CN114530913A - 一种48v系统低压蓄电池充电控制方法及汽车 - Google Patents

一种48v系统低压蓄电池充电控制方法及汽车 Download PDF

Info

Publication number
CN114530913A
CN114530913A CN202210229100.6A CN202210229100A CN114530913A CN 114530913 A CN114530913 A CN 114530913A CN 202210229100 A CN202210229100 A CN 202210229100A CN 114530913 A CN114530913 A CN 114530913A
Authority
CN
China
Prior art keywords
voltage
low
storage battery
charging
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210229100.6A
Other languages
English (en)
Inventor
胡鹏
徐弋谦
段建峰
曹忠朋
张超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chery Automobile Co Ltd
Original Assignee
Chery Commercial Vehicle Anhui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chery Commercial Vehicle Anhui Co Ltd filed Critical Chery Commercial Vehicle Anhui Co Ltd
Priority to CN202210229100.6A priority Critical patent/CN114530913A/zh
Publication of CN114530913A publication Critical patent/CN114530913A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种48V系统低压蓄电池充电控制方法,在汽车启动后,发动机控制系统EMS调用低压蓄电池充电MAP来获取低压蓄电池的目标电压,并发送至CAN网络,DCDC变换器通过CAN网络获取低压蓄电池的目标电压并控制DCDC变换器输出目标电压为低压蓄电池充电;所述低压蓄电池充电MAP为预先标定的以充电电压为变量的充电关系表。本发明的优点在于:在不用EBS蓄电池传感器的基础上可以实现对于低压蓄电池的充电控制,节约成本的同时保证了控制可靠且具备高性价比;控制方案充分控制低压蓄电池的充电、放电以及能力回收、BSG助力等工况,整个充电控制逻辑更加可靠且满足低压蓄电池的充电控制的要求。

Description

一种48V系统低压蓄电池充电控制方法及汽车
技术领域
本发明涉及汽车电池控制管理领域,特别涉及一种48V系统低压蓄电池的充电控制方法。
背景技术
随着油耗和排放法规的限制越来越严格,节能减排已从政策层面演化为每个车企的技术要求。因此各种混合动力和纯电动技术得到快速发展,其中48V轻混系统具有怠速起停、制动能量回收、动力辅助、滑行起停等几种工作模式,此外,还具有点火时间更短、起动时噪声和振动更小、驾乘人员感觉更加舒适、高功率附件可实现电动化、发动机损耗低等优势而受到广泛重视。
目前48V轻混系统采用的48V+12V双电压系统方案,具备12V和48V两种电网以备不同系统供电,其中12V电压可以通过DC/DC转换器由48V电源转换引入。其中48V的电源给怠速启停和制动回收系统供电,保留12V电源供其他低功率电气元件使用,因此车载12V电压标准的电气元件继续沿用,对整车改动较小,成本较低。目前场在售车型低压蓄电池均采用智能蓄电池传感器EBS,实时监测低压蓄电池电池容量,然后控制为低压蓄电池充电控制。虽然装有EBS可以更加精度控制充电,但是成本比价高;而现有技术在启动瞬间发动机控制系统EMS通过内置电路可以读取一个低压电压值即为启动时刻的低压蓄电池电压值,但是在启动后读取得到的电压值就不是低压蓄电池的电压。因此如何在节省EBS传感器的同时可以通过控制策略进行低压蓄电池充电控制,省掉一个智能电池传感器及对应线束是本申请要解决的技术问题。
发明内容
本发明的目的在于克服现有技术的不足,提供一种48V系统低压蓄电池充电控制方法,用于在无EBS传感器的基础上通过逻辑控制实现对低压蓄电池的充电控制。
为了实现上述目的,本发明采用的技术方案为:一种48V系统低压蓄电池充电控制方法,在汽车启动后,发动机控制系统EMS调用低压蓄电池充电MAP来获取低压蓄电池的目标电压,并发送至CAN网络,DCDC变换器通过CAN网络获取低压蓄电池的目标电压并控制DCDC变换器输出目标电压为低压蓄电池充电;所述低压蓄电池充电MAP为预先标定的以充电电压为变量的充电关系表。
所述低压蓄电池充电MAP包括ChargMAP,所述ChargMAP为低压蓄电池初始电压、充电时间和充电目标电压之间的关系;
在车辆处于驱动工况时,EMS通过发动机控制系统EMS在系统刚上电时,通过EMS读取上电瞬间读取的电压值并将其作为低压蓄电池上电时的低压蓄电池的初始电压;EMS调用ChargMAP获取初始电压下随时间变化而变化的目标电压并将目标电压发送至CAN网络,DCDC变换器接收CAN网络上的目标电压并控制输出目标电压至低压蓄电池。
所述ChargMAP在初始电压下,目标电压随时间增加而逐步降低直至目标电压降低至设定阈值电压,ChargMAP通过预先试验进行标定初始电压、时间和目标电压三者之间的关系。
所述设定电压阈值在标定时满足如下条件:根据预先标定的电池电压与SOC关系将设定阈值电压转换成低压蓄电池SOC,此时设定电压阈值对应的电池SOC小于充满电SOC且差值为设定的余量阈值。
在车辆处于能量回收工况时,监控48V电池SOC的状态,若48V蓄电池的电量高于设定SOC阈值时,EMS调用ReChargMAP获取能量回收时低压蓄电池的目标电压并经过CAN网络发送至DCDC变换器进行能量回收控制为低压蓄电池充电;其中ReChargMAP为目标电压随时间变化的对应关系表。
所述ReChargMAP通过预先标定的方式形成随能量回收时间变化而对应的目标电压之间的关系;其中ReChargMAP的起始电压大于设定阈值电压以保证能量回收电量为低压蓄电池充电。
在BSG助力工况时,控制DCDC变换器处于升压工作状态,将低压蓄电池进行升压后与48V蓄电池共同提供电流为BSG进行助力。
在进行DCDC变换器进行升压共同为BSG助力时,DCDC变换器工作时间达到设定的时间阈值后停止工作为BSG进行助力。
设定电压阈值对应的电池SOC与充满电SOC差值对应的设定余量阈值为15-20%。
一种汽车,所述汽车采用所述的一种48V系统低压蓄电池充电控制方法对48V轻混系统中的低压蓄电池进行充电控制。
本发明的优点在于:在不用EBS蓄电池传感器的基础上可以实现对于低压蓄电池的充电控制,节约成本的同时保证了控制可靠且具备高性价比;控制方案充分控制低压蓄电池的充电、放电以及能力回收、BSG助力等工况,整个充电控制逻辑更加可靠且满足低压蓄电池的充电控制的要求。
附图说明
下面对本发明说明书各幅附图表达的内容及图中的标记作简要说明:
图1为本发明低压蓄电池充电控制系统中各部件之间的连接关系。
具体实施方式
下面对照附图,通过对最优实施例的描述,对本发明的具体实施方式作进一步详细的说明。
本发明提供一种不采用EBS蓄电池传感器的基础上完成对于低压蓄电池充电控制,从而节约成本且满足低压蓄电池的充电、能量回收以及BSG助力等工况的使用,具体方案如下:
如图1所示,本申请48V系统是指48V轻混系统,包括48V蓄电池系统和12V低压蓄电池系统,主要是针对在取消12V低压蓄电池的EBS后如何实现对于低压蓄电池的充电控制,本申请主要的方式是在汽车启动后,发动机控制系统EMS调用低压蓄电池充电MAP来获取低压蓄电池的目标电压,并发送至CAN网络,DCDC变换器通过CAN网络获取低压蓄电池的目标电压并控制DCDC变换器输出目标电压为低压蓄电池充电;所述低压蓄电池充电MAP为预先标定的以充电电压为变量的充电关系表。
其中发动机控制系统EMS在车辆上电瞬间获取计算得到一个电压值,这个电压值即为上电瞬间的低压蓄电池电压,在上电完成后由于48V以及发电机等影响,EMS得到的电压将不同于低压蓄电池的电压,因此可以在上电的瞬间电压获取得到低压蓄电池的电压,然后基于该电压即可实现对于蓄电池的电量的估算,进而可以基于电量的估算通过充电MAP对于低压蓄电池进行充电,从而实现了对于低压蓄电池的充电,如何在得到上电瞬间的低压蓄电池电压的情况下对蓄电池进行充电是本申请的主要特点,具体包括:
在车辆上电后采用ChargMAP进行低压蓄电池的充电控制,低压蓄电池充电MAP包括ChargMAP,ChargMAP为低压蓄电池初始电压、充电时间和充电目标电压之间的关系;在不同的初始电压下会对应不同的充电时间和充电目标电压之间的关系,其为三维对应关系,可以为关系对照表或对照曲线,对照表可以划分时间较为精细,在时间、电压间隔较小的情况下对照表也具备很高的精确性,如表1即为ChargMAP的关系表示意图,在表中未写出具体数值,仅作示意:
表1
Figure BDA0003539208080000051
在车辆处于驱动工况时,EMS通过发动机控制系统EMS在系统刚上电时,通过EMS读取上电瞬间读取的电压值并将其作为低压蓄电池上电时的低压蓄电池的初始电压;在得到初始电压后,EMS调用ChargMAP获取初始电压下随时间变化而变化的目标电压并将目标电压发送至CAN网络,DCDC变换器接收CAN网络上的目标电压并控制输出目标电压至低压蓄电池。如表1所示,当初始电压为V2,则由表1查询得到V2对应的时间和目标电压之间的关系,在时间由T1到T3变化过程中,目标电压也会按照对应表变化,并以该电压进行DCDC的控制从而为低压蓄电池充电。ChargMAP可以采用具备EBS传感器的低压蓄电池的工作情况进行采集标定而形成。在上电后立刻基于MAP对低压蓄电池充电,保证了低压蓄电池的电量处于设定的充电范围内,从而实现了低压蓄电池的充电保证避免出现亏电的发生。
ChargMAP在初始电压下,目标电压随时间增加而逐步降低直至目标电压降低至设定阈值电压,ChargMAP通过预先试验进行标定初始电压、时间和目标电压三者之间的关系。在达到设定阈值电压后结束充电,从而保证了在上电开始为低压蓄电池充电,保证了低压蓄电池的电量安全。
在一个优选的实施例中,设定电压阈值在标定时满足如下条件:根据预先标定的电池电压与SOC关系将设定阈值电压转换成低压蓄电池SOC,此时设定电压阈值对应的电池SOC小于充满电SOC且差值为设定的余量阈值。设置余量阈值而不将低压蓄电池充电的目的是为了在能量回收阶段时当48V蓄电池处于满电或高电量状态时,可以通过低压蓄电池回收部分制动回收的能量。其中设定电压阈值对应的电池SOC与充满电SOC差值对应的设定余量阈值为15-20%。ChargMAP根据蓄电池实车标定,保证蓄电池SOC在75-85%,根据蓄电池容量及48V系统瞬时能量情况,低压蓄电池15-20%电池容量用于能量回收储存能量,提高能量回收利用率。
在车辆处于能量回收工况时,监控48V电池SOC的状态,若48V蓄电池的电量高于设定SOC阈值时,EMS调用ReChargMAP获取能量回收时低压蓄电池的目标电压并经过CAN网络发送至DCDC变换器进行能量回收控制为低压蓄电池充电;其中ReChargMAP为目标电压随时间变化的对应关系表。
ReChargMAP通过预先标定的方式形成随能量回收时间变化而对应的目标电压之间的关系;其中ReChargMAP的起始电压大于设定阈值电压以保证能量回收电量为低压蓄电池充电。如表2所示,通过标定的设定电压阈值下,能量回收时间与能量回收目标电压之间的关系,从而在能量回收阶段,采用时间查表得到对应的能量回收目标电压,进而通过回收的能量为低压蓄电池充电:
表2:
充电时间
DCDC目标电压
随着充电时间的增加,能量回收目标电压(即DCDC目标电压)逐渐变小直至达到充满电对应的截至电压,从而完成充满电停止降压工作的目的(停止能量回收为低压蓄电池充电功能)或者在充电时间达到一定时间阈值后,DCDC变换器停止降压工作从而停止为低压蓄电池充电功能。
在BSG助力工况时,控制DCDC变换器处于升压工作状态,将低压蓄电池进行升压后与48V蓄电池共同提供电流为BSG进行助力。在进行DCDC变换器进行升压共同为BSG助力时,DCDC变换器工作时间达到设定的时间阈值后停止工作为BSG进行助力。
本专利提供一种48V系统低压电池充电策略控制技术。对于48V系统采用的48V+12V双电压系统方案,低压蓄电池需要驱动工况进行充电及协助能量回收工况回收部分能量。目前企业开发48V技术,最大瓶颈是成本高。针对双电压系统,上市车型均采用智能电池传感器EBS,成本较高。本专利针对该实际问题,以追求性价比为宗旨,省掉一个智能电池传感器及对应线束,开发一种48V系统低压电池充电策略控制技术,通过策略方式进行低压蓄电池充电控制。
总体技术方案:不管在驱动工况还是能量回收工况,EMS调用充电MAP获取低压蓄电池目标电压,发送can网络架构;DCDC接受该目标电压,进行DCDC输出端1电压动态控制,对低压蓄电池进行充电。
在整车处于驱动工况,根据EMS获取低压蓄电池电量状态,EMS调用ChargMAP,发送低压蓄电池充电电压需求至can网络架构,DCDC接受该信号,DCDC进行输出至蓄电池目标电压控制。在整车处于能量回收工况时,如果48V电池管理系统BMS发送48V电池SOC处于较高时,EMS调用ReCharg MAP,发送低压蓄电池充电电压需求至can网络,DCDC进行低压蓄电池进行能量回收充电。在48VBSG助力工况,DCDC进行低压升高压工作,即将低压蓄电池电压升高,与48V蓄电池共同提供电流给BSG进行助力。
一种48V系统低压电池充电策略控制技术。不管在驱动工况还是能量回收工况,EMS调用充电MAP获取低压蓄电池目标电压,发送can网络架构;DCDC接受该目标电压,进行DCDC输出端1电压动态控制,对低压蓄电池进行充电。
在整车处于驱动工况,EMS通过系统发动机控制器EMS通过整车系统刚上电时,通过EMS内置电路计算蓄电池电压,通过计算逻辑估算蓄电池电量。依据初始蓄电池电压值,EMS调用ChargMAP(关于在不同蓄电池初始电压和充电时间下DCDC转换电压关系三维MAP),发送低压蓄电池充电电压需求(该电压需求随充电时间变化)至can网络架构,DCDC接受该信号,DCDC进行输出至蓄电池目标电压控制;在某一蓄电池初始电压下,ChargMAP需求电压随时间逐步降低,即刚开始t1时间采用高电压给低压蓄电池充电,后面t时间逐步降低,直至需求电压与低压蓄电池电压平衡,自动结束充电,该电压需根据电池电压与SOC关系精细标定,且留有一定电池容量接受能量回收工况使用;由于车辆启动运行后,整车低压供电有48V发电机BSG发电,通过DCDC转换给整车系统供电,一般不需低压蓄电池供电,因此上面逻辑可使行车工况低压蓄电池保持较高电量。
在整车处于能量回收工况时,如果48V电池管理系统BMS发送48V电池SOC处于较高时,EMS通过can网络接受该信号,EMS调用ReCharg MAP(关于在充电时间下DCDC转换电压关系二维MAP),发送低压蓄电池充电电压需求至can网络,DCDC进行低压蓄电池进行能量回收充电。ReChargMAP电压高于ChargMAP电压,大越高0.4-0.7V,具体值根据低压蓄电池瞬时耐压确定。
在48VBSG助力工况,DCDC进行低压升高压工作,即将低压蓄电池电压升高,与48V蓄电池共同提供电流给BSG进行助力。具体来说,DCDC需设置合理时间阀值,只有高蓄电池电量比较足的情况下,DCDC进行升压工作。这样逻辑主要是低压蓄电池始终动态留有一定容量(低压蓄电池15-20%电池容量)接受能量回收工况低压蓄电池充电(在高速滑行及强制动时,48V电池容易回收满,此时低压蓄电池接受额外能量,提高能量利用率)。
特别说明,实施方案仅仅示意逻辑思路,具体低压充电Charg MAP/ReCharg MAP,及充电电压阀值需结合整车重量、48V电池容量、BSG充电电流及低压蓄电池属性具体实测标定合理值,然后在整车进行验证。
显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,均在本发明的保护范围之内。

Claims (10)

1.一种48V系统低压蓄电池充电控制方法,其特征在于:在汽车启动后,发动机控制系统EMS调用低压蓄电池充电MAP来获取低压蓄电池的目标电压,并发送至CAN网络,DCDC变换器通过CAN网络获取低压蓄电池的目标电压并控制DCDC变换器输出目标电压为低压蓄电池充电;所述低压蓄电池充电MAP为预先标定的以充电电压为变量的充电关系表。
2.如权利要求1所述的一种48V系统低压蓄电池充电控制方法,其特征在于:所述低压蓄电池充电MAP包括ChargMAP,所述ChargMAP为低压蓄电池初始电压、充电时间和充电目标电压之间的关系;
在车辆处于驱动工况时,EMS通过发动机控制系统EMS在系统刚上电时,通过EMS读取上电瞬间读取的电压值并将其作为低压蓄电池上电时的低压蓄电池的初始电压;EMS调用ChargMAP获取初始电压下随时间变化而变化的目标电压并将目标电压发送至CAN网络,DCDC变换器接收CAN网络上的目标电压并控制输出目标电压至低压蓄电池。
3.如权利要求2所述的一种48V系统低压蓄电池充电控制方法,其特征在于:所述ChargMAP在初始电压下,目标电压随时间增加而逐步降低直至目标电压降低至设定阈值电压,ChargMAP通过预先试验进行标定初始电压、时间和目标电压三者之间的关系。
4.如权利要求3所述的一种48V系统低压蓄电池充电控制方法,其特征在于:所述设定电压阈值在标定时满足如下条件:根据预先标定的电池电压与SOC关系将设定阈值电压转换成低压蓄电池SOC,此时设定电压阈值对应的电池SOC小于充满电SOC且差值为设定的余量阈值。
5.如权利要求1-4任一所述的一种48V系统低压蓄电池充电控制方法,其特征在于:在车辆处于能量回收工况时,监控48V电池SOC的状态,若48V蓄电池的电量高于设定SOC阈值时,EMS调用ReChargMAP获取能量回收时低压蓄电池的目标电压并经过CAN网络发送至DCDC变换器进行能量回收控制为低压蓄电池充电;其中ReChargMAP为目标电压随时间变化的对应关系表。
6.如权利要求5所述的一种48V系统低压蓄电池充电控制方法,其特征在于:所述ReChargMAP通过预先标定的方式形成随能量回收时间变化而对应的目标电压之间的关系;其中ReChargMAP的起始电压大于设定阈值电压以保证能量回收电量为低压蓄电池充电。
7.如权利要求1-4任一所述的一种48V系统低压蓄电池充电控制方法,其特征在于:在BSG助力工况时,控制DCDC变换器处于升压工作状态,将低压蓄电池进行升压后与48V蓄电池共同提供电流为BSG进行助力。
8.如权利要求7所述的一种48V系统低压蓄电池充电控制方法,其特征在于:在进行DCDC变换器进行升压共同为BSG助力时,DCDC变换器工作时间达到设定的时间阈值后停止工作为BSG进行助力。
9.如权利要求4所述的一种48V系统低压蓄电池充电控制方法,其特征在于:设定电压阈值对应的电池SOC与充满电SOC差值对应的设定余量阈值为15-20%。
10.一种汽车,其特征在于:所述汽车采用如权利要求1-9任一所述的一种48V系统低压蓄电池充电控制方法对48V轻混系统中的低压蓄电池进行充电控制。
CN202210229100.6A 2022-03-09 2022-03-09 一种48v系统低压蓄电池充电控制方法及汽车 Pending CN114530913A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210229100.6A CN114530913A (zh) 2022-03-09 2022-03-09 一种48v系统低压蓄电池充电控制方法及汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210229100.6A CN114530913A (zh) 2022-03-09 2022-03-09 一种48v系统低压蓄电池充电控制方法及汽车

Publications (1)

Publication Number Publication Date
CN114530913A true CN114530913A (zh) 2022-05-24

Family

ID=81627042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210229100.6A Pending CN114530913A (zh) 2022-03-09 2022-03-09 一种48v系统低压蓄电池充电控制方法及汽车

Country Status (1)

Country Link
CN (1) CN114530913A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115742764A (zh) * 2022-12-15 2023-03-07 广东省科技基础条件平台中心 一种制动能量回收系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115742764A (zh) * 2022-12-15 2023-03-07 广东省科技基础条件平台中心 一种制动能量回收系统
CN115742764B (zh) * 2022-12-15 2024-05-24 广东省科技基础条件平台中心 一种制动能量回收系统

Similar Documents

Publication Publication Date Title
US9428122B2 (en) Active control system for low DC/DC converter in an electric vehicle
US9487090B2 (en) Dual energy storage system for micro hybrid vehicles
CN111251910B (zh) 一种燃料电池汽车双源混合动力系统的上电启动方法
CN106921189B (zh) 车辆及该车辆的充电控制方法
CN101708694B (zh) 一种电动汽车里程增加器控制系统及其控制方法
KR101449266B1 (ko) 전기차용 저전압직류변환기의 제어방법 및 이를 이용한 저전압직류변환기 제어시스템
CN103072492B (zh) 一种纯电动客车用主动控制式复合电源及其控制方法
CN101691118B (zh) 一种混合动力汽车的电机辅助驱动模式控制方法
CN108638874A (zh) 一种基于增程式车辆的储能管理系统
CN106347358B (zh) 一种用于电动车辆的动力源及动力源切换控制方法
CN113401009B (zh) 电电混合燃料电池汽车能量管理系统及其控制方法
CN112060974A (zh) 车辆能量管理方法、装置、系统、车辆及存储介质
CN107054124B (zh) 一种基于车载导航的混合动力系统及方法
EP3979449A1 (en) A method for reducing the overall power consumption of a parked vehicle
CN114530913A (zh) 一种48v系统低压蓄电池充电控制方法及汽车
CN111483453B (zh) 一种中重卡双bsg弱混系统及控制方法
CN113696748B (zh) 一种燃料电池供电系统及其控制方法和控制装置
CN111791816B (zh) 一种商用车用bsg电机与双发电机供能系统
KR102286833B1 (ko) Phev의 충전 시스템 및 그 제어방법
CN111251907B (zh) 一种新能源汽车的混合电池驱动系统及供能方法
CN111211590B (zh) 一种车辆、复合电源系统及其能量管理方法
CN111817417B (zh) 12v启停用铅酸蓄电池的充电方法、装置及车辆
CN108725220B (zh) 一种轮毂电机驱动全路况越野车动力系统与控制方法
CN221023348U (zh) 一种低压蓄电池补电系统及新能源汽车
CN214607389U (zh) 一种混合动力汽车附件电气化系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20240417

Address after: 241000 No. 8, Changchun Road, Wuhu economic and Technological Development Zone, Anhui, China

Applicant after: CHERY AUTOMOBILE Co.,Ltd.

Country or region after: China

Address before: 241000 Building 8, science and Technology Industrial Park, 717 Zhongshan South Road, Yijiang District, Wuhu City, Anhui Province

Applicant before: Chery Commercial Vehicles (Anhui) Co., Ltd.

Country or region before: China