CN114549966A - 基于多任务子网络分解的sar变化检测网络训练方法 - Google Patents
基于多任务子网络分解的sar变化检测网络训练方法 Download PDFInfo
- Publication number
- CN114549966A CN114549966A CN202210011083.9A CN202210011083A CN114549966A CN 114549966 A CN114549966 A CN 114549966A CN 202210011083 A CN202210011083 A CN 202210011083A CN 114549966 A CN114549966 A CN 114549966A
- Authority
- CN
- China
- Prior art keywords
- network
- training
- task
- target parameters
- change detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012549 training Methods 0.000 title claims abstract description 247
- 238000001514 detection method Methods 0.000 title claims abstract description 136
- 238000000034 method Methods 0.000 title claims abstract description 101
- 230000008859 change Effects 0.000 title claims abstract description 99
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 36
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 49
- 238000011478 gradient descent method Methods 0.000 claims abstract description 44
- 230000002068 genetic effect Effects 0.000 claims abstract description 8
- 238000005457 optimization Methods 0.000 claims description 41
- 210000000349 chromosome Anatomy 0.000 claims description 23
- 238000011156 evaluation Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 13
- 238000013209 evaluation strategy Methods 0.000 claims description 9
- 238000011423 initialization method Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 3
- 230000035772 mutation Effects 0.000 claims description 2
- 238000004880 explosion Methods 0.000 abstract description 4
- 230000008034 disappearance Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 9
- 238000004422 calculation algorithm Methods 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 238000001914 filtration Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005315 distribution function Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007786 learning performance Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 101150021123 msrA gene Proteins 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Evolutionary Biology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210011083.9A CN114549966B (zh) | 2022-01-05 | 2022-01-05 | 基于多任务子网络分解的sar变化检测网络训练方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210011083.9A CN114549966B (zh) | 2022-01-05 | 2022-01-05 | 基于多任务子网络分解的sar变化检测网络训练方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114549966A true CN114549966A (zh) | 2022-05-27 |
CN114549966B CN114549966B (zh) | 2024-10-15 |
Family
ID=81669413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210011083.9A Active CN114549966B (zh) | 2022-01-05 | 2022-01-05 | 基于多任务子网络分解的sar变化检测网络训练方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114549966B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112509017A (zh) * | 2020-11-18 | 2021-03-16 | 西北工业大学 | 一种基于可学习差分算法的遥感影像变化检测方法 |
CN112734695A (zh) * | 2020-12-23 | 2021-04-30 | 中国海洋大学 | 基于区域增强卷积神经网络的sar图像变化检测方法 |
-
2022
- 2022-01-05 CN CN202210011083.9A patent/CN114549966B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112509017A (zh) * | 2020-11-18 | 2021-03-16 | 西北工业大学 | 一种基于可学习差分算法的遥感影像变化检测方法 |
CN112734695A (zh) * | 2020-12-23 | 2021-04-30 | 中国海洋大学 | 基于区域增强卷积神经网络的sar图像变化检测方法 |
Non-Patent Citations (2)
Title |
---|
HAO LI等: "A multiobjective fuzzy clustering method for change detection in SAR images", 《APPLIED SOFT COMPUTING》, 1 September 2016 (2016-09-01) * |
郭松林;王朝晖;: "神经网络梯度下降与粒子群组合的训练算法", 黑龙江科技大学学报, no. 04, 30 July 2020 (2020-07-30) * |
Also Published As
Publication number | Publication date |
---|---|
CN114549966B (zh) | 2024-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110532859B (zh) | 基于深度进化剪枝卷积网的遥感图像目标检测方法 | |
CN111583263B (zh) | 一种基于联合动态图卷积的点云分割方法 | |
CN108399428B (zh) | 一种基于迹比准则的三元组损失函数设计方法 | |
CN111191732B (zh) | 一种基于全自动学习的目标检测方法 | |
US11816183B2 (en) | Methods and systems for mining minority-class data samples for training a neural network | |
CN112308961B (zh) | 基于分层高斯混合模型的机器人快速鲁棒三维重建方法 | |
CN113326731B (zh) | 一种基于动量网络指导的跨域行人重识别方法 | |
CN111542843A (zh) | 利用协作生成器积极开发 | |
CN111191718B (zh) | 基于图注意力网络的小样本sar目标识别方法 | |
CN101286229B (zh) | 基于分层mrf的声呐图像自适应分割方法 | |
CN108108854A (zh) | 城市路网链路预测方法、系统及存储介质 | |
CN101540047A (zh) | 基于独立高斯混合模型的纹理图像分割方法 | |
CN112464004A (zh) | 一种多视角深度生成图像聚类方法 | |
CN112905894B (zh) | 一种基于增强图学习的协同过滤推荐方法 | |
CN111652264B (zh) | 基于最大均值差异的负迁移样本筛选方法 | |
CN109658378B (zh) | 基于土壤ct图像的孔隙辨识方法及系统 | |
CN112489168A (zh) | 一种图像数据集生成制作方法、装置、设备及存储介质 | |
CN114036308A (zh) | 基于图注意力神经网络的知识图谱表示方法 | |
CN113344220A (zh) | 一种联邦学习中基于局部模型梯度的用户筛选方法、系统、设备及存储介质 | |
CN112836736B (zh) | 一种基于深度自编码器构图的高光谱图像半监督分类方法 | |
CN113239199B (zh) | 一种基于多方数据集的信用分类方法 | |
CN116596023A (zh) | 一种基于距离编码的图卷积神经网络模型的训练方法 | |
JP2018124990A (ja) | モデル生成装置、評価装置、モデル生成方法、評価方法及びプログラム | |
CN114549966A (zh) | 基于多任务子网络分解的sar变化检测网络训练方法 | |
CN116611576A (zh) | 碳排量预测方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Hao Inventor after: Zheng Yu Inventor after: Pan Ke Inventor after: Gong Maoguo Inventor after: Liu Jieyi Inventor after: Jiang Xiangming Inventor after: Tang Zedong Inventor after: Zhang Mingyang Inventor after: Wu Yue Inventor before: Li Hao Inventor before: Zheng Yu Inventor before: Gong Maoguo Inventor before: Liu Jieyi Inventor before: Jiang Xiangming Inventor before: Tang Zedong Inventor before: Zhang Mingyang Inventor before: Wu Yue |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant |