CN114540432B - 一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法 - Google Patents

一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法 Download PDF

Info

Publication number
CN114540432B
CN114540432B CN202111667090.6A CN202111667090A CN114540432B CN 114540432 B CN114540432 B CN 114540432B CN 202111667090 A CN202111667090 A CN 202111667090A CN 114540432 B CN114540432 B CN 114540432B
Authority
CN
China
Prior art keywords
sludge
amino acid
aromatic amino
plant growth
anaerobic digestion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111667090.6A
Other languages
English (en)
Other versions
CN114540432A (zh
Inventor
唐燕飞
孙婧
戴晓虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202111667090.6A priority Critical patent/CN114540432B/zh
Publication of CN114540432A publication Critical patent/CN114540432A/zh
Application granted granted Critical
Publication of CN114540432B publication Critical patent/CN114540432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明涉及一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法,该方法包括以下步骤:(1)污泥的预处理:通过物理、化学或生物手段中的一种或多种,处理对象为剩余污泥或接种污泥,促进剩余污泥或接种污泥中碳水化合物的溶出、促进电子穿梭体的暴露;(2)厌氧消化:将预处理处理后的剩余污泥或接种污泥分别与未进行预处理的接种污泥或剩余污泥掺混,并移入密闭的厌氧消化设备中,通过搅拌的方式进行同时厌氧消化,并进行成品收集。与现有技术相比,本发明能够在达到较高的污泥降解率、累积产甲烷量的同时缩短反应时间,定向提高芳香氨基酸衍生类植物生长促进剂产量,为生产高附加值的污泥液肥提供一种有前景的技术开发策略。

Description

一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的 方法
技术领域
本发明涉及污泥资源化领域,具体涉及一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法。
背景技术
污泥厌氧消化(Anaerobic digestion,AD)是一种被广泛应用的降解易腐有机物和回收生物质能(甲烷)的方法。为了提高AD的效率,热水解预处理(Thermal hydrolysispretreatment,THP)技术是最常用的方法之一,它可以提高污泥的可生化性,降低污泥粘度,灭活病原体。有报道称,121℃下的THP可导致污泥中生物聚合物的破坏和可溶性碳水化合物的大量释放。当THP在超过150℃的高温下进行时,污泥中可溶的有机物可以进一步水解成生物可利用的形式,如葡萄糖和氨基酸。增加的可溶性有机物可能通过氨基酸分解为羧酸等直接降解为低分子植物生长促进剂(Micromolecular plant biostimulants,Micro-PB),也可能在有机固废生物处理过程中诱导更多的细菌分泌Micro-PB。然而,目前对污泥AD过程中Micro-PB的识别和转化的研究非常有限,对热水解预处理厌氧消化过程(THP-AD)过程产生Micro-PB的潜力和机理的研究几乎处于空白阶段。
研究表明,在厌氧环境中,大多数Micro-PB是氨基酸衍生物,其中芳香族氨基酸(即色氨酸、酪氨酸和苯丙氨酸,Aromatic amino acids,AAAs)的衍生物的功能较为显著。例如植物生长素,有机废物消化液中最常见的植物激素,只在色氨酸过剩时产生。例如厌氧条件下产生的典型化感物质,即芳香族羧酸和吲哚衍生物,也依赖于AAAs代谢。本发明的前期实验结果表明,消化污泥中最有效的Micro-PB正是来源于AAAs,包括传统植物激素以及其他化感物质(见附图1)。
然而,污泥的厌氧消化过程AAAs的来源是有限的。以往的研究表明,单独的热处理和传统的厌氧消化工艺中,通过污泥蛋白的热化学水解或者厌氧条件下的水解产生AAAs都是极其有限的提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种能够在达到较高的污泥降解率、累积产甲烷量的同时缩短反应时间,定向提高芳香氨基酸衍生类植物生长促进剂产量的。
本发明的目的可以通过以下技术方案来实现:
发明人知道,污泥的厌氧消化过程AAAs的来源需要通过其内源微生物合成而得。而AAAs的关键合成路径需要高能输入,因此,本发明提出需要通过激活内源电子穿梭体从而上调其耦合的能量代谢过程。
本发明的前期实验结果表明,160℃左右的热水解预处理(Thermal hydrolysispretreatment,THP)可能会导致大量原来构建在胡敏酸中的醌类化合物暴露并加速胞内外的电子传输过程,从而增强能量供应促进AAAs生物合成。此外,厌氧消化过程中细菌合成新的醌类和合成AAAs的主要路径均为莽草酸代谢,即初期有效激活醌基提高能量传输能够有效支撑整个厌氧消化过程醌类供应,使得AAAs转化和有效的Micro-PB生产保持较高活性。
在实践中,通过有效的预处理,在污泥停留时间(SRT)12-15天的厌氧消化系统中芳香氨基酸衍生类植物生长促进剂已经可以获得峰值浓度。如果延长SRT可使甲烷产量略有增加(<15%),VS削减略有提高(<7%),但这是以芳香氨基酸衍生类植物生长促进剂损失超过35%为代价,以及植物发芽指数降低15%左右为代价。但仍然值得注意的是,最佳SRT可根据污泥特性和运行方式而变化。因此,针对连续运行中不同污泥特性的最佳厌氧消化条件值得进一步研究。本发明强调醌类在芳香氨基酸衍生类植物生长促进剂生产富集的重要性,其在厌氧系统中的持续供应是由醌类的初始暴露和激活触发的。因此,在污泥厌氧消化回收芳香氨基酸衍生类植物生长促进剂的技术开发领域,获得大量碳水化合物是前提,而醌类初始释放等提高能量传输的方法应成为重点,具体方案如下:
一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法,该方法包括以下步骤:
(1)污泥的预处理:通过物理、化学或生物手段中的一种或多种,直接以剩余污泥为处理对象或者通过改性以老龄消化污泥充当的接种污泥,促进剩余污泥或接种污泥中碳水化合物的溶出、激活电子穿梭体以强化能量传输;污泥预处理的目的在于:强化碳水化合物溶出,有利于在水解转化为更多的葡萄糖,其通过糖酵解途径和磷酸戊糖途径生成的磷酸烯醇式丙酮酸(Phosphoenolpyruvic acid,PEP)和4-磷酸赤藓糖(Erythrose 4-phosphate,E4P)能够为芳香氨基酸的生物合成提供碳环;还在于强化污泥胞外聚合物解构,暴露内源醌基等电子穿梭体,有利于启动需要高能输入的莽草酸代谢路径,这一路径能够合成芳香氨基酸和新的醌基类物质,而芳香氨基酸合成上调驱动芳香氨基酸代谢上调,从而有利于芳香氨基酸衍生类植物生长促进剂的富集;质言之,该步骤必须同时实现强化碳水化合物溶出和电子穿梭体暴露两个目的;
(2)厌氧消化:将预处理后的剩余污泥或接种污泥分别与未进行预处理的接种污泥或剩余污泥掺混,并移入密闭的厌氧消化设备中,通过搅拌的方式进行同时厌氧消化,以产生芳香氨基酸衍生类植物生长促进剂,并进行成品收集。在污泥的预处理步骤有效完成的情况下,在SRT=12-15d时芳香氨基酸衍生类植物生长促进剂能够快速富集到最高浓度水平,此时及时收集消化污泥并分离得到上清液即芳香氨基酸衍生类植物生长促进剂。
简单来说,本发明通过前期研究发现芳香氨基酸衍生类植物生长促进剂是污泥产物中有效改进植物生长的一类植物生长促进剂。由于该类物质的前体,即芳香氨基酸,在污泥中的浓度水平有限,且通过物理、化学、生物等手段直接水解芳香蛋白从而得到芳香氨基酸的效果也十分有限。为了解决缺乏重要合成前体的问题,本发明的主要策略为通过强化基质溶出和能量传输从而上调芳香氨基酸的合成和转化。
进一步地,步骤(1)的具体方法为:将剩余污泥用热蒸汽进行热水解处理。以促进污泥有机质溶出、使得胞外聚合物中醌基等电子穿梭体有效暴露从而上调产植物生长促进剂的高能代谢路径。
进一步地,所述热蒸汽的温度为140-180℃,优选158-162℃,压力为0.25-0.55MPa,热水解处理的时间为30-60min。
进一步地,步骤(2)中,预处理后的剩余污泥与未进行预处理的接种污泥之间有机质的质量比为(2-3):1。
进一步地,步骤(1)的具体方法为:向接种污泥中投加生物可降解的污泥破稳剂,然后在恒温的条件下进行振荡。以达到解除金属桥联作用和破坏腐殖酸和蛋白之间的共价键的作用,并且进一步地氧化/水解腐殖质芳香碳环,在打开碳环的同时增加含氧官能团,一方面可以达到混合剩余污泥后降低污泥表面能促进碳水化合物溶出的作用,另一方面,促进泥胞外聚合物解聚以释放内源水解酶加速碳水化合物水解、破坏蛋白-腐殖酸结构以暴露内源腐殖酸上的醌基,即电子穿梭载体。
进一步地,所述的污泥破稳剂包括柠檬酸,污泥破稳剂的添加量为0.02-0.10g/g·TS,优选0.06-0.10g/g·TS。(按照接种污泥的TS计算添加剂量)。
进一步地,所述恒温的温度为35-37℃;所述震荡的转速为120-150rpm,时间为10-30h。
进一步地,步骤(2)中,未进行预处理的剩余污泥与预处理后的接种污泥之间有机质的质量比为(2-3):1。
进一步地,所述剩余污泥为较高有机质含量的剩余污泥的VS/TS≥45%,优选VS/TS=46-50%,TS=15-20%,所述接种污泥的VS/TS=35-39%,TS=8-10%;
所述厌氧消化的温度为30-60℃,比如30-40℃的中温条件或50-60℃的高温条件;由于芳香氨基酸衍生类植物生长促进剂在活跃生产期后可能有所降解,推荐厌氧消化周期小于等于15天(SRT≤15d),优选6-15天,更优选12-15天。
与现有技术相比,本发明从物质和能量两个角度推进厌氧消化的高能代谢,能够快速启动厌氧消化系统合成芳香氨基酸的代谢途径,并驱动其高活性的代谢途径,从而高效地产生高附加值的芳香氨基酸衍生类植物生长促进剂,在较短的SRT内较为经济可行地得到污泥资源化产品。
附图说明
图1为芳香氨基酸衍生类植物生长促进剂的效果图;
图2为实施例1中剩余污泥预处理后碳水化合物溶出情况图;
图3为实施例1中剩余污泥预处理后及厌氧消化过程醌基含量图;
图4为实施例1中剩余污泥预处理后及厌氧消化过程PEP和E4P含量图;
图5为实施例1中植物生长促进剂产出情况图;
图6为实施例2中预处理接种泥及其混合剩余污泥后水解产酸段(添加产甲烷抑制剂)碳水化合物溶出情况图;
图7为实施例2中预处理接种泥混合剩余泥样(实验组第0天vs空白组第0天)胞外聚合物及腐殖酸的伏安特性曲线图;
图8为实施例2中植物生长促进剂产出情况图;
图9为本发明的策略流程图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法,该方法包括以下步骤:
(1)将脱水后的污泥在热水解罐内用热蒸汽(160℃,0.50MPa,40min左右)进行热水解处理,以促进污泥有机质溶出、使得胞外聚合物中醌基等电子穿梭体有效暴露从而上调产植物生长促进剂的高能代谢路径;
(2)将热水解预处理后的剩余污泥按有机质重量比2.5:1掺混接种污泥并移入密闭的厌氧消化设备中,在30-40℃中温条件下通过搅拌的方式进行,厌氧消化周期小于等于15天(SRT≤15d);
(3)采用集气袋采集生物气,并采用国产气相色谱(GC112A,INESA,China)采集生物气组分变化数据,并采用液相两级质谱和气相质谱方法定量检测单位有机质的芳香氨基酸衍生类植物生长促进剂量。
如图2,结果显示,以140℃为转折点,热水解处理后剩余污泥的碳水化合物大幅度溶出,经160℃处理的剩余污泥,溶解性碳水化合物(溶蛋白、溶多糖)由原泥的不足20g/kgVS提高至接近150g/kg VS。
如图3所示,胞外有机质中醌基含量经120℃和160℃热水解处理后由原泥的0.52mmol/kg VS提高至0.76mmol/kg VS和2.48mmol/kg VS。
如图4所示,在热水解预处理后,厌氧消化第3天经糖酵解和磷酸戊糖途径生成的芳香氨基酸碳环前体PEP和E4P明显产量提高,其中160℃热水解后的厌氧消化污泥中这两者浓度水平更高。更重要的是,如图4在厌氧消化运行时间为6天时,芳香氨基酸碳环前体PEP和E4P骤减,其中160℃热水解后厌氧消化污泥中这两者的消耗最为显著,说明芳香氨基酸合成途径的活性差异,进一步地,直到厌氧消化运行时间12天为止,160℃热水解后厌氧消化污泥中PEP和E4P的浓度水平最低,从代谢通路活性算法原理的角度,中间产物浓度越低表明此条通路的活性越强。
如图5所示,对比空白组和120℃热水解预处理组,消化污泥中单位有机质芳香氨基酸衍生类植物生长促进剂含量增加显著【吲哚乙酸3.49倍以上,羟基苯乙酸3.39倍以上,芳香羧酸和吲哚衍生物总和提高7.40(对比空白组)和2.43倍(对比120℃热水解预处理组)】。
实施例2
一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法,该方法包括以下步骤:
(1)向接种污泥中投加0.02-0.10g/g·TS(TS为污泥总固体含量)的柠檬酸,迅速混合;
(2)将混有柠檬酸的接种污泥充入氮气保护气后密封,以35-37℃恒温和120-150rpm条件震荡16-24h;
(3)将处理后的接种污泥(CA-IS)按有机质重量比1:2.6掺混高有机质剩余污泥并移入密闭的厌氧消化设备中,在30-40℃中温条件下通过搅拌的方式进行,厌氧消化周期小于等于15天(SRT≤15d),采用液相两级质谱和气相质谱方法定量检测单位有机质的芳香氨基酸衍生类植物生长促进剂量;
(4)选取经过上述处理后的平行样通过添加溴乙烷磺酸钠(产甲烷抑制剂),检测水解产酸段溶解性碳水化合物的浓度水平变化情况。
如图6,结果显示,经0.02-0.10g/g·TS柠檬酸处理后的接种污泥可被改性为一种促进剩余污泥溶出的材料,在混合剩余污泥后(第0天)均可提高溶解性碳水化合物的溶出,其中以0.06-0.10g/g·TS柠檬酸处理效果最为显著;另外,通过观察水解产酸段(添加产甲烷抑制剂)的溶解性碳水化合物变化情况可知,0.08g/g·TS柠檬酸处理组能够最大程度转化这些溶解性碳水化合物,表明其水解效率最高,因此后续对比分析了0.08g/g·TS柠檬酸处理组和空白组的芳香氨基酸衍生类植物生长促进剂含量。
如图7所示,比较0.08g/g·TS柠檬酸处理组第0天和空白组第0天,将其中的胞外聚合物和腐殖酸分别提取出来,可以看出两者峰形相似,说明腐殖酸确实是主导胞外有机质电化学活性的物质;更重要的是,0.08g/g·TS柠檬酸处理组的胞外聚合物和腐殖酸的伏安特性曲线面积比空白组明显增大,出峰处电流强度更大,其中-0.51V处于天然有机质中醌类模型物质的还原峰范围,其对应的峰强提高直观地表明0.08g/g·TS柠檬酸处理组有效提高内源醌类电子穿梭体的电子传递能力。
如图8所示,相比于空白组,0.08g/g·TS柠檬酸处理组厌氧消化更高效(快了6天)、更显著地获得的最高浓度的芳香氨基酸衍生类植物生长促进剂(吲哚乙酸3.49倍,羟基苯乙酸2.48倍,芳香羧酸和吲哚衍生物总和4.71倍)。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (2)

1.一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法,其特征在于,该方法包括以下步骤:
(1)污泥的预处理:向接种污泥中投加生物可降解的污泥破稳剂,然后在恒温的条件下进行振荡,所述污泥破稳剂为柠檬酸,所述污泥破稳剂的添加量为0.06-0.10 g/g·TS,所述恒温的温度为35-37℃;震荡的转速为120-150 rpm,时间为16-24h;
(2)厌氧消化:将预处理后的接种污泥与未进行预处理的剩余污泥掺混,并移入密闭的厌氧消化设备中,通过搅拌的方式进行厌氧消化,以产生芳香氨基酸衍生类植物生长促进剂,在运行周期小于或等于15天时进行成品收集;
所述剩余污泥的VS/TS≥45%,所述接种污泥的VS/TS=35-39%,TS=8-10%,所述厌氧消化的温度为30-60℃;
所述芳香氨基酸衍生类植物生长促进剂包括吲哚乙酸、羟基苯乙酸。
2.根据权利要求1所述的一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法,其特征在于,步骤(2)中,未进行预处理的剩余污泥与预处理后的接种污泥之间有机质的质量比为(2-3): 1。
CN202111667090.6A 2021-12-31 2021-12-31 一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法 Active CN114540432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111667090.6A CN114540432B (zh) 2021-12-31 2021-12-31 一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111667090.6A CN114540432B (zh) 2021-12-31 2021-12-31 一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法

Publications (2)

Publication Number Publication Date
CN114540432A CN114540432A (zh) 2022-05-27
CN114540432B true CN114540432B (zh) 2024-02-27

Family

ID=81669541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111667090.6A Active CN114540432B (zh) 2021-12-31 2021-12-31 一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法

Country Status (1)

Country Link
CN (1) CN114540432B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080104A (zh) * 2010-07-09 2011-06-01 深圳市东江环保股份有限公司 利用餐厨垃圾制气制肥的综合处理方法
CN102424507A (zh) * 2011-10-25 2012-04-25 南开大学 利用强化预处理促进剩余污泥厌氧消化的方法
CN108585401A (zh) * 2018-04-13 2018-09-28 华南理工大学 一种低温热水解结合铁盐强化污泥厌氧消化的方法
CN108821531A (zh) * 2018-06-20 2018-11-16 广西大学 热碱预处理市政污泥与餐厨垃圾协同厌氧处理的方法
CN110294582A (zh) * 2019-06-19 2019-10-01 同济大学 一种采用分离胞外有机质促进污泥厌氧消化产甲烷的方法
CN112592015A (zh) * 2020-12-16 2021-04-02 同济大学 一种促进污泥厌氧消化产甲烷的方法
CN113603317A (zh) * 2021-08-30 2021-11-05 同济大学 一种提升高含固污泥厌氧消化性能方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150125921A1 (en) * 2012-03-23 2015-05-07 Himark Biogas Inc. Use of anaerobic digestion to destroy antibiotics in organic waste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080104A (zh) * 2010-07-09 2011-06-01 深圳市东江环保股份有限公司 利用餐厨垃圾制气制肥的综合处理方法
CN102424507A (zh) * 2011-10-25 2012-04-25 南开大学 利用强化预处理促进剩余污泥厌氧消化的方法
CN108585401A (zh) * 2018-04-13 2018-09-28 华南理工大学 一种低温热水解结合铁盐强化污泥厌氧消化的方法
CN108821531A (zh) * 2018-06-20 2018-11-16 广西大学 热碱预处理市政污泥与餐厨垃圾协同厌氧处理的方法
CN110294582A (zh) * 2019-06-19 2019-10-01 同济大学 一种采用分离胞外有机质促进污泥厌氧消化产甲烷的方法
CN112592015A (zh) * 2020-12-16 2021-04-02 同济大学 一种促进污泥厌氧消化产甲烷的方法
CN113603317A (zh) * 2021-08-30 2021-11-05 同济大学 一种提升高含固污泥厌氧消化性能方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Indolic Derivatives Metabolism in the Anaerobic Reactor Treating Animal Manure: Pathways and Regulation";Xin Li et al.;《ACS Sustainable Chem. Eng.》;第6卷;第11511-11518页 *
"Insights into thermal hydrolyzed sludge liquor - Identifiation of plant-growth-promoting compounds";Dan Lu et al.;《Journal of Hazardous Materials》;第403卷;第1-8页 *
"我国剩余污泥厌氧消化的主要影响因素及强化";董滨 等;《环境科学》;第41卷(第7期);第3384-3391页 *
胡华锋 等.畜禽养殖废弃物处理与利用》.中原农民出版社,2016,(第1版),第135页. *

Also Published As

Publication number Publication date
CN114540432A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
Elsayed et al. Biorefining of rice straw by sequential fermentation and anaerobic digestion for bioethanol and/or biomethane production: Comparison of structural properties and energy output
Zhang et al. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production
Zhang et al. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures
Cheng et al. Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark-and photo-fermentation
Wang et al. Evaluating the potential impact of hydrochar on the production of short-chain fatty acid from sludge anaerobic digestion
Li et al. Effects of pH value and substrate concentration on hydrogen production from the anaerobic fermentation of glucose
Li et al. Statistical optimization of simultaneous saccharification fermentative hydrogen production from Platanus orientalis leaves by photosynthetic bacteria HAU-M1
Tang et al. Highly efficient rice straw utilization for poly-(γ-glutamic acid) production by Bacillus subtilis NX-2
Wu et al. Continuous waste activated sludge and food waste co-fermentation for synchronously recovering vivianite and volatile fatty acids at different sludge retention times: Performance and microbial response
Romaní et al. SSF production of lactic acid from cellulosic biosludges
CN113563603B (zh) 酸水热预处理强化木质纤维素类废物水热腐殖化的方法
Yoshida et al. Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment
Vaez et al. An optimal biorefinery development for pectin and biofuels production from orange wastes without enzyme consumption
CN114774487B (zh) 一种从剩余污泥中同步回收短链脂肪酸和氮的方法
Dong et al. Low concentration of NaOH/Urea pretreated rice straw at low temperature for enhanced hydrogen production
Zagrodnik et al. Direct fermentative hydrogen production from cellulose and starch with mesophilic bacterial consortia
Singh et al. Evaluation of pretreatment potential and hydrogen recovery from lignocellulosic biomass in an anoxic double-staged bioelectrochemical system
CN114107406A (zh) 一种超声/温度预处理强化餐厨垃圾与活性污泥共消化产酸的方法
Pang et al. Insight into Na+ assistant anaerobic fermentation of waste activated sludge from carbon migration, bio-transformation and recovery perspectives
Shao et al. Low-temperature torrefaction assisted with solid-state KOH/urea pretreatment for accelerated methane production in wheat straw anaerobic digestion
Zhang et al. Study on substrate metabolism process of saline waste sludge and its biological hydrogen production potential
Chen et al. Biogas production from food waste hydrolysate using a subcritical water pretreated process and pulp wastewater seed sludge
Ding et al. Analysis of micro-particle effect and methanogenic potential of food waste model compounds by hydrothermal pretreatment
Muhamad et al. Low thermal pre-treatment of palm kernel expeller to enhance microalgal hydrogen production
CN114540432B (zh) 一种提高污泥源芳香氨基酸衍生类植物生长促进剂含量的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant