CN114527698B - A redundant flight controller - Google Patents
A redundant flight controller Download PDFInfo
- Publication number
- CN114527698B CN114527698B CN202210161701.8A CN202210161701A CN114527698B CN 114527698 B CN114527698 B CN 114527698B CN 202210161701 A CN202210161701 A CN 202210161701A CN 114527698 B CN114527698 B CN 114527698B
- Authority
- CN
- China
- Prior art keywords
- heartbeat
- processing unit
- central processing
- monitoring module
- flight controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 claims abstract description 70
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 claims description 16
- 230000002093 peripheral effect Effects 0.000 claims description 14
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000002159 abnormal effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0423—Input/output
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/25—Pc structure of the system
- G05B2219/25257—Microcontroller
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Traffic Control Systems (AREA)
- Safety Devices In Control Systems (AREA)
Abstract
Description
技术领域Technical field
本发明涉及多旋翼飞行器领域,尤其涉及一种多余度的飞行控制器。The invention relates to the field of multi-rotor aircraft, and in particular to a redundant flight controller.
背景技术Background technique
旋翼类飞行器具有较为高效的低空飞行能力,已经广泛的应用于航拍、物流、农业等领域。飞行控制器是飞行器的核心控制部件,其任务是通过中央处理器接收内部传感器(陀螺仪、加速度计、磁力计、气压计等)和外部传感器(GPS定位、外部磁力计等)数据,通过飞行控制算法转换成电子调速器的控制信号,进而控制飞行器的姿态、位置和高度。上述飞行控制器通常应用于无人机等小型飞行器,而中大型飞行器以及载人飞行器则需要更高等级的安全性,要求飞行控制器具有复杂环境中稳定运行的性能。现有的飞行控制器使用基于一个微控制器加多路传感器的架构,可靠性和稳定性较差,当微控制器出现问题或者一个传感器故障的时候,飞行器就会面临风险。Rotary-wing aircraft have relatively efficient low-altitude flight capabilities and have been widely used in aerial photography, logistics, agriculture and other fields. The flight controller is the core control component of the aircraft. Its task is to receive data from internal sensors (gyroscope, accelerometer, magnetometer, barometer, etc.) and external sensors (GPS positioning, external magnetometer, etc.) through the central processor. The control algorithm is converted into the control signal of the electronic speed controller, thereby controlling the attitude, position and height of the aircraft. The above-mentioned flight controllers are usually used in small aircraft such as drones, while medium and large aircraft and manned aircraft require a higher level of safety and require flight controllers to have stable operation performance in complex environments. Existing flight controllers use an architecture based on a microcontroller plus multiple sensors, which has poor reliability and stability. When there is a problem with the microcontroller or a sensor fails, the aircraft will be at risk.
专利号为CN201621454735.2的专利中,提供了一种多旋翼无人机飞行控制器,用于提高飞行控制器的运算处理能力、外设扩展能力、抗震能力及稳定性,包括:飞行控制主板、柔性传感器板、接口板及减震装置,所述飞行控制主板上设置有主Cortex-M4微控制器和从Cortex-M3微控制器,所述柔性传感器板上设置有两套陀螺仪、加速度计和地磁传感器,所述接口板包括左侧接口和右侧接口,所述减震装置为一块凝胶垫。此方案仅将从Cortex-M3微控制器作为接口扩展和传感器余度,没有独立控制飞行器的能力,因此飞行控制器没有安全余度。The patent number CN201621454735.2 provides a multi-rotor drone flight controller to improve the flight controller's computing processing capabilities, peripheral expansion capabilities, earthquake resistance and stability, including: flight control motherboard , flexible sensor board, interface board and shock absorption device. The flight control motherboard is provided with a master Cortex-M4 microcontroller and a slave Cortex-M3 microcontroller. The flexible sensor board is provided with two sets of gyroscopes and acceleration sensors. meter and geomagnetic sensor, the interface board includes a left interface and a right interface, and the shock absorbing device is a gel pad. This solution will only use the Cortex-M3 microcontroller as an interface extension and sensor margin. It does not have the ability to independently control the aircraft, so there is no safety margin for the flight controller.
发明内容Contents of the invention
本发明的目的在于针对现有技术的不足,提供了一种多余度的飞行控制器。The purpose of the present invention is to provide a redundant flight controller in view of the shortcomings of the existing technology.
本发明的目的是通过以下技术方案来实现的:一种多余度的飞行控制器,包括第一中央处理器、第二中央处理器、心跳监控模块、第一IMU传感器、第二IMU传感器、切换开关和电源模块;所述第一中央处理器不停地读取第一IMU传感器的数据,当第一中央处理器读取的数据正常则向心跳监控模块发送第一心跳信号,反之则停止发送第一心跳信号;所述第二中央处理器不停地读取第二IMU传感器的数据,当第二中央处理器读取的数据正常则向心跳监控模块发送第二心跳信号,反之则停止发送第二心跳信号;所述第一中央处理器和第二中央处理器两者独立工作,分别输出PWM信号至切换开关;The object of the present invention is achieved through the following technical solutions: a redundant flight controller, including a first central processor, a second central processor, a heartbeat monitoring module, a first IMU sensor, a second IMU sensor, a switching Switch and power module; the first central processor continuously reads the data of the first IMU sensor. When the data read by the first central processor is normal, it sends the first heartbeat signal to the heartbeat monitoring module, otherwise it stops sending. The first heartbeat signal; the second central processor continuously reads the data of the second IMU sensor. When the data read by the second central processor is normal, it sends the second heartbeat signal to the heartbeat monitoring module, otherwise it stops sending. a second heartbeat signal; the first central processor and the second central processor work independently and output PWM signals to the switch respectively;
所述心跳监控模块使用以下方式通过切换开关选择第一中央处理器或第二中央处理器输出PWM信号:The heartbeat monitoring module uses the following method to select the first central processor or the second central processor to output the PWM signal through the switch:
a)当所述心跳监控模块能正常接收到第一心跳信号,心跳监控模块发送命令给切换开关,切换开关选择输出第一中央处理器的PWM信号;a) When the heartbeat monitoring module can receive the first heartbeat signal normally, the heartbeat monitoring module sends a command to the switch, and the switch selects to output the PWM signal of the first central processor;
b)当所述心跳监控模块无法接收到第一心跳信号,却能正常接收到第二心跳信号,心跳监控模块发送命令给切换开关,切换开关选择输出第二中央处理器的PWM信号;b) When the heartbeat monitoring module cannot receive the first heartbeat signal but can receive the second heartbeat signal normally, the heartbeat monitoring module sends a command to the switch, and the switch selects to output the PWM signal of the second central processor;
c)当所述心跳监控模块无法接收到第一心跳信号和第二心跳信号,则心跳监控模块可单独控制飞行器紧急降落;c) When the heartbeat monitoring module cannot receive the first heartbeat signal and the second heartbeat signal, the heartbeat monitoring module can independently control the emergency landing of the aircraft;
所述电源模块为其他所有器件供电。The power module supplies power to all other devices.
进一步地,所述电源模块包括电池、第一降压DCDC、第二降压DCDC、电源管理芯片、第一LDO和第二LDO;所述电池并联输入第一降压DCDC和第二降压DCDC,产生两路5V电压并输入电源管理芯片;所述电源管理芯片控制第一LDO和第二LDO供电的稳定性;所述第一LDO和第二LDO分别输出电压,为其他所有器件供电。Further, the power module includes a battery, a first step-down DCDC, a second step-down DCDC, a power management chip, a first LDO and a second LDO; the battery inputs the first step-down DCDC and the second step-down DCDC in parallel. , generate two 5V voltages and input them into the power management chip; the power management chip controls the stability of the power supply of the first LDO and the second LDO; the first LDO and the second LDO output voltages respectively to power all other devices.
进一步地,所述第一心跳信号和第二心跳信号可以是一段脉冲或者其他形式的信号。Further, the first heartbeat signal and the second heartbeat signal may be a pulse or other forms of signals.
进一步地,所述第一心跳信号和第二心跳信号的频率大于100赫兹。Further, the frequency of the first heartbeat signal and the second heartbeat signal is greater than 100 Hz.
进一步地,所述心跳监控模块可以是专用芯片或可编程逻辑器件,并行处理心跳信号的信息。Further, the heartbeat monitoring module may be a dedicated chip or a programmable logic device that processes the information of the heartbeat signal in parallel.
进一步地,还包括其他传感器及其他外设,所述第一中央处理器和第二中央处理器分别不停地读取其他传感器及其他外设的数据。Further, other sensors and other peripheral devices are also included, and the first central processor and the second central processor continuously read data of other sensors and other peripheral devices respectively.
进一步地,所述第一中央处理器、第一IMU传感器、心跳监控模块、切换开关和电源模块分别布局在PCB板的正面;所述第二中央处理器、第二IMU传感器、其他传感器和其他外设分别布局在PCB板的反面。Further, the first central processor, the first IMU sensor, the heartbeat monitoring module, the switch and the power module are respectively arranged on the front of the PCB board; the second central processor, the second IMU sensor, other sensors and other The peripherals are arranged on the back side of the PCB board.
本发明的有益效果是:The beneficial effects of the present invention are:
1.采用本发明的一种多余度的飞行控制器,使用两个中央处理器的架构,两个中央处理器互相平等,互为备份,最大限度的提高了飞行控制器的安全稳定性;1. Adopt a redundant flight controller of the present invention and use the architecture of two central processors. The two central processors are equal to each other and serve as backups for each other, which maximizes the safety and stability of the flight controller;
2.采用本发明的一种多余度的飞行控制器,使用心跳监控模块实时接收中央处理器及各传感器的状态数据,当监测到异常状态时,能实时无缝切换到另一个中央处理器及传感器,非常有效的提高了飞行控制器的安全稳定性;2. Adopt a redundant flight controller of the present invention and use the heartbeat monitoring module to receive the status data of the central processor and each sensor in real time. When an abnormal state is detected, it can seamlessly switch to another central processor and sensor in real time. The sensor is very effective in improving the safety and stability of the flight controller;
3.采用本发明的一种多余度的飞行控制器,使用两路降压型DCDC芯片加电源管理芯片的配置,两路5V电压将互为备份,无缝切换;最大限度的提高了电源的安全稳定性;3. Adopt a redundant flight controller of the present invention, using a configuration of two step-down DCDC chips and a power management chip. The two 5V voltages will back up each other and switch seamlessly; maximizing the efficiency of the power supply. safety and stability;
4.采用本发明的一种多余度的飞行控制器,将第一中央处理器和第二中央处理器及对应的传感器分别布置在硬件PCB的正反两面,最大限度的提高了对飞行器状态和飞行姿态采样的精度;同时在硬件结构上提升了飞行控制器的安全稳定性。4. Using a redundant flight controller of the present invention, the first central processor and the second central processor and corresponding sensors are respectively arranged on the front and back sides of the hardware PCB, which maximizes the visibility of the aircraft status and The accuracy of flight attitude sampling is improved; at the same time, the safety and stability of the flight controller are improved in terms of hardware structure.
附图说明Description of the drawings
图1为本发明一种多余度的飞行控制器实施例一的系统总体架构示意图;Figure 1 is a schematic diagram of the overall system architecture of a redundant flight controller according to Embodiment 1 of the present invention;
图2为本发明一种多余度的飞行控制器实施例一的电源示意图;Figure 2 is a power schematic diagram of a redundant flight controller according to Embodiment 1 of the present invention;
图3为本发明一种多余度的飞行控制器实施例二的系统总体架构示意图;Figure 3 is a schematic diagram of the overall system architecture of Embodiment 2 of a redundant flight controller of the present invention;
图4为本发明一种多余度的飞行控制器实施例二的PCB布局示意图;Figure 4 is a schematic PCB layout diagram of a redundant flight controller according to Embodiment 2 of the present invention;
图5为本发明一种多余度的飞行控制器实施例二的系统流程图;Figure 5 is a system flow chart of Embodiment 2 of a redundant flight controller according to the present invention;
图中,1-第一中央处理器,2-第二中央处理器,3-第一IMU传感器,4-第二IMU传感器,5-心跳监控模块,6-切换开关,7-其他传感器,8-其他外设,9-电子调速器,10-电池,11-第一降压DCDC,12-第二降压DCDC,13-电源管理芯片,14-第一LDO,15-第二LDO,16-电源模块。In the figure, 1-first central processor, 2-second central processor, 3-first IMU sensor, 4-second IMU sensor, 5-heartbeat monitoring module, 6-switch, 7-other sensors, 8 -Other peripherals, 9-electronic speed regulator, 10-battery, 11-first step-down DCDC, 12-second step-down DCDC, 13-power management chip, 14-first LDO, 15-second LDO, 16-Power module.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加明白清楚,结合附图和实施例,对本发明进一步的详细说明,应当理解,此处所描述的具体实施例仅仅用以解释本发明,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均在本发明保护范围。In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail in conjunction with the accompanying drawings and examples. It should be understood that the specific embodiments described here are only used to explain the present invention and are not exhaustive. Example. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts are within the protection scope of the present invention.
实施例1Example 1
如图1所示的一种多余度的飞行控制器,包括第一中央处理器1、第二中央处理器2、心跳监控模块5、第一IMU传感器3、第二IMU传感器4、切换开关6和电源模块16;所述第一中央处理器1与第一IMU传感器3通信,第一中央处理器1不停地读取第一IMU传感器3的数据,所述第一IMU传感器3的数据包括飞行器的姿态数据,当第一中央处理器1读取的数据正常则向心跳监控模块5发送第一心跳信号,若第一中央处理器1读取的数据异常则停止向心跳监控模块5发送第一心跳信号;所述第二中央处理器2与第二IMU传感器4通信,第二中央处理器2不停地读取第二IMU传感器4的数据,所述第二IMU传感器4的数据包括飞行器的姿态数据,若第二中央处理器3读取的数据正常则向心跳监控模块5发送第二心跳信号,若第二中央处理器2读取的数据异常则停止向心跳监控模块5发送第二心跳信号;第一IMU传感器3和第二IMU传感器4相互独立,分别感知飞行器的姿态;第一中央处理器1和第二中央处理器2两者独立工作,分别输出PWM信号至切换开关6;A redundant flight controller as shown in Figure 1 includes a first central processor 1, a second central processor 2, a heartbeat monitoring module 5, a first IMU sensor 3, a second IMU sensor 4, and a switch 6 and power module 16; the first central processor 1 communicates with the first IMU sensor 3, and the first central processor 1 constantly reads the data of the first IMU sensor 3, and the data of the first IMU sensor 3 includes The attitude data of the aircraft, when the data read by the first central processor 1 is normal, the first heartbeat signal is sent to the heartbeat monitoring module 5, and if the data read by the first central processor 1 is abnormal, it stops sending the first heartbeat signal to the heartbeat monitoring module 5. A heartbeat signal; the second central processor 2 communicates with the second IMU sensor 4, and the second central processor 2 continuously reads the data of the second IMU sensor 4, and the data of the second IMU sensor 4 includes the aircraft If the data read by the second central processor 3 is normal, it will send the second heartbeat signal to the heartbeat monitoring module 5. If the data read by the second central processor 2 is abnormal, it will stop sending the second heartbeat signal to the heartbeat monitoring module 5. Heartbeat signal; the first IMU sensor 3 and the second IMU sensor 4 are independent of each other and sense the attitude of the aircraft respectively; the first central processor 1 and the second central processor 2 work independently and output PWM signals to the switch 6 respectively;
所述心跳监控模块5使用以下方式通过切换开关6选择第一中央处理器1或第二中央处理器2输出PWM信号:The heartbeat monitoring module 5 uses the following method to select the first central processor 1 or the second central processor 2 to output the PWM signal through the switch 6:
a)当所述心跳监控模块5能正常接收到第一心跳信号,心跳监控模块5发送命令给切换开关6,切换开关6选择输出第一中央处理器1的PWM信号;a) When the heartbeat monitoring module 5 can receive the first heartbeat signal normally, the heartbeat monitoring module 5 sends a command to the switch 6, and the switch 6 selects to output the PWM signal of the first central processor 1;
b)当所述心跳监控模块5无法接收到第一心跳信号,却能正常接收到第二心跳信号,心跳监控模块5发送命令给切换开关6,切换开关6选择输出第二中央处理器2的PWM信号;b) When the heartbeat monitoring module 5 cannot receive the first heartbeat signal but can receive the second heartbeat signal normally, the heartbeat monitoring module 5 sends a command to the switch 6, and the switch 6 selects and outputs the signal of the second central processor 2. PWM signal;
c)当所述心跳监控模块5无法接收到第一心跳信号和第二心跳信号,则心跳监控模块5可单独控制飞行器紧急降落;c) When the heartbeat monitoring module 5 cannot receive the first heartbeat signal and the second heartbeat signal, the heartbeat monitoring module 5 can independently control the emergency landing of the aircraft;
所述电源模块16为其他所有器件供电。The power module 16 supplies power to all other devices.
所述心跳监控模块5可以是专用芯片或可编程逻辑器件,并行处理心跳信号的信息。The heartbeat monitoring module 5 may be a dedicated chip or a programmable logic device, and processes the information of the heartbeat signal in parallel.
一种多余度的飞行控制器的工作过程如下:The working process of a redundant flight controller is as follows:
第一中央处理器1与第一IMU传感器3通信,当第一中央处理器1能正常接收第一IMU传感器3的数据,第一中央处理器1每隔一段时间(毫秒级)向心跳监控模块5发送第一心跳信号,反之则停止发送第一心跳信号;同理,所述第二中央处理器2与第二IMU传感器4通信,当第二中央处理器2能正常接收第二IMU传感器4的数据,第二中央处理器2每隔一段时间(毫秒级)向心跳监控模块5发送第二心跳信号,反之则停止发送第二心跳信号;第一中央处理器1和第二中央处理器2两者独立工作,分别输出PWM信号至切换开关6;The first central processor 1 communicates with the first IMU sensor 3. When the first central processor 1 can receive the data of the first IMU sensor 3 normally, the first central processor 1 sends a message to the heartbeat monitoring module every once in a while (millisecond level). 5. Send the first heartbeat signal, otherwise stop sending the first heartbeat signal; similarly, the second central processor 2 communicates with the second IMU sensor 4. When the second central processor 2 can normally receive the second IMU sensor 4 data, the second central processor 2 sends the second heartbeat signal to the heartbeat monitoring module 5 at intervals (millisecond level), and otherwise stops sending the second heartbeat signal; the first central processor 1 and the second central processor 2 The two work independently and output PWM signals to switch 6 respectively;
所述心跳信号可以是一段脉冲或者其他形式的信号;The heartbeat signal may be a pulse or other form of signal;
当第一中央处理器1和第二中央处理器2都正常向心跳监控模块5发送心跳信号时,心跳监控模块5向切换开关6发送切换命令,切换开关6默认选择第一中央处理器1输出的PWM信号;When both the first central processor 1 and the second central processor 2 send heartbeat signals to the heartbeat monitoring module 5 normally, the heartbeat monitoring module 5 sends a switching command to the switch 6, and the switch 6 defaults to the output of the first central processor 1. PWM signal;
当第一中央处理器1停止向心跳监控模块5发送第一心跳信号,第二中央处理器2正常向心跳监控模块5发送第二心跳信号时,心跳监控模块5向切换开关6发送切换命令,切换开关6选择第二中央处理器2输出的PWM信号;When the first central processor 1 stops sending the first heartbeat signal to the heartbeat monitoring module 5 and the second central processor 2 normally sends the second heartbeat signal to the heartbeat monitoring module 5, the heartbeat monitoring module 5 sends a switching command to the switch 6, The switch 6 selects the PWM signal output by the second central processor 2;
当第二中央处理器2停止向心跳监控模块5发送第二心跳信号,第一中央处理器1正常向心跳监控模块5发送第一心跳信号时,心跳监控模块5向切换开关6发送切换命令,切换开关6选择第一中央处理器1输出的PWM信号;When the second central processor 2 stops sending the second heartbeat signal to the heartbeat monitoring module 5 and the first central processor 1 normally sends the first heartbeat signal to the heartbeat monitoring module 5, the heartbeat monitoring module 5 sends a switching command to the switch 6, The switch 6 selects the PWM signal output by the first central processor 1;
输出的PWM信号输入至飞行器中的电子调速器,控制飞行器的电机运转,使飞行器可以正常飞行;The output PWM signal is input to the electronic speed controller in the aircraft to control the operation of the aircraft's motor so that the aircraft can fly normally;
当第一中央处理器1和第二中央处理器2都停止向心跳监控模块5发送心跳信号,心跳监控模块5可单独控制飞行器紧急降落。When both the first central processor 1 and the second central processor 2 stop sending heartbeat signals to the heartbeat monitoring module 5, the heartbeat monitoring module 5 can independently control the emergency landing of the aircraft.
第一中央处理器1或第二中央处理器2向心跳监控模块5发送心跳信号的频率大于100赫兹,表示心跳监控模块5能在10毫秒以内处理第一中央处理器1或第二中央处理器2发过来的心跳信号;当心跳监控模块5检测到心跳信号异常时,飞行器在10毫秒以内处于失控状态,此时多余度的飞行控制器中的心跳监控模块5输出切换命令或者执行紧急降落,都能将飞行器重新控制到正常状态。The frequency of the heartbeat signal sent by the first central processor 1 or the second central processor 2 to the heartbeat monitoring module 5 is greater than 100 Hz, which means that the heartbeat monitoring module 5 can process the first central processor 1 or the second central processor within 10 milliseconds. 2; when the heartbeat monitoring module 5 detects an abnormality in the heartbeat signal, the aircraft is out of control within 10 milliseconds. At this time, the heartbeat monitoring module 5 in the redundant flight controller outputs a switching command or performs an emergency landing. can control the aircraft back to normal state.
图2为一种多余度的飞行控制器中的电源模块16的结构示意图,所述电源模块16包括电池10、第一降压DCDC11、第二降压DCDC12、电源管理芯片13、第一LDO14和第二LDO15;所述电池10并联输入第一降压DCDC 11和第二降压DCDC12,产生两路5V电压并输入电源管理芯片13;所述电源管理芯片13负责管理两路5V电压,当检测到其中一路5V失效时,能快速无缝切换到另外一路5V电压,保证对第一LDO 14和第二LDO15供电的稳定性;所述第一LDO14和第二LDO 15分别输出3.3V和1.8V电压,为其他所有器件供电;两路5V电压将互为备份,无缝切换;最大限度的提高了电源的安全稳定性。Figure 2 is a schematic structural diagram of the power module 16 in a redundant flight controller. The power module 16 includes a battery 10, a first step-down DCDC 11, a second step-down DCDC 12, a power management chip 13, a first LDO 14 and The second LDO 15; the battery 10 inputs the first step-down DCDC 11 and the second step-down DCDC 12 in parallel to generate two 5V voltages and input them into the power management chip 13; the power management chip 13 is responsible for managing the two 5V voltages. When one of the 5V voltages fails, it can quickly and seamlessly switch to the other 5V voltage to ensure the stability of the power supply to the first LDO 14 and the second LDO 15; the first LDO 14 and the second LDO 15 output 3.3V and 1.8V respectively. voltage to power all other devices; the two 5V voltages will back up each other and switch seamlessly; maximizing the safety and stability of the power supply.
实施例2Example 2
如图3,本发明还提供了一种多余度的飞行控制器的结构示意图,该多余度的飞行控制器还包括其他传感器7和其他外设8,所述其他传感器7和其他外设8分别与第一中央处理器1与第二中央处理器2通信;所述第一中央处理器1和第二中央处理器2分别不停地读取其他传感器7及其他外设(8)的数据。As shown in Figure 3, the present invention also provides a schematic structural diagram of a redundant flight controller. The redundant flight controller also includes other sensors 7 and other peripherals 8. The other sensors 7 and other peripherals 8 are respectively Communicates with the first central processor 1 and the second central processor 2; the first central processor 1 and the second central processor 2 continuously read data from other sensors 7 and other peripherals (8) respectively.
所述其他传感器7包括气压计、电子罗盘、GPS等,所述其他外设8包括数传模块、遥控接收机等。The other sensors 7 include a barometer, electronic compass, GPS, etc., and the other peripherals 8 include a data transmission module, a remote control receiver, etc.
如图4所示的一种多余度的飞行控制器PCB布局图,第一中央处理器1、第一IMU传感器3、心跳监控模块5、切换开关6和电源模块16分别布局在PCB板的正面(TOP面);所述第二中央处理器2、第二IMU传感器4、其他传感器7和其他外设8分别布局在PCB板的反面(BOTTOM面);将第一中央处理器1和第二中央处理器2及其他器件分别布置在硬件PCB的正反两面,最大限度的提高了对飞行器状态和飞行姿态采样的精度;同时在硬件结构上提升了飞行控制器的安全稳定性。As shown in Figure 4, a redundant flight controller PCB layout diagram, the first central processor 1, the first IMU sensor 3, the heartbeat monitoring module 5, the switch 6 and the power module 16 are respectively laid out on the front of the PCB board. (TOP side); the second central processor 2, the second IMU sensor 4, other sensors 7 and other peripherals 8 are respectively arranged on the back side of the PCB board (BOTTOM side); connect the first central processor 1 and the second The central processor 2 and other components are arranged on the front and back sides of the hardware PCB, which maximizes the accuracy of sampling the aircraft status and flight attitude; at the same time, the safety and stability of the flight controller are improved in terms of hardware structure.
如图5所示,是实施例2的一个应用案例,对第一中央处理器1、第二中央处理器2和心跳监控模块5的功能进一步描述;系统上电运行后,第一中央处理器1和第二中央处理器2分别不停地读取第一IMU传感器3或第二IMU传感器4以及其他传感器7和其他外设8的数据;若数据正常,第一中央处理器1每隔一段时间(毫秒级)向心跳监控模块5发送第一心跳信号,若数据异常,第一中央处理器1停止向心跳监控模块5发送第一心跳信号;同理,若数据正常,第二中央处理器2每隔一段时间(毫秒级)向心跳监控模块5发送第一心跳信号,若数据异常,第二中央处理器2停止向心跳监控模块5发送第二心跳信号;当所述心跳监控模块5能正常接收到第二心跳信号,心跳监控模块5发送命令给切换开关6,切换开关6选择输出第一中央处理器1的PWM信号;当所述心跳监控模块5无法接收到第一心跳信号,却能正常接收到第二心跳信号,心跳监控模块5发送命令给切换开关6,切换开关6选择输出第二中央处理器2的PWM信号;当所述心跳监控模块5无法接收到第一心跳信号和第二心跳信号,则执行紧急降落;系统上电运行时,所述心跳监控模块5会不停地检测心跳信号。As shown in Figure 5, it is an application case of Embodiment 2, further describing the functions of the first central processor 1, the second central processor 2 and the heartbeat monitoring module 5; after the system is powered on and runs, the first central processor 1 and the second central processor 2 continuously read the data of the first IMU sensor 3 or the second IMU sensor 4 as well as other sensors 7 and other peripherals 8 respectively; if the data is normal, the first central processor 1 will time (millisecond level) to send the first heartbeat signal to the heartbeat monitoring module 5. If the data is abnormal, the first central processor 1 stops sending the first heartbeat signal to the heartbeat monitoring module 5; similarly, if the data is normal, the second central processor 1 2. Send the first heartbeat signal to the heartbeat monitoring module 5 at regular intervals (millisecond level). If the data is abnormal, the second central processor 2 stops sending the second heartbeat signal to the heartbeat monitoring module 5; when the heartbeat monitoring module 5 can After receiving the second heartbeat signal normally, the heartbeat monitoring module 5 sends a command to the switch 6, and the switch 6 selects to output the PWM signal of the first central processor 1; when the heartbeat monitoring module 5 cannot receive the first heartbeat signal, it If the second heartbeat signal can be received normally, the heartbeat monitoring module 5 sends a command to the switch 6, and the switch 6 selects to output the PWM signal of the second central processor 2; when the heartbeat monitoring module 5 cannot receive the first heartbeat signal and If there is a second heartbeat signal, an emergency landing will be performed; when the system is powered on and running, the heartbeat monitoring module 5 will continuously detect the heartbeat signal.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the present invention. within the scope of protection.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210161701.8A CN114527698B (en) | 2022-02-22 | 2022-02-22 | A redundant flight controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210161701.8A CN114527698B (en) | 2022-02-22 | 2022-02-22 | A redundant flight controller |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114527698A CN114527698A (en) | 2022-05-24 |
CN114527698B true CN114527698B (en) | 2023-10-31 |
Family
ID=81625276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210161701.8A Active CN114527698B (en) | 2022-02-22 | 2022-02-22 | A redundant flight controller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114527698B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109062028A (en) * | 2018-09-04 | 2018-12-21 | 北京实干兴邦科技有限公司 | A kind of redundance control system of flight control computer |
CN113110563A (en) * | 2021-05-28 | 2021-07-13 | 之江实验室 | Redundancy arbitration switching method and system for unmanned aerial vehicle and computer equipment |
WO2021212325A1 (en) * | 2020-04-21 | 2021-10-28 | 深圳市大疆创新科技有限公司 | Dual-flight control switching method, flight control system, and unmanned aerial vehicle |
-
2022
- 2022-02-22 CN CN202210161701.8A patent/CN114527698B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109062028A (en) * | 2018-09-04 | 2018-12-21 | 北京实干兴邦科技有限公司 | A kind of redundance control system of flight control computer |
WO2021212325A1 (en) * | 2020-04-21 | 2021-10-28 | 深圳市大疆创新科技有限公司 | Dual-flight control switching method, flight control system, and unmanned aerial vehicle |
CN113110563A (en) * | 2021-05-28 | 2021-07-13 | 之江实验室 | Redundancy arbitration switching method and system for unmanned aerial vehicle and computer equipment |
Non-Patent Citations (2)
Title |
---|
一体化综合信息处理载荷系统中柔性可重构技术的研究;阎啸;杨宗武;王茜;张天虹;;实验科学与技术(06);全文 * |
一种小型无人机自主飞控系统设计与实现;梅武军;伍家成;杨扬戬;郑钧溢;;电子科技(07);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114527698A (en) | 2022-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220390945A1 (en) | Modular Flight Management System Incorporating An Autopilot | |
JP5345495B2 (en) | Modular software architecture for unmanned aerial vehicles | |
CN104914872A (en) | Sensor dual-redundancy flight control computer system suitable for small civilian unmanned aerial vehicle | |
CN107505833A (en) | A kind of flight control system and method based on embedded OS | |
CN103057712B (en) | Integration flight control system for miniature flying robot | |
CN105867418A (en) | Universal small unmanned aerial vehicle dual-core flight control computer and control method | |
CN203084553U (en) | Integrated unmanned aerial vehicle avionics system device | |
CN104765377A (en) | Unmanned helicopter flying control platform system based on QNX | |
CN106527461A (en) | Flight control system based on dual-core processor | |
CN205563189U (en) | Unmanned aerial vehicle flight controller | |
CN114490036A (en) | A scalable distributed redundant UAV intelligent flight control computer | |
CN105676755A (en) | Dual-core flight control computer | |
KR102255841B1 (en) | Redundant apparatus for controlling flight and unmanned aerial vehicle equipped with same, method for controlling flight of unmanned aerial vehicle | |
Bittar et al. | Central processing unit for an autopilot: Description and hardware-in-the-loop simulation | |
CN114527698B (en) | A redundant flight controller | |
Konomura et al. | Phenox: Zynq 7000 based quadcopter robot | |
CN212112162U (en) | A dual redundant miniaturized flight control device | |
CN206292630U (en) | A kind of multi-rotor unmanned aerial vehicle flight controller | |
CN116661331B (en) | Redundant flight control computer system utilizing software and hardware cooperation | |
CN202976253U (en) | Full-digitalization-based integrated warship driving and controlling system | |
CN205844907U (en) | The flight control system of unmanned plane and unmanned plane | |
US20200349104A1 (en) | Chip, processor, computer system and movable device | |
CN205049929U (en) | Unmanned aerial vehicle flight control system and unmanned aerial vehicle | |
CN216526894U (en) | Unmanned aerial vehicle control system | |
CN108594715A (en) | unmanned aerial vehicle main control board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |