饰的pro-IL-18,其具有如SEQ ID NO:29所示的序列。
9.如权利要求8所述的免疫应答细胞,其中所述经修饰的pro-IL-18是由如SEQ ID NO:109所示的多核苷酸表达。
10.如权利要求1所述的免疫应答细胞,其中所述蛋白酶为半胱天冬酶-8。
11.如权利要求10所述的免疫应答细胞,其中所述切割位点具有如SEQ ID NO:30所示的序列。
12.如权利要求11所述的免疫应答细胞,其中所述经修饰的前细胞因子为经修饰的pro-IL-18,其具有如SEQ ID NO:31所示的序列。
13.如权利要求12所述的免疫应答细胞,其中所述经修饰的pro-IL-18是由SEQ ID NO:107所示的多核苷酸表达。
14.如权利要求1所述的免疫应答细胞,其中所述蛋白酶为MT1-MMP。
15.如权利要求14所述的免疫应答细胞,其中所述切割位点具有如SEQ ID NO:32所示的序列。
16.如权利要求15所述的免疫应答细胞,其中所述经修饰的前细胞因子为经修饰的pro-IL-18,其具有如SEQ ID NO:33所示的序列。
17.如权利要求16所述的免疫应答细胞,其中所述经修饰的pro-IL-18是由SEQ ID NO:113所示的多核苷酸表达。
18.如前述权利要求任一项所述的免疫应答细胞,其中所述细胞因子片段是与SEQ ID:24具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
19.如前述权利要求任一项所述的免疫应答细胞,其中所述前肽是与SEQ ID:25具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
20.如权利要求1所述的免疫应答细胞,其中所述经修饰的前细胞因子为经修饰的pro-IL-36α,其具有如SEQ ID NO:37所示的序列。
21.如权利要求20所述的免疫应答细胞,其中所述细胞因子片段是与SEQ ID:42具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
22.如权利要求1所述的免疫应答细胞,其中所述经修饰的前细胞因子为经修饰的pro-IL-36β,其具有如SEQ ID NO:39所示的序列。
23.如权利要求22所述的免疫应答细胞,其中所述细胞因子片段是与SEQ ID:43具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
24.如权利要求1所述的免疫应答细胞,其中所述经修饰的前细胞因子为经修饰的pro-IL-36γ,其具有如SEQ ID NO:41所示的序列。
25.如权利要求24所述的免疫应答细胞,其中所述细胞因子片段是与SEQ ID:44具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
26.如前述权利要求任一项所述的免疫应答细胞,其进一步包含编码所述蛋白酶的外源性多核苷酸。
27.如前述权利要求任一项所述的免疫应答细胞,其中所述免疫应答细胞为αβT细胞、γδT细胞或自然杀伤(NK)细胞。
28.如权利要求27所述的免疫应答细胞,其中所述T细胞为αβT细胞。
29.如权利要求27所述的免疫应答细胞,其中所述T细胞为γδT细胞。
30.如前述权利要求任一项所述的免疫应答细胞,其进一步包含嵌合抗原受体(CAR)。
31.如权利要求30所述的免疫应答细胞,其中所述CAR为第二代嵌合抗原受体(CAR)包括:
信号区;
第一共刺激信号区;
跨膜结构域;和
与第一靶抗原上的第一表位特异性相互作用的第一结合元件。
32.如权利要求31所述的免疫应答细胞,其中所述第一表位为MUC1靶抗原上的表位。
33.如权利要求32所述的免疫应答细胞,其中所述第一结合元件包括HMFG2抗体的CDR。
34.如权利要求32所述的免疫应答细胞,其中所述第一结合元件包括HMFG2抗体的VH和VL结构域。
35.如权利要求32所述的免疫应答细胞,其中所述第一结合元件包括HMFG2单链可变片段(scFv)。
36.如前述权利要求任一项所述的免疫应答细胞,其进一步包含嵌合共刺激受体(CCR),其中所述CCR包括:
第二共刺激信号区;
跨膜结构域;和
与第二靶抗原上的第二表位特异性相互作用的第二结合元件。
37.如权利要求36所述的免疫应答细胞,其中所述第二共刺激结构域不同于所述第一共刺激结构域。
38.如权利要求36-37所述的免疫应答细胞,其中所述第二表位的第二靶抗原选自由ErbB同源二聚体和异二聚体组成的组。
39.如权利要求35所述的免疫应答细胞,其中所述第二靶抗原为HER2。
40.如权利要求35所述的免疫应答细胞,其中所述第二靶抗原为EGF受体。
41.如权利要求36-40任一项所述的免疫应答细胞,其中所述第二结合元件包括T1E、ICR12的结合部分或ICR62的结合部分。
42.如权利要求1-41任一项所述的免疫应答细胞,其中所述细胞表达经修饰的pro-IL-18,其中所述经修饰的pro-IL-18是SEQ ID NO:27所示的多肽,其中所述细胞进一步表达:
由外源性多核苷酸表达的GzB;
一种嵌合抗原受体(CAR),包括:
信号区;
i.第一共刺激信号区;
ii.跨膜结构域;和
iii.与MUC1靶抗原上的第一表位特异性相互作用的第一结合元件;和
一种嵌合共刺激受体(CCR),包括:
iv.第二共刺激信号区;
v.跨膜结构域;和
vi.与第二靶抗原上的第二表位特异性相互作用的第二结合元件。
43.一种或一组多核苷酸,包括一种编码经修饰的前细胞因子的第一核酸,其中所述经修饰的前细胞因子从N端到C端包括:
(a)前肽;
(b)由除半胱天冬酶-1、组织蛋白酶G、弹性蛋白酶或蛋白酶3以外的蛋白酶识别的切割位点;和
(c)IL-1超家族的细胞因子片段。
44.如权利要求43所述的一种或一组多核苷酸,其中所述蛋白酶为颗粒酶B(GzB)。
45.如权利要求44所述的一种或一组多核苷酸,其中所述切割位点具有如SEQ ID NO:26所示的序列。
46.如权利要求45所述的一种或一组多核苷酸,其中所述经修饰的前细胞因子为经修饰的pro-IL-18,其包括SEQ ID NO:27所示的序列。
47.如权利要求46所述的一种或一组多核苷酸,其具有如SEQ ID NO:103或111所示的序列。
48.如权利要求43所述的一种或一组多核苷酸,其中所述蛋白酶为半胱天冬酶-3。
49.如权利要求48所述的一种或一组多核苷酸,其中所述切割位点具有如SEQ ID NO:28所示的序列。
50.如权利要求49所述的一种或一组多核苷酸,其中所述经修饰的细胞因子为经修饰的pro-IL-18,其包括SEQ ID NO:29所示的序列。
51.如权利要求50所述的一种或一组多核苷酸,其具有如SEQ ID NO:109所示的序列。
52.如权利要求43所述的一种或一组多核苷酸,其中所述蛋白酶为半胱天冬酶-8。
53.如权利要求52述的多核苷酸,其中所述切割位点具有如SEQ ID NO:30所示的序列。
54.如权利要求53所述的一种或一组多核苷酸,其中所述经修饰的细胞因子为经修饰的pro-IL-18,其包括SEQ ID NO:31所示的序列。
55.如权利要求54所述的一种或一组多核苷酸,其具有如SEQ ID NO:107所示的序列。
56.如权利要求43所述的一种或一组多核苷酸,其中所述蛋白酶为MT1-MMP。
57.如权利要求56所述的一种或一组多核苷酸,其中所述切割位点具有如SEQ ID NO:32所示的序列。
58.如权利要求57所述的一种或一组多核苷酸,其中所述经修饰的细胞因子为经修饰的pro-IL-18,其包括SEQ ID NO:33所示的序列。
59.根据权利要求58所述的一种或一组多核苷酸,具有如SEQ ID NO:113所示的序列。
60.如权利要求43-59任一项所述的一种或一组多核苷酸,其进一步包含编码所述蛋白酶的第二核酸。
61.如权利要求60所述的一种或一组多核苷酸,其中所述第一核酸和所述第二核酸位于单个载体中。
62.如权利要求43-61任一项所述的一种或一组多核苷酸,其中所述细胞因子片段是与SEQ ID:24具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
63.如权利要求43-62任一项所述的一种或一组多核苷酸,其中当切割位点被切割时,所述细胞因子片段可结合并活化IL-18受体。
64.如权利要求43-63任一项所述的一种或一组多核苷酸,其中所述前肽是与SEQ ID:25具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
65.如权利要求43所述的一种或一组多核苷酸,其中所述经修饰的前细胞因子为经修饰的pro-IL-36α,其具有如SEQ ID NO:37所示的序列。
66.如权利要求65所述的一种或一组多核苷酸,其中所述细胞因子片段是与SEQ ID:42具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
67.如权利要求43所述的一种或一组多核苷酸,其中所述经修饰的前细胞因子为经修饰的pro-IL-36β,其具有如SEQ ID NO:39所示的序列。
68.如权利要求67所述的一种或一组多核苷酸,其中所述细胞因子片段是与SEQ ID:43具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
69.如权利要求43所述的一种或一组多核苷酸,其中所述经修饰的前细胞因子为经修饰的pro-IL-36γ,其具有如SEQ ID NO:41所示的序列。
70.如权利要求69所述的一种或一组多核苷酸,其中所述细胞因子片段是与SEQ ID:44具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
71.一种或一组多核苷酸,其包含编码经修饰的pro-IL-36α、β或γ的第一核酸,其中经修饰的pro-IL-36α、β或γ从N端到C端包括:
(a)前肽;
(b)由除组织蛋白酶G、弹性蛋白酶或蛋白酶3以外的蛋白酶识别的切割位点;和
(c)一个IL-36片段。
72.如权利要求71所述的一种或一组多核苷酸,其中所述蛋白酶为颗粒酶B(GzB)。
73.如权利要求72所述的一种或一组多核苷酸,其中所述切割位点具有如SEQ ID NO:26所示的序列。
74.如权利要求72所述的一种或一组多核苷酸,其中经修饰的pro-IL-36α、β或γ包括如SEQ ID NO:37、39或41所示的序列。
75.如权利要求71-74任一项所述的一种或一组多核苷酸,进一步包含编码所述蛋白酶的第二核酸。
76.如权利要求75所述的一种或一组多核苷酸,其中所述第一核酸和所述第二核酸位于单个载体中。
77.如权利要求71-76任一项所述的一种或一组多核苷酸,其中所述IL-36片段是与SEQID:42、43或44具有至少85%、90%、95%、97%、98%、99%或100%序列同一性的多肽。
78.如权利要求65-71任一项所述的一种或一组多核苷酸,其中当切割位点被切割时,所述IL-36片段可结合并活化IL-36受体。
79.如权利要求43-78任一项所述的一种或一组多核苷酸,进一步包含编码嵌合抗原受体(CAR)的第三核酸。
80.如权利要求79所述的一种或一组多核苷酸,其中所述CAR为第二代嵌合抗原受体(CAR),包括:
信号区;
第一共刺激信号区;
跨膜结构域;和
与第一靶抗原上的第一表位特异性相互作用的第一结合元件。
81.如权利要求80所述的一种或一组多核苷酸,其中所述第一表位为MUC1靶抗原上的表位。
82.如权利要求80所述的一种或一组多核苷酸,其中所述第一结合元件包括HMFG2抗体的CDR。
83.如权利要求80所述的一种或一组多核苷酸,其中所述第一结合元件包括HMFG2抗体的VH和VL结构域。
84.如权利要求80所述的一种或一组多核苷酸,其中所述第一结合元件包括HMFG2单链可变片段(scFv)。
85.如权利要求43-84任一项所述的一种或一组多核苷酸,进一步包括编码嵌合共刺激受体(CCR)的第四核酸,其中所述CCR包含:
第二共刺激信号区;
跨膜结构域;和
与第二靶抗原上的第二表位特异性相互作用的第二结合元件。
86.如权利要求85所述的一种或一组多核苷酸,其中所述第二表位的第二靶抗原选自由ErbB同源二聚体和异二聚体组成的组。
87.如权利要求85所述的一种或一组多核苷酸,其中所述第二靶抗原为HER2。
88.如权利要求85所述的一种或一组多核苷酸,其中所述第二靶抗原为EGF受体。
89.如权利要求43-88任一项所述的一种或一组多核苷酸,其中所述第二结合元件包括T1E、ICR12的结合部分或ICR62的结合部分。
90.如权利要求85-89任一项所述的一种或一组多核苷酸,其中所述第三核酸和所述第四核酸位于单个载体中。
91.如权利要求43-90任一项所述的一种或一组多核苷酸,包括:
编码经修饰的pro-IL-18的第一核酸,其中经修饰的pro-IL-18是SEQ ID NO:27所示的多肽;
编码GzB的第二核酸;
编码嵌合抗原受体(CAR)的第三核酸,其中所述CAR包括:
i.信号区;
ii.第一共刺激信号区;
iii.跨膜结构域;和
iv.与MUC1靶抗原上的第一表位特异性相互作用的第一结合元件;
一种编码嵌合共刺激受体(CCR)的第四核酸,其中所述CCR包括:
v.第二共刺激信号区;
vi.跨膜结构域;和
vii.与第二靶抗原上的第二表位特异性相互作用的第二结合元件。
92.如权利要求91所述的一种或一组多核苷酸,其具有如SEQ ID NO:103所示的多核苷酸。
93.如权利要求43-92任一项所述的一种或一组多核苷酸,其中所述第一核酸和所述第三核酸位于单个载体中。
94.如权利要求43-92任一项所述的一种或一组多核苷酸,其中所述第一核酸和所述第四核酸从单个载体表达。
95.如权利要求43-92任一项所述的一种或一组多核苷酸,其中所述第一核酸、所述第二核酸、所述第三核酸和所述第四核酸从单个载体表达。
96.如权利要求43-95任一项所述的一种或一组多核苷酸,包括:
编码经修饰的pro-IL-36的第一核酸,其中经修饰的pro-IL-36是SEQ ID NO:37、39或41的多肽;
编码GzB的第二核酸;
编码嵌合抗原受体(CAR)的第三核酸,其中所述CAR包括:
i.信号区;
ii.第一共刺激信号区;
iii.跨膜结构域;和
iv.与MUC1靶抗原上的第一表位特异性相互作用的第一结合元件;
编码嵌合共刺激受体(CCR)的第四核酸,其中所述CCR包括:
v.第二共刺激信号区;
vi.跨膜结构域;和
vii.与第二靶抗原上的第二表位特异性相互作用的第二结合元件。
97.一种表达γδT细胞:
(a)第二代嵌合抗原受体(CAR),包括
i.信号区;
ii.共刺激信号区;
iii.跨膜结构域;和
iv.与第一靶抗原上的第一表位特异性相互作用的第一结合元件;和
(b)一种嵌合共刺激受体(CCR),包括
v.与(ii)不同的共刺激信号区;
vi.跨膜结构域;和
vii.与第二靶抗原上的第二表位特异性相互作用的第二结合元件。
98.如权利要求97所述的γδT细胞,其中所述第一靶抗原与所述第二靶抗原相同。
99.如权利要求97所述的γδT细胞,其中所述第一靶抗原为MUC抗原。
100.如权利要求97所述的γδT细胞,其中所述第一结合元件包括HMFG2抗体的CDR。
101.如权利要求99所述的γδT细胞,其中所述第一结合元件包括HMFG2抗体的VH和VL结构域。
102.如权利要求97-101任一项所述的γδT细胞,其中所述第一结合元件包括HMFG2单链可变片段(scFv)。
103.如权利要求97-102任一项所述的γδT细胞,其中所述第二表位的所述第二靶抗原选自由ErbB同源二聚体和异二聚体组成的组。
104.如权利要求97-103任一项所述的γδT细胞,其中所述第二靶抗原为HER2。
105.如权利要求104所述的γδT细胞,其中所述第二靶抗原为EGF受体。
106.如权利要求97-105任一项所述的γδT细胞,其中所述第二结合元件包括T1E、ICR12或ICR62。
107.如权利要求106所述的γδT细胞,其中所述第二结合元件为T1E。
108.如权利要求97-107任一项所述的γδT细胞,其中所述第二靶抗原为αvβ6整合素。
109.如权利要求108所述的γδT细胞,其中所述第二结合元件为A20肽。
110.一种制备如权利要求1-42任一项所述的免疫应答细胞的方法,其中所述方法包括将权利要求43-96中任一项所述多核苷酸或多核苷酸组转染或转导至免疫应答细胞。
111.一种用于将T细胞介导的免疫应答引导至需要的患者中的靶细胞的方法,其特征在于,所述方法包括:
向患者施用治疗有效数量的如权利要求1-42中任一项所述免疫应答细胞或如权利要求97-109任一项所述的γδT细胞。
112.如权利要求111所述的方法,其中所述靶细胞表达MUC1。
113.一种治疗癌症的方法,其特征在于,所述方法包括:
向患者施用治疗有效数量的如权利要求1-42中任一项所述免疫应答细胞或如权利要求97-109任一项所述的γδT细胞。
114.如权利要求1-42任一项所述的免疫应答细胞、如权利要求43-96任一项所述的一种或一组多核苷酸或如权利要求97-109任一项所述的γδT细胞,其用于(i)治疗或作为药物或(ii)治疗癌症患者。
115.如权利要求113所述的方法或如权利要求114所述的免疫应答细胞、多核苷酸或γδT细胞,其中所述患者的癌细胞表达MUC 1。
116.如权利要求113所述的方法或如权利要求114所述的免疫应答细胞、多核苷酸或γδT细胞,其中所述患者具有选自乳腺癌、卵巢癌、胰腺癌、结直肠癌、肺癌、胃癌、膀胱癌、前列腺癌、食管癌、子宫内膜癌、肝胆癌、十二指肠癌、甲状腺癌、肾细胞癌、多发性骨髓瘤和非霍奇金淋巴瘤组成的组。
117.如权利要求116所述的方法或免疫应答细胞、多核苷酸或γδT细胞,其中所述患者患有乳腺癌。
118.如权利要求116所述的方法或免疫应答细胞、多核苷酸或γδT细胞,其中所述患者患有卵巢癌。
119.使用如权利要求1-42所述的免疫应答细胞、如权利要求43-96的多核苷酸,或如权利要求97-109所述的γδT细胞制备治疗病理性疾病的药物。
120.一种制备免疫应答细胞的方法,其特征在于,所述方法包括引入转基因的步骤。
121.如权利要求120所述的方法,其中所述转基因编码CAR或pCAR。
122.如权利要求120所述的方法,其中所述转基因编码IL-1超家族的经修饰的前细胞因子,其中所述经修饰的前细胞因子从N端到C端包括:
(a)前肽;
(b)由除半胱天冬酶-1、组织蛋白酶G、弹性蛋白酶或蛋白酶3以外的蛋白酶识别的切割位点;和
(c)IL-1超家族的细胞因子片段。
123.如权利要求120-122任一项所述的方法,其进一步包括用抗γδTCR抗体活化γδT细胞的前一步骤。
124.如权利要求123所述的方法,其中所述抗γδTCR抗体为固定化。
CN202080071952.6A 2019-08-13 2020-08-13 Il-1超家族时空限制性活性细胞因子铠装的免疫应答细胞 Pending CN114555791A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962886065P 2019-08-13 2019-08-13
US62/886,065 2019-08-13
PCT/GB2020/051934 WO2021028690A1 (en) 2019-08-13 2020-08-13 Immunoresponsive cells armoured with spatiotemporally restricted activity of cytokines of the il-1 superfamily

Publications (1)

Publication Number Publication Date
CN114555791A true CN114555791A (zh) 2022-05-27

Family

ID=72178831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080071952.6A Pending CN114555791A (zh) 2019-08-13 2020-08-13 Il-1超家族时空限制性活性细胞因子铠装的免疫应答细胞

Country Status (8)

Country Link
US (1) US20230000913A1 (zh)
EP (1) EP4013857A1 (zh)
JP (1) JP2022545643A (zh)
KR (1) KR20220041214A (zh)
CN (1) CN114555791A (zh)
AU (1) AU2020327671A1 (zh)
CA (1) CA3150818A1 (zh)
WO (1) WO2021028690A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022229412A1 (en) * 2021-04-30 2022-11-03 Cellectis S.A. New anti-muc1 cars and gene edited immune cells for solid tumors cancer immunotherapy
WO2023217062A1 (zh) * 2022-05-10 2023-11-16 星尘生物科技(上海)有限公司 一种嵌合抗原受体及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061768A2 (en) * 1999-04-13 2000-10-19 Yeda Research And Development Co. Ltd. Preparation of biologically active molecules

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446190B2 (en) 2002-05-28 2008-11-04 Sloan-Kettering Institute For Cancer Research Nucleic acids encoding chimeric T cell receptors
DK1765860T3 (da) 2004-05-19 2009-03-09 Immunocore Ltd Ny-ESO-T.cellereceptor med höj affinitet
CN103377240B (zh) 2012-04-26 2017-03-01 阿里巴巴集团控股有限公司 信息提供方法、处理服务器及合并服务器
WO2015003355A2 (en) 2013-07-11 2015-01-15 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
GB201313377D0 (en) 2013-07-26 2013-09-11 Adaptimmune Ltd T cell receptors
GB201607534D0 (en) 2016-04-29 2016-06-15 Immunocore Ltd & Adaptimmune Ltd Peptides
WO2017174822A1 (en) 2016-04-08 2017-10-12 Adaptimmune Limited T cell receptors
WO2017174823A1 (en) 2016-04-08 2017-10-12 Adaptimmune Limited T cell receptors
JP7240176B2 (ja) 2016-04-08 2023-03-15 アダプティミューン・リミテッド T細胞受容体
WO2018027155A1 (en) * 2016-08-04 2018-02-08 Memorial Sloan-Kettering Cancer Center Compositions and methods for immunotherapy
AU2018367452A1 (en) * 2017-11-14 2020-06-11 Memorial Sloan-Kettering Cancer Center IL-36 secreting immunoresponsive cells and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061768A2 (en) * 1999-04-13 2000-10-19 Yeda Research And Development Co. Ltd. Preparation of biologically active molecules

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAROLINE M HULL ET AL.: "Novel approaches to promote CAR T-cell function in solid tumors", 《EXPERT OPIN BIOL THER.》, vol. 19, no. 8, 10 May 2019 (2019-05-10) *
INNA S AFONINA ET AL.: "Proteolytic processing of interleukin-1 family cytokines: variations on a common theme", 《IMMNITY》, vol. 42, no. 6, 1 June 2015 (2015-06-01), XP055748710, DOI: 10.1016/j.immuni.2015.06.003 *
MARKUS CHMIELEWSKI ET AL.: "CAR T Cells Releasing IL-18 Convert to T-Bethigh FoxO1low Effectors that Exhibit Augmented Activity against Advanced Solid Tumors", 《CELL REP.》, vol. 21, no. 11, 12 December 2017 (2017-12-12), XP055748760, DOI: 10.1016/j.celrep.2017.11.063 *

Also Published As

Publication number Publication date
KR20220041214A (ko) 2022-03-31
EP4013857A1 (en) 2022-06-22
WO2021028690A1 (en) 2021-02-18
AU2020327671A1 (en) 2022-03-03
US20230000913A1 (en) 2023-01-05
WO2021028690A9 (en) 2022-03-31
JP2022545643A (ja) 2022-10-28
CA3150818A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
US20220296690A1 (en) Engineered t cells and uses therefor
CA3074526C (en) Chimeric antigen receptor (car) binding to bcma and application thereof
EP3341410B1 (en) Chimeric antigen receptors with integrated controllable functions
CN107735407B (zh) 治疗剂
EP2884999B1 (en) Method and compositions for cellular immunotherapy
AU2020208364B2 (en) Humanized BCMA antibody and BCMA-CAR-T cells
JP2020500530A5 (zh)
US20190338015A1 (en) Cell death inducing chimeric antigen receptors
IL295878A (en) Methods for producing cells expressing a chimeric antigen receptor
CN113811327A (zh) MUC1平行CAR(pCAR)治疗剂
KR20230153529A (ko) 다양한 면역세포를 위한 단일사슬 및 다중사슬 합성 항원 수용체
CN111479918A (zh) 细胞
CN114555791A (zh) Il-1超家族时空限制性活性细胞因子铠装的免疫应答细胞
US20240075066A1 (en) Cell
US20220298223A1 (en) B CELL TARGETED PARALLEL CAR (pCAR) THERAPEUTIC AGENTS
CN116082507B (zh) 人源化bcma抗体和bcma-car-t细胞
JP2022001021A (ja) Cd26特異的キメラ抗原受容体
CN114057890A (zh) 新型共刺激结构域及其用途
Hinner ENGINEERED T CELLS AND USES THEREFOR-Patent Information

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination