CN114551630A - 基于表面等离子体激元增强吸收的铟镓砷雪崩光电探测器 - Google Patents

基于表面等离子体激元增强吸收的铟镓砷雪崩光电探测器 Download PDF

Info

Publication number
CN114551630A
CN114551630A CN202111619663.8A CN202111619663A CN114551630A CN 114551630 A CN114551630 A CN 114551630A CN 202111619663 A CN202111619663 A CN 202111619663A CN 114551630 A CN114551630 A CN 114551630A
Authority
CN
China
Prior art keywords
inp
layer
surface plasmon
thickness
indium gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111619663.8A
Other languages
English (en)
Inventor
陈庆敏
谢修敏
覃文治
蒋若梅
徐强
黄帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South West Institute of Technical Physics
Original Assignee
South West Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South West Institute of Technical Physics filed Critical South West Institute of Technical Physics
Priority to CN202111619663.8A priority Critical patent/CN114551630A/zh
Publication of CN114551630A publication Critical patent/CN114551630A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于表面等离子体激元的铟镓砷雪崩光电探测器,包括包括InP衬底和由下至上依次形成在InP衬底上的第一InP过渡层、第一InP接触层、InP倍增层、InP电荷层、nGaAsP能带过渡层、InGaAs光吸收层、第二InP过渡层、第二InP接触层,第二InP接触层上形成正电极和金属二维孔阵列结构,第一InP接触层上形成负电极。本发明金属二维孔阵列结构可以使得表面等离子体激元与入射光耦合,增强光吸收,由于表面等离子体激元的局域性在亚波长范围,因此设计铟镓砷雪崩光电探测器的结构时接触层和吸收区要薄,使得耦合光可以局域在吸收区附近,从而增强光吸收。

Description

基于表面等离子体激元增强吸收的铟镓砷雪崩光电探测器
技术领域
本发明属于近红外雪崩光电探测器技术领域,涉及一种基于表面等离子体激元增强吸收的铟镓砷雪崩光电探测器。
背景技术
表面等离子体激元主要研究亚波长金属纳米结构独特的光学特性及其在纳米尺寸上对光的操控。通过改变亚波长结构的形状、材料、分布以及所处的介电环境可以对表面等离子体激元的共振波长、场增强因子、场分布、辐射等特性进行有效调控。表面等离子体激元光电探测器的研究发展体现为其光电性能的提高,尤其是提升器件的近红外探测能力。从改善金属微纳结构的角度进行优化,如通过在有源层上构造随机或规则金属纳米颗粒阵列来提高器件的光吸收,构造一维或二维金属光栅来提升热载流子传输效率,从而提升器件的综合性能。
雪崩探测器是目前量子信息领域、激光雷达和生物医学等领域的关键器件。基于铟镓砷雪崩光电二极管(APD)的单光子探测器适用于近红外波段,响应速度快,体积小巧,易于和光纤与器件耦合,实用性较强。然而,基于铟镓砷APD的单光子探测器的主要缺点在于其吸收区较宽、吸收系数较小,由吸收区的隧穿效应带来的暗电流和暗计数较大,探测效率相对偏低。
由于传统光电探测器件功能单一,已无法满足应用需求。而将表面等离子体激元效应应用到传统光电探测器中,能够给予传统探测器更强的性能和更多的功能,例如实现偏振、角度或光谱的选择以及增强探测器的吸收率等。表面等离子体激元激发的热载流子光电探测在理论与应用上有着广泛的发展前景,为研发具有超紧凑、高灵敏度、高响应率等一系列优良特性的光电器件提供依据,有望在图像传感、通信、医学诊断等领域发挥重要作用。
发明内容
(一)发明目的
本发明的目的是:提出可以用于铟镓砷雪崩光电探测器(APD)上的薄膜金属结构,主要是基于表面等离子体激元增强吸收的铟镓砷雪崩光电探测器结构。由于传统铟镓砷雪崩光电探测器的吸收区较宽、吸收系数较小,由吸收区的隧穿效应带来的暗电流和暗计数较大,探测效率相对偏低,因此,发明一种基于表面等离子体激元的金属二维孔阵列来增强吸收,减小吸收区厚度,又可以保证探测效率。
(二)技术方案
为了解决上述技术问题,本发明提供一种基于表面等离子体激元的铟镓砷雪崩光电探测器,为台面结构,其包括InP衬底和由下至上依次形成在InP衬底上的第一InP过渡层、第一InP接触层、InP倍增层、InP电荷层、nGaAsP能带过渡层、InGaAs光吸收层、第二InP过渡层、第二InP接触层,第二InP接触层上形成正电极和金属二维孔阵列结构,第一InP接触层上形成负电极。
各层结构为:
InP衬底,厚度150um-300um,掺杂浓度为3-8×1018/cm3
第一InP过渡层,厚度0.5-2um,本征掺杂;
第一InP接触层,厚度0.5-2um,掺杂浓度为1-5×1018/cm3
InP倍增层,厚度为0.5-2um,本征掺杂;
InP电荷层,厚度为0.1-0.2um,掺杂浓度为1-3×1017/cm3
InGaAsP能带过渡层,厚度为0.03-0.12um,本征掺杂;
InGaAs光吸收层,厚度为0.5-1um,本征掺杂;
第二InP过渡层,厚度为0.05-0.15um,本征掺杂;
第二InP接触层,厚度为0.1-0.3um,掺杂浓度为1-5×1017/cm3
正电极和负电极,用来加偏压。
(三)有益效果
上述技术方案所提供的基于表面等离子体激元增强吸收的铟镓砷雪崩光电探测器,采用了较薄的吸收层厚度,减少了载流子的渡越时间,增加了响应速度;采用金属二维孔周期阵列结构,与入射光耦合,激发表面等离子体激元,表面等离子体激元沿着金属和介质表面传播,但是具有一定的局域性,在亚波长范围内,较薄的接触层可以使得耦合的光可以局域在吸收层,从而增强吸收。
附图说明
图1是本发明基于表面等离子体激元的铟镓砷雪崩光电探测器的结构示意图。
附图标记说明:1磷化铟衬底;2磷化铟过渡层;3磷化铟接触层;4磷化铟倍增层;5磷化铟电荷层;6铟镓砷磷能带过渡层;7铟镓砷光吸收层;8磷化铟过渡层;9磷化铟接触层;10金属二维孔阵列结构;11上电极;12下电极。
具体实施方式
为使本发明的目的、内容和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
理论上一维或者二维金属光栅都可以用来增强吸收,但是一维的光栅对入射光会产生很强的偏振效果。而二维金属光栅虽然可以增强吸收,但是其他形状的金属周期(边缘含有直线状)会对光的方向有很强的选择性和偏振性。由于铟镓砷雪崩光电探测器不需要偏振光,因此本发明是针对铟镓砷雪崩光电探测器采用的金属二维孔周期阵列。
本实施例基于表面等离子体激元的金属二维孔阵列来增强铟镓砷雪崩光电探测器的吸收效应,铟镓砷雪崩光电探测器采用的是分离倍增层和吸收区的结构,采用正近光结构。
本实施例所使用的InGaAs外延片是利用金属有机物化学汽相沉积(MOCVD)技术,在n型掺杂浓度为3-8×1018/cm3的100晶向磷化铟(InP)衬底1上依次外延:厚度0.5um-2μm,本征掺杂的磷化铟(InP)过渡层2;厚度0.5um-2μm,p型杂质浓度为1-5×1018/cm3的磷化铟(InP)接触层3;厚度为0.5-2μm,本征掺杂的磷化铟(InP)倍增层4;厚度为0.1-0.2μm,掺杂浓度为1-3×1017/cm3的的磷化铟(InP)电荷层5;厚度为0.12um,本征掺杂铟镓砷磷(InGaAsP)能带过渡层6(包含厚度0.04um,本征掺杂In0.85Ga0.15As0.33P0.67,包含厚度0.04um,本征掺杂In0.71Ga0.29As0.62P0.38,包含厚度0.04um,本征掺杂In0.57Ga0.43As0.89P0.11);厚度为0.5-1μm,本征掺杂的铟镓砷(InGaAs)光吸收层7;厚度0.1μm,本征掺杂浓度的磷化铟(InP)过渡层8;厚度为0.2um,n型掺杂浓度为1-5×1017/cm3的磷化铟(InP)接触层9;厚度为0.03um-0.1um,金属二维孔阵列结构10;厚度为0.2um-1um,铬金合金上电极11;厚度为0.2um-1um,铬金合金下电极12。
金属二维孔阵列薄膜厚度为50nm,材料为金或者银,孔周期占比50%-70%,孔径100-200nm。光由磷化铟(InP)接触层9上表面入射,上电极11和下电极12引入偏压并收集信号。
本实施例中,在光子探测过程中,入射光波段是近红外波段。入射光子穿过磷化铟接触层9,到达吸收层7。一部分光子被吸收层7直接吸收,激发电子空穴对,形成光电流。还有一部分光子在金属二维孔阵列结构10的下表面和磷化铟(InP)接触层9的上表面形成表面等离子体激元,在吸收层7处具有较大的电场强度的表面等离子体波,该表面等离子体波能够被吸收层7吸收形成光电流,从而达到增强吸收的效果。
本发明采用金属二维孔阵列结构与铟镓砷雪崩光电探测器相结合,利用金属二维孔阵列的局域性增强吸收区的吸收效应,为提高铟镓砷雪崩光电探测器的吸收效率和探测效率提供了新途径。由于表面等离子体激元的局域性在亚波长范围,因此设计铟镓砷雪崩光电探测器的结构时接触层和吸收区要薄,使得耦合光可以局域在吸收区附近,从而增强光吸收。在铟镓砷雪崩光电探测器结构设计时,较薄的吸收区可以减少暗电流和暗计数,又可以通过金属二维孔阵列增强光吸收,从而可以弥补吸收区减薄后损失的探测效率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

1.一种基于表面等离子体激元的铟镓砷雪崩光电探测器,其特征在于,包括InP衬底和由下至上依次形成在InP衬底上的第一InP过渡层、第一InP接触层、InP倍增层、InP电荷层、nGaAsP能带过渡层、InGaAs光吸收层、第二InP过渡层、第二InP接触层,第二InP接触层上形成正电极和金属二维孔阵列结构,第一InP接触层上形成负电极。
2.如权利要求1所述的基于表面等离子体激元的铟镓砷雪崩光电探测器,其特征在于,所述InP衬底为n型掺杂浓度为3-8×1018/cm3的100晶向InP衬底。
3.如权利要求2所述的基于表面等离子体激元的铟镓砷雪崩光电探测器,其特征在于,所述第一InP过渡层为厚度0.5um-2μm、本征掺杂的InP过渡层。
4.如权利要求3所述的基于表面等离子体激元的铟镓砷雪崩光电探测器,其特征在于,所述第一InP接触层为厚度0.5um-2μm、p型杂质浓度为1-5×1018/cm3的InP接触层。
5.如权利要求4所述的基于表面等离子体激元的铟镓砷雪崩光电探测器,其特征在于,所述InP倍增层为厚度为0.5-2μm,本征掺杂的InP倍增层。
6.如权利要求5所述的基于表面等离子体激元的铟镓砷雪崩光电探测器,其特征在于,所述InP电荷层为厚度为0.1-0.2μm,掺杂浓度为1-3×1017/cm3的InP电荷层。
7.如权利要求6所述的基于表面等离子体激元的铟镓砷雪崩光电探测器,其特征在于,所述InGaAsP能带过渡层厚度为0.03-0.12um,本征掺杂,InGaAsP能带过渡层包含厚度0.04um,本征掺杂In0.85Ga0.15As0.33P0.67;厚度0.04um,本征掺杂In0.71Ga0.29As0.62P0.38;厚度0.04um,本征掺杂In0.57Ga0.43As0.89P0.11
8.如权利要求7所述的基于表面等离子体激元的铟镓砷雪崩光电探测器,其特征在于,所述InGaAs光吸收层厚度为0.5-1μm,本征掺杂。
9.如权利要求8所述的基于表面等离子体激元的铟镓砷雪崩光电探测器,其特征在于,所述第二InP过渡层厚度0.05-0.15μm,本征掺杂浓度的;第二InP接触层厚度为0.2um,n型掺杂浓度为1-5×1017/cm3
10.如权利要求9所述的基于表面等离子体激元的铟镓砷雪崩光电探测器,其特征在于,所述金属二维孔阵列结构厚度为0.03um-0.1um,上电极厚度为0.2um-1um,下电极厚度为0.2um-1um,上电极和下电极均为铬金合金,金属二维孔阵列薄膜厚度为50nm,材料为金或者银,孔周期占比50%-70%,孔径100-200nm。
CN202111619663.8A 2021-12-27 2021-12-27 基于表面等离子体激元增强吸收的铟镓砷雪崩光电探测器 Pending CN114551630A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111619663.8A CN114551630A (zh) 2021-12-27 2021-12-27 基于表面等离子体激元增强吸收的铟镓砷雪崩光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111619663.8A CN114551630A (zh) 2021-12-27 2021-12-27 基于表面等离子体激元增强吸收的铟镓砷雪崩光电探测器

Publications (1)

Publication Number Publication Date
CN114551630A true CN114551630A (zh) 2022-05-27

Family

ID=81669214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111619663.8A Pending CN114551630A (zh) 2021-12-27 2021-12-27 基于表面等离子体激元增强吸收的铟镓砷雪崩光电探测器

Country Status (1)

Country Link
CN (1) CN114551630A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117712215A (zh) * 2023-12-12 2024-03-15 上海新微半导体有限公司 一种雪崩光电探测器及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417528B1 (en) * 2000-01-28 2002-07-09 Agere Systems Guardian Corp. High speed semiconductor photodetector
CN106784120A (zh) * 2016-12-08 2017-05-31 中国科学院半导体研究所 一种基于表面等离子效应的InGaAs红外偏振探测器
CN107611195A (zh) * 2017-08-03 2018-01-19 天津大学 吸收层变掺杂InGaAs雪崩光电二极管及制备方法
CN107768462A (zh) * 2017-11-02 2018-03-06 天津大学 两级台面铟镓砷/铟磷雪崩光电二极管及其制备方法
JP2020161774A (ja) * 2019-03-28 2020-10-01 日本電信電話株式会社 アバランシェフォトダイオードおよびその製造方法
CN112071926A (zh) * 2020-08-27 2020-12-11 深圳市奥伦德元器件有限公司 一种红外探测器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417528B1 (en) * 2000-01-28 2002-07-09 Agere Systems Guardian Corp. High speed semiconductor photodetector
CN106784120A (zh) * 2016-12-08 2017-05-31 中国科学院半导体研究所 一种基于表面等离子效应的InGaAs红外偏振探测器
CN107611195A (zh) * 2017-08-03 2018-01-19 天津大学 吸收层变掺杂InGaAs雪崩光电二极管及制备方法
CN107768462A (zh) * 2017-11-02 2018-03-06 天津大学 两级台面铟镓砷/铟磷雪崩光电二极管及其制备方法
JP2020161774A (ja) * 2019-03-28 2020-10-01 日本電信電話株式会社 アバランシェフォトダイオードおよびその製造方法
CN112071926A (zh) * 2020-08-27 2020-12-11 深圳市奥伦德元器件有限公司 一种红外探测器及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117712215A (zh) * 2023-12-12 2024-03-15 上海新微半导体有限公司 一种雪崩光电探测器及其制作方法

Similar Documents

Publication Publication Date Title
Tong et al. Surface plasmon enhanced infrared photodetection
Tan et al. Emerging technologies for high performance infrared detectors
Miao et al. Avalanche photodetectors based on two-dimensional layered materials
US7728366B2 (en) Photodiode and method for fabricating same
Decoster et al. Optoelectronic sensors
EP2110864A1 (en) Photodiode, optical communication device, and optical interconnection module
JP7024976B2 (ja) 受光素子及び近赤外光検出器
CA2331992A1 (en) High speed semiconductor photodetector
CN116053336A (zh) 铟镓砷雪崩探测器表面陷光结构制备方法
CN114551630A (zh) 基于表面等离子体激元增强吸收的铟镓砷雪崩光电探测器
JP7061753B2 (ja) 受光素子及び近赤外光検出器
Zhang et al. Investigation of modulation transfer function in InGaAs photodetector small pitch array based on three-dimensional numerical analysis
CN115810680A (zh) 一种局域场增强的光电导型高速光电探测器
Suo et al. Hole array enhanced dual-band infrared photodetection
Shi et al. Hot-electron photodetection based on embedded asymmetric nano-gap electrodes
Tyagi et al. Numerical simulation of InxGa1− xAs/InP PIN photodetector for optimum performance at 298 K
Unal et al. InGaAs-Based MSM Photodetector: Researching Absorption Layer, Barrier Layer, and Digital Graded Superlattice Layer with 3D Simulation
Circir et al. Crosstalk analysis for mesa-based in-device passivated InGaAs photodetectors
CN117650190B (zh) 一种适用于非偏振光的等离激元电极光电探测器
CN217544629U (zh) 一种完全嵌入式光栅结构的窄带近红外热电子光电探测器
JPH0480973A (ja) 半導体受光素子
CN210006751U (zh) 一种高增益带宽积的光探测器
Zhang et al. Plasmonic uni-traveling-carrier photodiode
Xia et al. InGaAs/InP PIN photodetectors based on micropillar arrays
WO2023154269A1 (en) Dual-color plasmonic detector leveraging plasmonic modes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination