CN114538579A - 一种基于感应电流信号反馈的交变磁场阻垢方法及装置 - Google Patents

一种基于感应电流信号反馈的交变磁场阻垢方法及装置 Download PDF

Info

Publication number
CN114538579A
CN114538579A CN202210172036.2A CN202210172036A CN114538579A CN 114538579 A CN114538579 A CN 114538579A CN 202210172036 A CN202210172036 A CN 202210172036A CN 114538579 A CN114538579 A CN 114538579A
Authority
CN
China
Prior art keywords
magnetic field
alternating magnetic
water body
induction
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210172036.2A
Other languages
English (en)
Other versions
CN114538579B (zh
Inventor
梁延东
王建国
徐雪霏
徐源
张树德
辛红伟
杨彦军
武英杰
王瀛洲
张秀宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202210172036.2A priority Critical patent/CN114538579B/zh
Publication of CN114538579A publication Critical patent/CN114538579A/zh
Application granted granted Critical
Publication of CN114538579B publication Critical patent/CN114538579B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/48Devices for applying magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

本发明提供了一种基于感应电流信号反馈的交变磁场阻垢方法及装置,通过交变磁场发生器的输出端连接感应电流采集模块的输入端,感应电流采集模块实时采集交变磁场作用下水体中的感应电流,微型工控机根据处理结果将更新后的最佳交变磁场参数反馈至主控芯片使驱动模块输出对应频率和幅值的交变方波至交变磁场发生器的输入端,使交变磁场发生器产生更新后参数的交变磁场,根据水体的状态实时更新交变磁场参数,时刻保持最佳的阻垢效果,无需使用水质参数仪表,具有成本低、环保节能、抗干扰能力强和阻垢效果明显等显著优势,能够高效地去除管道中的水垢。

Description

一种基于感应电流信号反馈的交变磁场阻垢方法及装置
技术领域
本发明涉及交变磁场阻垢技术领域,特别涉及了一种基于感应电流信号反馈的交变磁场阻垢方法及装置。
背景技术
水体中存在可溶性的反溶解度无机盐,受热后容易形成水垢,水垢的附着会降低换热器的换热效率,减小流通面积而增加泵耗,并且水垢积聚常导致局部温度过高致使机器部件机械性能下降,严重时会造成爆管等事故,当然水垢也会增加补水、排污水以及清理换热设备的费用。所以水垢的产生不仅会引发安全隐患,还会带来经济损失,因此除垢、抑垢有着重要的意义。交变磁场阻垢方法通过改变水体中成垢物质的结晶状态以及水分子的结构来达到阻止水垢附着的目的,因其操作简便、阻垢效果显著而备受关注。
研究表明,水体中溶解的成垢阴阳离子会与其周围的若干个配位水分子形成水合离子,而配位水分子又会与其他水分子通过氢键结合成链状或环状的水分子团簇,所以交变磁场会同时作用于水合离子以及水分子团簇。在交变磁场的作用下,洛伦兹力使水合离子以及水分子团簇进行高速的圆周运动,水合离子中离中心离子较远的一层水分子氢键被扭断,离子不再处于水合状态,这将加大幅增加成垢阴阳离子的碰撞概率,进而在水体中形成大量的微晶。此后微晶长大成临界晶核就变为结晶中心,水体的成垢离子会吸附到这些结晶中心使其进一步长大并随着水流被冲走,而不是结晶在管壁上,从而实现交变磁场的阻垢效果。
目前研究得到的最佳交变磁场阻垢参数大多是在固定的实验工况下得到的,然而在实际的生产生活中,水体的状态时刻在发生变化,使得特定工况下得到的最佳交变磁场阻垢参数的应用存在很大的局限性。为了更好地反映不同时刻交变磁场对水体的阻垢效果,并得到最适合水体当前状态的交变磁场阻垢参数,本发明提出了一种基于感应电流信号反馈的交变磁场阻垢方法及装置。
发明内容
本发明的目的在于:针对目前存在的背景技术提出的问题,为了实现上述发明目的,本发明提供了以下技术方案:一种基于感应电流信号反馈的交变磁场阻垢装置,包括:主控芯片、驱动模块、交变磁场发生器、感应电流采集模块和微型工控机。交变磁场发生器的输出端连接感应电流采集模块的输入端,感应电流采集模块实时采集交变磁场作用下水体中的感应电流,并将数据传输至微型工控机进行处理。微型工控机根据处理结果将更新后的最佳交变磁场参数反馈至主控芯片,主控芯片对驱动模块发出调节磁场频率和磁感应强度的控制信号,使驱动模块输出对应频率和幅值的交变方波至交变磁场发生器的输入端,使交变磁场发生器产生更新后所述参数的交变磁场,从而根据水体的状态实时更新交变磁场参数,时刻保持最佳的阻垢效果,高效地去除管道中的水垢。
驱动模块内部包含电压放大电路、可变电容器、直流电压源和IPM模块;电压放大电路将主控芯片调节磁场频率和磁感应强度的控制信号放大,一方面用以调节可变电容器,使交变磁场发生器进入谐振工作状态,即实现频率的选定,另一方面驱动直流电压源设定输出的电压值,随后两者的输出信号共同驱动IPM模块,使其输出对应频率和幅值的交变方波至交变磁场发生器的输入端,实现交变磁场频率和磁感应强度的调节。
交变磁场发生器包含缠绕于外管道上的激磁线圈绕组和放置于水体内部的感应线圈绕组,感应线圈绕组缠绕于水体中的内管道上,内管道的外侧和内侧均有水体流过,感应线圈的总长度应该略小于内管道的长度。激磁线圈绕组以若干匝多层的形式缠绕于外管道上,感应线圈绕组以若干匝单层的形式缠绕于内管道上。激磁线圈绕组和感应线圈绕组的长度应基本一致。激磁线圈绕组的输入端与驱动模块的输出端相连,用于产生作用于水体的交变磁场,感应线圈绕组的输出端与感应电流采集模块的输入端相连,用于产生实时反映水体状态的感应电流。
进一步地,本发明中交变磁场发生器时刻工作在谐振状态,可在保持磁感应强度大小不变的条件下改变交变磁场频率。具体实施方案如下:
激磁线圈绕组的感抗公式为:
Figure BDA0003518605900000031
由公式可知,当交变磁场频率变化时激磁线圈绕组的感抗也随之变化。在通入交变方波电压幅值不变的情况下,激磁线圈绕组感抗的变化会引起回路中电流的变化,进而影响磁感应强度的大小。因此为了保证交变磁场频率变化时磁感应强度的恒定,在交变磁场发生器的回路中串或并入一个可变电容器,根据所需的磁场频率调节可变电容器的电容值,使容抗抵消感抗,保持电路的纯电阻状态,使交变磁场发生器进入谐振工作状态,进而可以在改变交变磁场频率的同时保持磁感应强度不受影响,更有助于交变磁场阻垢参数的寻优。
一种基于感应电流信号反馈的交变磁场阻垢方法,包括以下步骤:
步骤1在主控芯片内部设置全工况扫描的初始交变磁场参数即初始的交变磁场频率f0和磁感应强度B0,交变磁场频率f和磁感应强度B的上、下限值fmax、fmin及Bmax、Bmin,递增步长Δf和ΔB以及最佳交变磁场参数所对应工况的运行时间T。参数设置完成后,在无水体的状态下,主控芯片发送控制信号,控制f和B按照Δf及ΔB进行一次遍历下限到上限的全工况扫描过程。并且每一种交变磁场参数对应的工况要保持一段时间,确保得到足够的数据。将各个交变磁场参数下得到的感应电流值I空白通过感应电流信号采集模块上传至微型工控机进行存储,用以建立全工况无水体状态下感应电流数据库,用于后续的数据处理。
步骤2在有水体的状态下,重复步骤1,感应电流信号采集模块实时采集交变磁场作用下水体的感应电流信号并传输至微型工控机,微型工控机对各个交变磁场参数下得到的感应电流值I实测与数据库中的感应电流值I空白进行处理,得到各个交变磁场参数下I实测与I空白的差值ΔI,上述ΔI的值越小则说明当前交变磁场参数的阻垢效果越好,因此选取最小差值ΔImin所对应的交变磁场频率和磁感应强度作为处理当前水体的最佳交变磁场参数。
步骤3微型工控机将更新后的最佳交变磁场参数反馈至主控芯片,主控芯片对驱动模块发出调节磁场频率和磁感应强度的控制信号,使驱动模块输出对应频率和幅值的交变方波至交变磁场发生器的输入端,使得交变磁场发生器以更新后的磁场频率和磁感应强度的交变磁场对水体进行阻垢处理。
步骤4在采用上述最佳交变磁场参数对水体进行处理的周期T内,微型工控机实时检测ΔI的变化。若当前时刻的ΔIt小于或等于上一时刻的ΔIt-1,则认为该交变磁场参数在当前时刻仍然具有较好的阻垢效果,继续以该交变磁场参数对水体进行处理,周期T结束后重新进入交变磁场频率f和磁感应强度B的全工况扫描过程,即重复步骤2和3进行最佳交变磁场参数更新;若当前时刻的ΔIt大于上一时的ΔIt-1,则认为该交变磁场参数不再适合当前水体的状态,立刻进入交变磁场频率f和磁感应强度B的全工况扫描过程,即重复步骤2和3进行最佳交变磁场参数更新。
步骤5循环上述步骤2至4,交变磁场阻垢装置可以自动稳定运行,并根据水体的实时状态,自适应的更新交变磁场发生器产生的磁场频率和磁感应强度,确保时刻以最佳交变磁场参数处理水体,得到最优的阻垢效果。
进一步地,所述步骤2中“ΔI的值越小则说明当前交变磁场参数的阻垢效果越好”结论的理论依据如下:
感应电流信号来源于感应线圈与激磁线圈的互感效应,计算公式如下:
Figure BDA0003518605900000051
式中R1—激磁线圈电阻,Ω
L1—激磁线圈电感,H
C1—激磁线圈回路中谐振电容,F
Figure BDA0003518605900000052
—激磁线圈回路电流,A
R2—反馈线圈电阻,Ω
L2—反馈线圈电感,H
Figure BDA0003518605900000053
—反馈线圈电流,A
Figure BDA0003518605900000054
—交流电压源,V
M—互感系数,H
ω—角频率,rad/s
令激磁线圈阻抗为
Figure BDA0003518605900000055
感应线圈阻抗为Z22=R2+jωL2,互感抗为ZM=jωM,上述方程可简化为
Figure BDA0003518605900000056
将方程(2)求解可得
Figure BDA0003518605900000061
从公式(3)的结果可知,感应电流的大小与激磁线圈回路阻抗、感应线圈回路阻抗、互感抗和交流电源电压有关。在激磁线圈和感应线圈参数确定的情况下,影响感应电流大小的因素只有互感抗和交流电源。
互感系数的关系式为
Figure BDA0003518605900000062
式中μ—为磁导率,H/m
N1—为激磁线圈匝数
N2—为感应线圈匝数
h—为激磁线圈与感应线圈的距离,m
a—为激磁线圈的半径,m
b—为感应线圈的半径,m
K—为第一类椭圆积分
E—为第二类椭圆积分
由于互感抗大小与互感系数大小有关,且由公式(4)可知,互感系数与磁导率有关,因此磁导率的变化将会影响互感系数的大小。磁导率与体积磁化率关系如公式(5)所示。
μ=1+χ (5)
公式(5)中μ为磁导率,χ为体积磁化率。对公式(5)进一步推导,可得体积磁化率χ与摩尔磁化率χM的关系式如公式(6)所示。
Figure BDA0003518605900000071
χM=χPD (7)
式(6)中Mr为相对分子质量,式(7)中χP为摩尔顺磁磁化率,χD为摩尔反磁磁化率,摩尔顺磁磁化率及摩尔反磁磁化率公式如下式(8)(9)所示。
Figure BDA0003518605900000072
Figure BDA0003518605900000073
Figure BDA0003518605900000074
式中m—电子质量,kg
e—电子电荷,C
c—光速,m/s
ri—i电子离核的距离,m
NA—阿伏加德罗常数,1/mol
μm—分子磁矩,A·m2
k—波兹曼常数,J/K
T—绝对温度,K
PJ—总角动量,N·m·s
r—旋磁比,rad·s-1·T-1
g—朗德因子
J—总量子数
μB—玻尔磁子
朗德因子及总量子数公式如式(11)和式(12)所示。
Figure BDA0003518605900000081
J=L+S (12)
式中L—总轨道量子数
S—总自旋量子数
由公式(6)可知,影响体积磁化率的因素有密度、摩尔磁化率及相对分子质量,根据公式(7)-(12)可知,当水体一定时,摩尔磁化率和相对分子质量对感应电流不会产生较大的影响,而体积磁化率仅与密度有关。对于水体而言,密度与浓度成正比关系,因此水体浓度的变化将会影响体积磁化率,进而影响到感应电流。其次,激磁线圈的交变磁场频率和磁感应强度也会影响感应电流的大小。
进一步地,由上述公式(5)和(6)可知,当水体浓度增加时,对应水体的密度增加,进而导致体积磁化率和磁导率的增加。由互感系数关系式(4)可知,在固定激磁线圈参数与感应线圈参数之后,磁导率的增加会使互感系数增加,继而使互感抗增加。由公式(3)可知,当互感抗增加,其他参数均不变时,感应电流变小。由此可知,当水体浓度增加,交变磁场频率和磁感应强度均不发生改变时,感应电流数值变小。
进一步地,由目前研究公认的洛伦兹力阻垢机理和结晶动力学和结晶热力学理论可知,水体中溶解的成垢阴阳离子会与其周围的若干个配位水分子形成水合离子,而配位水分子又会与其他水分子通过氢键结合成链状或环状的水分子团簇,所以交变磁场会同时作用于水合离子以及水分子团簇。在交变磁场的作用下,洛伦兹力使水合离子以及水分子团簇进行高速的圆周运动,水合离子中离中心离子较远的一层水分子氢键被扭断,离子不再处于水合状态,这将加大幅成垢阴阳离子的碰撞概率,进而在水体中形成大量的微晶。此后微晶长大成临界晶核就变为结晶中心,水体的成垢离子会吸附到这些结晶中心使其进一步长大而不是结晶在管壁上,易被水流冲走,达到阻垢的目的。从结晶动力学和结晶热力学的角度分析,结晶反应是一个吉布斯自由能降低的过程。随着系统自由能的降低,不稳定的物相逐渐向稳定相转变,当系统处于平衡状态时,其吉布斯自由能最小。以碳酸钙晶体为例(最常见的水垢成分),其有三种晶体形态:方解石、文石和球霰石,方解石比较稳定容易形成致密的硬垢,沉积在管壁不易去除,文石和球霰石不稳定易形成疏松的泥状软垢,随着水流被冲走。由于方解石的稳定性大于文石,而文石晶体通常又是水体中析出的第一相,因此文石析出后容易转变成方解石。交变磁场的处理使水体总能量增加,抑制了吉布斯自由能的减少,从而阻碍了文石向方解石的转变,使碳酸钙晶体形成容易被水流冲走的泥状软垢,达到交变磁场阻垢的目的。
进一步地,水体中水垢的形成伴随着离子浓度的减少,同时由上述公式的推论可知,水体浓度越大,感应电流值越小。对于纯水来说,水体中的杂质离子极少,所以在相同的交变磁场参数下感应电流值应最大。将水体的感应电流值I实测与纯水的感应电流值I纯水进行比较可以得到水体当前的状态,交变磁场作用下的水体状态越接近于纯水说明在水体中有更多随着水体流动的水垢生成,而不是沉积在管壁上,即该交变磁场参数下的阻垢效果越好。因此可通过计算交变磁场处理过程中I实测与I纯水的差值ΔI来评价各个交变磁场参数下阻垢效果的优劣,ΔI越小,此时所对应的交变磁场参数阻垢效果越好。由于纯水磁导率与空气磁导率近似相等,因此可用上文空气中的感应电流值I空白近似替代纯水的感应电流值I纯水。进而ΔI等于I实测与I空白的差值,用于后续的数据处理。
与现有技术相比,本发明的有益效果:
在本申请的方案中:
1.通过交变磁场发生器的输出端连接感应电流采集模块的输入端,感应电流采集模块实时采集交变磁场作用下水体中的感应电流,并将数据传输至微型工控机进行处理。微型工控机根据处理结果将更新后的最佳交变磁场参数反馈至主控芯片,主控芯片对驱动模块发出调节磁场频率和磁感应强度的控制信号,使驱动模块输出对应频率和幅值的交变方波至交变磁场发生器的输入端,使交变磁场发生器产生更新后所述参数的交变磁场。从而根据水体的状态实时更新交变磁场参数,时刻保持最佳的阻垢效果,高效地去除管道中的水垢;
2.通过电压放大电路将主控芯片调节磁场频率和磁感应强度的控制信号放大,一方面用以调节可变电容器,使交变磁场发生器进入谐振工作状态,即实现频率的选定,另一方面驱动直流电压源设定输出的电压值,随后两者的输出信号共同驱动IPM模块,使其输出对应频率和幅值的交变方波至交变磁场发生器的输入端,实现交变磁场频率和磁感应强度的调节;
3.通过通入交变方波电压幅值不变的情况下,激磁线圈绕组感抗的变化会引起回路中电流的变化,进而影响磁感应强度的大小。因此为了保证交变磁场频率变化时磁感应强度的恒定,在交变磁场发生器的回路中串或并入一个可变电容器,根据所需的磁场频率调节可变电容器的电容值,使容抗抵消感抗,保持电路的纯电阻状态,使交变磁场发生器进入谐振工作状态,进而可以在改变交变磁场频率的同时保持磁感应强度不受影响,更有助于交变磁场阻垢参数的寻优;
4.通过微型工控机将更新后的最佳交变磁场参数反馈至主控芯片,主控芯片对驱动模块发出调节磁场频率和磁感应强度的控制信号,使驱动模块输出对应频率和幅值的交变方波至交变磁场发生器的输入端,使得交变磁场发生器以更新后的磁场频率和磁感应强度的交变磁场对水体进行阻垢处理。
附图说明:
图1为本申请提供的结构示意图;
图2为本申请提供的驱动模块示意图;
图3为本申请提供的交变磁场发生器示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。
因此,以下对本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的部分实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征和技术方案可以相互组合,应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
如图1-图3,本实施方式提出如图1所示,基于感应电流信号反馈的交变磁场阻垢装置包括主控芯片、驱动模块、交变磁场发生器、感应电流采集模块和微型工控机。交变磁场发生器的输出端连接感应电流采集模块的输入端,感应电流采集模块实时采集交变磁场作用下水体中的感应电流,并将数据传输至微型工控机进行处理。微型工控机根据处理结果将更新后的最佳交变磁场参数反馈至主控芯片,主控芯片对驱动模块发出调节磁场频率和磁感应强度的控制信号,使驱动模块输出对应频率和幅值的交变方波至交变磁场发生器的输入端,从而根据水体的状态实时更新交变磁场参数,时刻保持最佳的阻垢效果,高效地去除管道中的水垢。
如图2所示,驱动模块内部包含电压放大电路、可变电容器、直流电压源和IPM模块;电压放大电路将主控芯片调节磁场频率和磁感应强度的控制信号放大,一方面用以调节可变电容器,使交变磁场发生器进入谐振工作状态,即实现频率的选定,另一方面驱动直流电压源设定输出的电压值,随后两者的输出信号共同驱动IPM模块,使其输出对应频率和幅值的交变方波至交变磁场发生器的输入端,实现交变磁场频率和磁感应强度的调节。
如图3所示,交变磁场发生器包含缠绕于外管道上的激磁线圈绕组和放置于水体内部的感应线圈绕组,感应线圈绕组缠绕于水体中的内管道上,内管道的外侧和内侧均有水体流过,感应线圈的总长度应该略小于内管道的长度。激磁线圈绕组和感应线圈绕组均采用低阻抗金属导线缠绕而成,激磁线圈绕组以若干匝多层的形式缠绕于外管道上,感应线圈绕组以若干匝单层的形式缠绕于内管道上。激磁线圈绕组和感应线圈绕组的长度应基本一致。激磁线圈绕组的输入端与驱动模块的输出端相连,用于产生作用于水体的交变磁场,感应线圈绕组的输出端与感应电流采集模块的输入端相连,用于产生反映水体状态的感应电流。
结合基于感应电流信号反馈的交变磁场阻垢方法,对交变磁场阻垢装置的具体实施步骤进行介绍:
步骤1在水体处理的准备阶段,在所述主控芯片内部设置初始交变磁场参数即初始的交变磁场频率f0和磁感应强度B0、交变磁场频率参数变化的上下限fmax及fmin、磁感应强度参数变化的上下限Bmax及Bmin、调磁场频率步长Δf、调磁感应强度步长ΔB和最佳交变磁场参数运行时间T。在本装置中交变磁场频率范围设定为0-20000Hz,磁感应强度范围设定为0-20000Gs,在所述IPM模块可承受的变化范围之内上述两种参数可以进一步扩大,f0为10Hz,B0为10Gs,Δf为10Hz,ΔB为10Gs,最佳交变磁场参数运行周期T为1小时。参数设置完成后,在无水体的状态下,由主控芯片发送控制信号,以f0和B0为初始参数,控制f和B按照Δf和ΔB进行一次遍历下限到上限的全工况扫描过程。并且每一种交变磁场参数对应的工况要保持一段时间,确保得到足够的数据,与此同时,各个交变磁场参数下得到的无水体感应电流值I空白通过感应电流信号采集模块上传至微型工控机进行存储,用以建立全工况无水体状态下感应电流数据库,用于后续的数据处理。
步骤2在水体处理的初始阶段,重复步骤1进行一次全工况扫描过程,将各个交变磁场参数下得到的水体感应电流值I实测通过感应电流信号采集模块上传至微型工控机,在微型工控机内对数据进行处理,将各个交变磁场参数对应得到的I实测与I空白作差,得到感应电流差值ΔI,选择最小ΔImin所对应的交变磁场参数作为该初始水体状态下的最佳交变磁场阻垢参数。
所述步骤2中“ΔI的值越小则说明当前交变磁场参数的阻垢效果越好”结论的理论依据如下:
感应电流信号来源于感应线圈与激磁线圈的互感效应,计算公式如下:
Figure BDA0003518605900000141
式中R1—激磁线圈电阻,Ω
L1—激磁线圈电感,H
C1—激磁线圈回路中谐振电容,F
Figure BDA0003518605900000142
—激磁线圈回路电流,A
R2—反馈线圈电阻,Ω
L2—反馈线圈电感,H
Figure BDA0003518605900000143
—反馈线圈电流,A
Figure BDA0003518605900000144
—交流电压源,V
M—互感系数,H
ω—角频率,rad/s
令激磁线圈阻抗为
Figure BDA0003518605900000145
感应线圈阻抗为Z22=R2+jωL2,互感抗为ZM=jωM,上述方程可简化为
Figure BDA0003518605900000151
将方程(2)求解可得
Figure BDA0003518605900000152
从公式(3)的结果可知,感应电流的大小与激磁线圈回路阻抗、感应线圈回路阻抗、互感抗和交流电源电压有关。在激磁线圈和感应线圈参数确定的情况下,影响感应电流大小的因素只有互感抗和交流电源。
互感系数的关系式为
Figure BDA0003518605900000153
式中μ—为磁导率,H/m
N1—为激磁线圈匝数
N2—为感应线圈匝数
h—为激磁线圈与感应线圈的距离,m
a—为激磁线圈的半径,m
b—为感应线圈的半径,m
K—为第一类椭圆积分
E—为第二类椭圆积分
由于互感抗大小与互感系数大小有关,且由公式(4)可知,互感系数与磁导率有关,因此磁导率的变化将会影响互感系数的大小。磁导率与体积磁化率关系如公式(5)所示。
μ=1+χ (5)
公式(5)中μ为磁导率,χ为体积磁化率。对公式(5)进一步推导,可得体积磁化率χ与摩尔磁化率χM的关系式如公式(6)所示。
Figure BDA0003518605900000161
χM=χPD (7)
式(6)中Mr为相对分子质量,式(7)中χP为摩尔顺磁磁化率,χD为摩尔反磁磁化率,摩尔顺磁磁化率及摩尔反磁磁化率公式如下式(8)(9)所示。
Figure BDA0003518605900000162
Figure BDA0003518605900000163
Figure BDA0003518605900000164
式中m—电子质量,kg
e—电子电荷,C
c—光速,m/s
ri—i电子离核的距离,m
NA—阿伏加德罗常数,1/mol
μm—分子磁矩,A·m2
k—波兹曼常数,J/K
T—绝对温度,K
PJ—总角动量,N·m·s
r—旋磁比,rad·s-1·T-1
g—朗德因子
J—总量子数
μB—玻尔磁子
朗德因子及总量子数公式如式(11)和式(12)所示。
Figure BDA0003518605900000171
J=L+S (12)
式中L—总轨道量子数
S—总自旋量子数
由公式(6)可知,影响体积磁化率的因素有密度、摩尔磁化率及相对分子质量,根据公式(7)-(12)可知,当水体一定时,摩尔磁化率和相对分子质量对感应电流不会产生较大的影响,而体积磁化率仅与密度有关。对于水体而言,密度与浓度成正比关系,因此水体浓度的变化将会影响体积磁化率,进而影响到感应电流。其次,激磁线圈的交变磁场频率和磁感应强度也会影响感应电流的大小。
进一步地,由上述公式(5)和(6)可知,当水体浓度增加时,对应水体的密度增加,进而导致体积磁化率和磁导率的增加。由互感系数关系式(4)可知,在固定激磁线圈参数与感应线圈参数之后,磁导率的增加会使互感系数增加,继而使互感抗增加。由公式(3)可知,当互感抗增加,其他参数均不变时,感应电流变小。由此可知,当水体浓度增加,交变磁场频率和磁感应强度均不发生改变时,感应电流数值变小。
步骤3微型工控机根据处理结果将更新后的最佳交变磁场参数反馈至主控芯片,主控芯片对驱动模块发出调节磁场频率和磁感应强度的控制信号,使驱动模块输出对应频率和幅值的交变方波至交变磁场发生器的输入端,使得交变磁场发生器以更新后的磁场频率和磁感应强度的交变磁场对水体进行阻垢处理。
步骤4最佳交变磁场参数对水体的处理周期T为1小时,在处理的过程中微型工控机实时检测ΔI的变化。若当前时刻的ΔIt小于或等于上一时刻的ΔIt-1,则认为该交变磁场参数在当前时刻仍然具有较好的阻垢效果,继续以该交变磁场参数对水体进行处理,1小时后所述主控芯片发出控制信号使交变磁场阻垢装置进入全工况扫描过程,为当前水体状态更新最佳交变磁场阻垢参数,即重复步骤2和3;若当前时刻的ΔIt大于上一时的ΔIt-1,则说明当前的交变磁场参数不能满足当前水体状态的最佳阻垢要求,微型工控机将会反馈给主控芯片一个控制信号,中断当前交变磁场参数的处理进程,并进入全工况扫描过程,重新寻找适合当前水体状态的最佳交变磁场阻垢参数,即重复步骤2和3。
步骤5循环上述步骤2至4,交变磁场阻垢装置可以自动稳定运行,并根据水体的实时状态,自适应的更新交变磁场发生器产生的磁场频率和磁感应强度,确保时刻以最佳交变磁场阻垢参数处理水体,得到最优的阻垢效果。
工作原理:本发明在使用的过程中,有以下步骤:步骤1在水体处理的准备阶段,在所述主控芯片内部设置初始交变磁场参数即初始的交变磁场频率f0和磁感应强度B0、交变磁场频率参数变化的上下限fmax及fmin、磁感应强度参数变化的上下限Bmax及Bmin、调磁场频率步长Δf、调磁感应强度步长ΔB和最佳交变磁场参数运行时间T。在本装置中交变磁场频率范围设定为0-20000Hz,磁感应强度范围设定为0-20000Gs,在所述IPM模块可承受的变化范围之内上述两种参数可以进一步扩大,f0为10Hz,B0为10Gs,Δf为10Hz,ΔB为10Gs,最佳交变磁场参数运行周期T为1小时。参数设置完成后,在无水体的状态下,由主控芯片发送控制信号,以f0和B0为初始参数,控制f和B按照Δf和ΔB进行一次遍历下限到上限的全工况扫描过程。并且每一种交变磁场参数对应的工况要保持一段时间,确保得到足够的数据,与此同时,各个交变磁场参数下得到的无水体感应电流值I空白通过感应电流信号采集模块上传至微型工控机进行存储,用以建立全工况无水体状态下感应电流数据库,用于后续的数据处理。
步骤2在水体处理的初始阶段,重复步骤1进行一次全工况扫描过程,将各个交变磁场参数下得到的水体感应电流值I实测通过感应电流信号采集模块上传至微型工控机,在微型工控机内对数据进行处理,将各个交变磁场参数对应得到的I实测与I空白作差,得到感应电流差值ΔI,选择最小ΔImin所对应的交变磁场参数作为该初始水体状态下的最佳交变磁场阻垢参数。
步骤3微型工控机根据处理结果将更新后的最佳交变磁场参数反馈至主控芯片,主控芯片对驱动模块发出调节磁场频率和磁感应强度的控制信号,使驱动模块输出对应频率和幅值的交变方波至交变磁场发生器的输入端,使得交变磁场发生器以更新后的磁场频率和磁感应强度的交变磁场对水体进行阻垢处理。
步骤4最佳交变磁场参数对水体的处理周期T为1小时,在处理的过程中微型工控机实时检测ΔI的变化。若当前时刻的ΔIt小于或等于上一时刻的ΔIt-1,则认为该交变磁场参数在当前时刻仍然具有较好的阻垢效果,继续以该交变磁场参数对水体进行处理,1小时后所述主控芯片发出控制信号使交变磁场阻垢装置进入全工况扫描过程,为当前水体状态更新最佳交变磁场阻垢参数,即重复步骤2和3;若当前时刻的ΔIt大于上一时的ΔIt-1,则说明当前的交变磁场参数不能满足当前水体状态的最佳阻垢要求,微型工控机将会反馈给主控芯片一个控制信号,中断当前交变磁场参数的处理进程,并进入全工况扫描过程,重新寻找适合当前水体状态的最佳交变磁场阻垢参数,即重复步骤2和3。
步骤5循环上述步骤2至4,交变磁场阻垢装置可以自动稳定运行,并根据水体的实时状态,自适应的更新交变磁场发生器产生的磁场频率和磁感应强度,确保时刻以最佳交变磁场阻垢参数处理水体,得到最优的阻垢效果。
以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但本发明不局限于上述具体实施方式,因此任何对本发明进行修改或等同替换;而一切不脱离发明的精神和范围的技术方案及其改进,其均涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种基于感应电流信号反馈的交变磁场阻垢装置,其特征在于:包括主控芯片、驱动模块、交变磁场发生器、感应电流采集模块和微型工控机,所述交变磁场发生器的输出端连接所述感应电流采集模块的输入端,所述感应电流采集模块实时采集交变磁场作用下水体中的感应电流,并将数据传输至微型工控机进行处理,所述微型工控机处理结果将更新后的最佳交变磁场参数反馈至所述主控芯片,所述主控芯片对所述驱动模块发出调节磁场频率和磁感应强度的控制信号,使所述驱动模块输出对应频率和幅值的交变方波至所述交变磁场发生器的输入端,使所述交变磁场发生器产生更新后的交变磁场,根据水体的状态实时更新交变磁场参数。
2.根据权利要求1所述的一种基于感应电流信号反馈的交变磁场阻垢装置,其特征在于:所述驱动模块包含电压放大电路、可变电容器、直流电压源和IPM模块,所述电压放大电路将主控芯片调节磁场频率和磁感应强度的控制信号放大,用以调节可变电容器,使交变磁场发生器进入谐振工作状态,实现频率的选定,驱动直流电压源设定输出的电压值,随后两者的输出信号共同驱动IPM模块,使其输出对应频率和幅值的交变方波至所述交变磁场发生器的输入端,实现交变磁场频率f和磁感应强度B的调节。
3.根据权利要求1所述的一种基于感应电流信号反馈的交变磁场阻垢装置,其特征在于:所述交变磁场发生器包含缠绕于外管道上的激磁线圈绕组和放置于水体内部的感应线圈绕组,所述感应线圈绕组缠绕于水体中的内管道上,内管道的外侧和内侧均有水体流过,所述感应线圈绕组的总长度小于内管道的长度,所述激磁线圈绕组和所述感应线圈绕组均采用低阻抗金属导线缠绕而成,所述激磁线圈绕组以若干匝多层的形式缠绕于外管道上,所述感应线圈绕组以若干匝单层的形式缠绕于内管道上,所述激磁线圈绕组和感应线圈绕组的长度相同,所述激磁线圈绕组的输入端与所述驱动模块的输出端相连,用于产生作用于水体的交变磁场,所述感应线圈绕组的输出端与所述感应电流采集模块的输入端相连,用于产生实时反映水体状态的感应电流。
4.根据权利要求1所述的一种基于感应电流信号反馈的交变磁场阻垢装置,其特征在于:所述交变磁场发生器时刻工作在谐振状态,通过在所述交变磁场发生器的回路中串或并入一个可变电容器,所述主控芯片根据所需的磁场频率调节可变电容器的电容值,使交变磁场发生器进入谐振工作状态,进而在改变交变磁场频率的同时保持磁感应强度不受影响。
5.一种基于感应电流信号反馈的交变磁场阻垢方法,其特征在于:包括以下步骤:步骤1建立全工况无水体状态下感应电流数据库;
步骤2比较全工况有、无水体状态下感应电流值,得到最佳交变磁场参数;
步骤3根据更新后的最佳交变磁场参数调节所述交变磁场发生器产生的交变磁场;
步骤4根据当前水体的阻垢状态自适应更新最佳交变磁场参数;
步骤5循环步骤2-步骤4,确保时刻以最佳交变磁场参数处理水体,得到最优的阻垢效果。
6.根据权利要求5所述的基于感应电流信号反馈的交变磁场阻垢方法,其特征在于:所述步骤1具体为:在水体处理的准备阶段,在主控芯片内部设置初始交变磁场参数即初始的交变磁场频率f0和磁感应强度B0、交变磁场频率参数变化的上下限fmax及fmin、磁感应强度参数变化的上下限Bmax及Bmin、调磁场频率步长Δf、调磁感应强度步长ΔB和最佳交变磁场参数运行时间T,参数设置完成后,在无水体的状态下,由所述主控芯片发送控制信号,以f0和B0为初始参数,控制f和B按照Δf和ΔB进行一次遍历下限到上限的全工况扫描过程,并且每一种交变磁场参数对应的工况要保持一段时间,各个交变磁场参数下得到的无水体感应电流值I空白通过所述感应电流信号采集模块上传至微型工控机进行存储,用以建立全工况无水体状态下感应电流数据库,用于后续的数据处理。
7.根据权利要求5所述的基于感应电流信号反馈的交变磁场阻垢方法,其特征在于:所述步骤2具体为:在水体处理的初始阶段,重复步骤1进行一次全工况扫描过程,将各个交变磁场参数下得到的水体感应电流值I实测通过所述感应电流信号采集模块上传至微型工控机,在所述微型工控机内对数据进行处理,将各个交变磁场参数下对应的I实测与步骤1中得到的I空白作差,得到感应电流差值ΔI,选择最小ΔImin所对应的交变磁场参数作为该初始水体状态下的最佳交变磁场参数。
8.根据权利要求5所述的基于感应电流信号反馈的交变磁场阻垢方法,其特征在于:所述步骤3具体为:微型工控机根据处理结果将步骤2中更新的最佳交变磁场参数反馈至主控芯片,所述主控芯片对驱动模块发出调节磁场频率和磁感应强度的控制信号,使所述驱动模块输出对应频率和幅值的交变方波至所述交变磁场发生器的输入端,使所述交变磁场发生器以更新后的磁场频率和磁感应强度的交变磁场对水体进行阻垢处理。
9.根据权利要求5所述的基于感应电流信号反馈的交变磁场阻垢方法,其特征在于:所述步骤4具体为:所述交变磁场发生器使用步骤3中得到最佳交变磁场参数对水体的处理周期为T,在处理的过程中微型工控机实时检测ΔI的变化,若当前时刻的ΔIt小于或等于上一时刻的ΔIt-1,则认为该交变磁场参数在当前时刻仍然具有阻垢效果,继续以该交变磁场参数对水体进行处理,T时刻后主控芯片发出控制信号使所述交变磁场阻垢装置进入全工况扫描过程,为当前水体状态更新最佳交变磁场参数,重复步骤2和3,若当前时刻的ΔIt大于上一时的ΔIt-1,则说明当前的交变磁场参数不能满足当前水体状态的最佳阻垢要求,所述微型工控机将会反馈给主控芯片一个控制信号,中断当前交变磁场参数的处理进程,并进入全工况扫描过程,自动更新适合当前水体状态的最佳交变磁场参数,重复步骤2和3。
10.根据权利要求5所述的基于感应电流信号反馈的交变磁场阻垢方法,其特征在于:所述步骤5具体为:循环步骤2至4,所述交变磁场阻垢装置自动稳定运行,并根据水体的实时状态,自适应的更新所述交变磁场发生器产生交变磁场的磁场频率和磁感应强度,确保时刻以最佳交变磁场参数处理水体,得到最优的阻垢效果。
CN202210172036.2A 2022-02-24 2022-02-24 一种基于感应电流信号反馈的交变磁场阻垢方法及装置 Active CN114538579B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210172036.2A CN114538579B (zh) 2022-02-24 2022-02-24 一种基于感应电流信号反馈的交变磁场阻垢方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210172036.2A CN114538579B (zh) 2022-02-24 2022-02-24 一种基于感应电流信号反馈的交变磁场阻垢方法及装置

Publications (2)

Publication Number Publication Date
CN114538579A true CN114538579A (zh) 2022-05-27
CN114538579B CN114538579B (zh) 2022-12-27

Family

ID=81677490

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210172036.2A Active CN114538579B (zh) 2022-02-24 2022-02-24 一种基于感应电流信号反馈的交变磁场阻垢方法及装置

Country Status (1)

Country Link
CN (1) CN114538579B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116425278A (zh) * 2023-05-17 2023-07-14 广东骏丰频谱股份有限公司 一种频谱净化水控制系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040031697A1 (en) * 2002-08-15 2004-02-19 Raymond Breault Electrochemical scale inhibition
US20070029261A1 (en) * 2005-08-02 2007-02-08 Chew Hwee H Method and device for water treatement using an electromagnetic field
CN101046686A (zh) * 2007-03-21 2007-10-03 王广生 智能化水处理装置
CN103449613A (zh) * 2012-05-28 2013-12-18 深圳市卓恒易电子科技有限公司 除垢装置及水处理系统
CN208648894U (zh) * 2017-12-29 2019-03-26 北方节能股份有限公司 一种具有变频功能的电子节能除垢器
CN111747490A (zh) * 2019-03-28 2020-10-09 骆傲忠 一种循环水电化学处理装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040031697A1 (en) * 2002-08-15 2004-02-19 Raymond Breault Electrochemical scale inhibition
US20070029261A1 (en) * 2005-08-02 2007-02-08 Chew Hwee H Method and device for water treatement using an electromagnetic field
CN101046686A (zh) * 2007-03-21 2007-10-03 王广生 智能化水处理装置
CN103449613A (zh) * 2012-05-28 2013-12-18 深圳市卓恒易电子科技有限公司 除垢装置及水处理系统
CN208648894U (zh) * 2017-12-29 2019-03-26 北方节能股份有限公司 一种具有变频功能的电子节能除垢器
CN111747490A (zh) * 2019-03-28 2020-10-09 骆傲忠 一种循环水电化学处理装置及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116425278A (zh) * 2023-05-17 2023-07-14 广东骏丰频谱股份有限公司 一种频谱净化水控制系统及方法

Also Published As

Publication number Publication date
CN114538579B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
CN114538579B (zh) 一种基于感应电流信号反馈的交变磁场阻垢方法及装置
Kaviyarasu et al. A convenient route to synthesize hexagonal pillar shaped ZnO nanoneedles via CTAB surfactant
JP5585098B2 (ja) 非接触電力供給装置及び方法
CN100465831C (zh) 智能化水处理装置
JP5906946B2 (ja) 非接触給電装置
CN217377403U (zh) 一种新型缠绕线圈电感式电磁水处理控制系统及装置
CN105583203B (zh) 导磁输流管的磁致振动除垢防垢装置及激励频率计算方法
CN106277368B (zh) 一种管道水处理设备及处理方法以及电路
CN202898118U (zh) 一种等脉宽串联谐振式电磁感应水处理装置
KR101622750B1 (ko) SiO2와 FeTiO3 입자와 자기파 사이의 전자기적 상호작용을 발생시킴으로써 실리콘과 티타늄을 환원시키는 방법
CN206425212U (zh) 一种用于超声波复合加工的超声波发生器
CN104661409B (zh) 一种智能调光驱动器
CN112865559B (zh) 一种智能频漂水处理控制系统及其控制方法
CN104211117B (zh) 一种Bi4Ti3O12纳米片的制备方法及产品
CN101746859A (zh) 一种非接触式电子流体处理装置
Niu et al. Controlled hydrothermal synthesis, optical and magnetic properties of monodisperse leaf-like CeO2 nanosheets
CN210656291U (zh) 一种基于随机脉冲序列交变电磁场的阻垢除垢装置
US11661358B2 (en) Systems and methods for desalinating water
RU2012138152A (ru) Способы получения водорода из воды и преобразования частоты, устройство для осуществления первого способа (водородная ячейка)
Gui et al. Research on ultrasonic cleaning power frequency tracking technology based on fuzzy adaptive PID
CN2358053Y (zh) 电磁场水处理装置
RU2419906C1 (ru) Устройство и способ размагничивания длинномерных ферромагнитных изделий
Zhuang et al. Research on the wireless power transmission technology based on maximum energy efficiency tracking under dynamic distance
CN110890796A (zh) 一种传输距离不敏感的无线电能传输方法和系统
CN2465759Y (zh) 高速电脱盐电脱水设备专用电源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant