CN114527210B - 一种柑橘贮运过程中酸腐病病害监测的方法 - Google Patents

一种柑橘贮运过程中酸腐病病害监测的方法 Download PDF

Info

Publication number
CN114527210B
CN114527210B CN202210129294.2A CN202210129294A CN114527210B CN 114527210 B CN114527210 B CN 114527210B CN 202210129294 A CN202210129294 A CN 202210129294A CN 114527210 B CN114527210 B CN 114527210B
Authority
CN
China
Prior art keywords
internal standard
fruits
citrus
acid rot
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210129294.2A
Other languages
English (en)
Other versions
CN114527210A (zh
Inventor
曹锦萍
孙崇德
吴珏
孙翠
张禾
王岳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210129294.2A priority Critical patent/CN114527210B/zh
Publication of CN114527210A publication Critical patent/CN114527210A/zh
Application granted granted Critical
Publication of CN114527210B publication Critical patent/CN114527210B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • G01N30/8634Peak quality criteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N2030/042Standards
    • G01N2030/045Standards internal

Landscapes

  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Engineering & Computer Science (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

本发明涉及水果采后保鲜领域,尤其涉及一种柑橘贮运过程中酸腐病病害监测的方法。一种柑橘贮运过程中酸腐病病害监测的方法,该方法通过采集柑橘酸腐病害相关挥发性标志物的信号来预测该批次柑橘果实酸腐病发病情况;所述的柑橘酸腐病害相关挥发性标志物包括以下的一种或多种组合:3‑甲氧基‑3‑甲基‑1‑丁烯、异戊烯醇、苯乙烯、γ‑松油烯、芳樟醇、(+)‑顺‑柠檬烯‑1,2‑环氧化物、柠檬烯环氧化物、4‑萜烯醇、D‑二氢香芹酮、(+)‑二氢香芹酮、Z‑香芹醇、D‑香芹酮。本发明能够以贮运空间中的挥发性成分变化为基础,根据采集的信号预测该批次柑橘果实酸腐病发病情况,为大批量仓储和运输过程中及时发现病果、防止酸腐病害的大范围传播提供技术手段。

Description

一种柑橘贮运过程中酸腐病病害监测的方法
技术领域
本发明涉及水果采后保鲜领域,尤其涉及一种柑橘贮运过程中酸腐病病害监测的方法。
背景技术
酸腐病又被称为白霉病、湿塌烂,是柑橘果实采后贮藏运输过程中的主要病害之一,柑橘一旦被酸腐病菌侵染发病,果实在数天内迅速腐烂成为烂柿子般的粘湿团,流出汁液并散发出强烈的酸臭气味。其汁液中带有大量病原菌,病果附近果实极易受感染,导致柑橘大面积腐烂。目前,可用于酸腐病防治的防腐剂种类有限,而且其病程发展过快,防治难度较大。因此,在实际贮藏物流过程中,一旦发生酸腐病,应及时挑出病果,并根据病害发展情况,及时调整贮运和销售策略,尽早销售。
柑橘贮藏或长途运输过程中,大量的果实集中堆码在相对密闭的空间,更易导致酸腐病的大面积发病。目前实际生产中主要通过人员定期巡视来监测病害的发生。酸腐病果会散发出刺鼻的酸臭气味,易于辨识。然而,人的嗅觉容易对环境适应,敏感性迅速降低。为从密集堆垛的果实中发现病果,需抽检少量样品进行逐个观察,而对于位于堆垛下方的果实,需逐筐移出,才有可能发现病果的存在。因此,贮运过程中酸腐病果难以被及时发现,一旦出现往往已经出现了大面积腐烂,难以挽回经济损失。利用其特征性气味,开发更为灵敏而客观的检测技术手段,是及时发现柑橘酸腐病害的有效手段。
发明内容
本发明利用柑橘酸腐病果具有易于辨识的酸臭气味这一特征,提供了一种柑橘贮运过程中酸腐病病害监测的方法,能够以贮运空间中的挥发性成分变化为基础,根据采集的信号预测该批次柑橘果实酸腐病发病情况,为大批量仓储和运输过程中及时发现病果、防止酸腐病害的大范围传播提供技术手段。
为了实现上述的目的,本发明采用了以下的技术方案:
一种柑橘贮运过程中酸腐病病害监测的方法,该方法通过采集柑橘酸腐病害相关挥发性标志物的信号来预测该批次柑橘果实酸腐病发病情况;所述的柑橘酸腐病害相关挥发性标志物包括以下的一种或多种组合:
3-甲氧基-3-甲基-1-丁烯、异戊烯醇、苯乙烯、γ-松油烯、芳樟醇、(+)-顺-柠檬烯-1,2-环氧化物、柠檬烯环氧化物、4-萜烯醇、D-二氢香芹酮、(+)-二氢香芹酮、Z-香芹醇、D-香芹酮。
本发明所述酸腐病病害监测包括所有涉及柑橘采后各环节的病害检测,包括储存和运输等过程,本发明所述的“检测”和“监测”,在本发明的技术领域还可成为“评估”、“判断”、“判别”等。
作为优选,本发明的方法抽取柑橘贮运过程中的气体样本,采用气相色谱-质谱联用仪中进行分析。当然本发明也可以采用各类检测器、传感器或化学反应等方法所开展的针对柑橘酸腐病的病害监测。
作为优选,气相色谱-质谱联用仪的检测参数如下:
采用HP-5毛细管色谱柱进行成分分离;
升温程序:先从40 ℃以3 ℃/min的速度升到70 ℃,再从70 ℃以1 ℃/min的速度升至130 ℃,最后从130 ℃以15 ℃/min 的速度升温到230 ℃,载气流速1.0 mL/min,离子源温度230 ℃,通过70 eV电子能量的电子轰击离子化;
根据挥发性物质的总离子图,采用计算机进行MS数据库检索以及人工谱图分析,采用峰面积归一化方法求出各化合物的相对含量,以1-己醇(0.1% v/v)为内标进行定量计算各目标物质的含量,计算公式如下:
C = (C内标 × V内标 × A目标)/(A内标 × M目标
式中:M目标表示被检测样品的称量质量(mg/Fw),C内标表示目标物的浓度(μL/mL);V内标表示每个样品加入内标物的体积(mL);A内标表示内标物的峰面积;C内标表示内标物的浓度(μL/mL);A目标表示目标物的峰面积。
作为优选,本发明的方法将病斑平均直径大于1 cm定义为发病,按照发病程度将果实分为五个病程:
I级病程-病斑直径10 mm、II级病程-病斑直径30 mm、III级病程-病斑直径50 mm、IV级病程-病斑直径70 mm和V级病程-整果腐烂。
作为再优选,五个病程的判断如下:
I级病程:
标志物 含量(%)
3-甲氧基-3-甲基-1-丁烯 0.01~0.02%
异戊烯醇 0.02~0.05%
苯乙烯 > 0
γ-松油烯 >0.02%
芳樟醇 >0.02%
(+)-顺-柠檬烯-1,2-环氧化物 >4.15×10<sup>-8</sup>
柠檬烯环氧化物 >4.15×10<sup>-8</sup>
4-萜烯醇 >0.91×10<sup>-3</sup>
D-二氢香芹酮 >0.91×10<sup>-3</sup>
(+)-二氢香芹酮 >0.91×10<sup>-3</sup>
Z-香芹醇 >0.91×10<sup>-3</sup>
D-香芹酮 >0.91×10<sup>-3</sup>
II级病程:
标志物 含量
3-甲氧基-3-甲基-1-丁烯 0.01~0.02%
异戊烯醇 0.02~0.07%
苯乙烯 > 0
γ-松油烯 >0.02%
芳樟醇 >0.02%
(+)-顺-柠檬烯-1,2-环氧化物 >4.15×10<sup>-8</sup>
柠檬烯环氧化物 >4.15×10<sup>-8</sup>
4-萜烯醇 >0.91×10<sup>-3</sup>
D-二氢香芹酮 >0.91×10<sup>-3</sup>
(+)-二氢香芹酮 >0.91×10<sup>-3</sup>
Z-香芹醇 >0.91×10<sup>-3</sup>
D-香芹酮 >0.91×10<sup>-3</sup>
III级病程:
标志物 含量
3-甲氧基-3-甲基-1-丁烯 0.01~0.02%
异戊烯醇 0.01~0.02%
苯乙烯 > 0
γ-松油烯 >0.02%
芳樟醇 >0.02%
(+)-顺-柠檬烯-1,2-环氧化物 0.0002~0.004%
柠檬烯环氧化物 >4.15×10<sup>-8</sup>
4-萜烯醇 0.91×10<sup>-3</sup>~0.03%
D-二氢香芹酮 0.91×10<sup>-3</sup>~0.03%
(+)-二氢香芹酮 >0.91×10<sup>-3</sup>
Z-香芹醇 >0.91×10<sup>-3</sup>
D-香芹酮 >0.91×10<sup>-3</sup>
IV级病程:
标志物 含量
3-甲氧基-3-甲基-1-丁烯 0.01~0.02%
异戊烯醇 0.01~0.02%
苯乙烯 > 0
γ-松油烯 >0.02%
芳樟醇 >0.02%
(+)-顺-柠檬烯-1,2-环氧化物 0.004~0.008%
柠檬烯环氧化物 >4.15×10<sup>-8</sup>
4-萜烯醇 0.91×10<sup>-3</sup>~0.03%
D-二氢香芹酮 >0.02%
(+)-二氢香芹酮 >0.91×10<sup>-3</sup>
Z-香芹醇 >0.91×10<sup>-3</sup>
D-香芹酮 >0.91×10<sup>-3</sup>
V级病程:
标志物 含量
3-甲氧基-3-甲基-1-丁烯 0.01~0.02%
异戊烯醇 0.01~0.03%
苯乙烯 > 0
γ-松油烯 >0.02%
芳樟醇 >0.02%
(+)-顺-柠檬烯-1,2-环氧化物 0.001~0.006%
柠檬烯环氧化物 >4.15×10<sup>-8</sup>
4-萜烯醇 0.91×10<sup>-3</sup>~0.03%
D-二氢香芹酮 >0.02%
(+)-二氢香芹酮 >0.91×10<sup>-3</sup>
Z-香芹醇 >0.91×10<sup>-3</sup>
D-香芹酮 >0.91×10<sup>-3</sup>
本发明由于采用了上述的技术方案,提供了一种柑橘贮运过程中酸腐病病害监测的方法,能够以贮运空间中的挥发性成分变化为基础,根据采集的信号预测该批次柑橘果实酸腐病发病情况,为大批量仓储和运输过程中及时发现病果、防止酸腐病害的大范围传播提供技术手段。
附图说明
图1为12种标志物的化学结构式;其中Methyl(2-methyl-3-butene-2-yl) ether(3-甲氧基-3-甲基-1-丁烯)、3-Methyl-2-buten-1-ol(异戊烯醇)、Styrene(苯乙烯)、γ-Terpinene(γ-松油烯)、Linalool(芳樟醇)、(+)-Cis-Limonene 1,2-Epoxide((+)-顺-柠檬烯-1,2-环氧化物)、(E)-Limonene oxide(柠檬烯环氧化物)、Terpinen-4-ol(4-萜烯醇)、D-dihydrocarvone(D-二氢香芹酮)、(+)-Dihydrocarvone((+)-二氢香芹酮)、Z-Carveol(Z-香芹醇)、D-Carvone(D-香芹酮)。
图2、图3为12种标志物在柑橘健康果实、酸腐病果和其他病害果实环境气体中的含量水平比较。
图4、图5为12种标志物区分健康果实vs病害果实的ROC曲线。
图6、图7为12种标志物随着柑橘酸腐病果病程发展的含量变化。
具体实施方式
下面结合附图和具体实施例对本发明作出进一步的详细阐述。应理解,所述实施例仅用于解释本发明,并非用于限制本发明的范围。
实施例1:挥发性标志物在区分健康果实和酸腐病果中的应用
1)试验方法
选取大小均匀、无病虫害的‘宫川’温州蜜柑果实,自来水清洗后,再浸入2%的次氯酸钠溶液进行1-2 min消毒,取出后用自来水冲洗,去除残余次氯酸钠,自然晾干。在果实赤道部位用无菌接种针打孔,深度为1-2 cm,以接种相同体积无菌水为对照,接种1×106孢子/mL 病原菌孢子悬浮液20 μL,每组30个果实,每个处理重复3次,对照组果实接种20 μL无菌水。接种后的柑橘放置在塑料筐中,保鲜膜包装保湿,置于25 ℃、RH为95%的条件下培养。
每个处理组随机选取9个果实,观察记录发病症状动态变化,采用十字交叉法测量病斑相互垂直方向上的直径,取平均值。病斑平均直径大于1 cm定义为发病,按照发病程度将果实分为五个病程:I级病果(病斑直径10 mm)、II级病果(病斑直径30 mm)、III级病果(病斑直径50 mm)、IV级病果(病斑直径70 mm,半果腐烂)、V级病果(整果腐烂)。
取不同病程的果实各9个,置于无味带呼吸阀的乐扣盒中,每盒3个,每组3个重复。每隔24 h盖上盒盖集气60 min后,用一次性注射器抽取2 mL顶空气体,迅速注入气相色谱-质谱联用仪(GC-MS,Agilent 5975C-7890A气相质谱联用仪,美国)中进行分析。
GC-MS检测参数:采用HP-5毛细管色谱柱(30 m×0.25 mm,0.25 μm,Agilent,美国)进行成分分离。升温程序:先从40 ℃以3 ℃/min的速度升到70 ℃,再从70 ℃以1 ℃/min的速度升至130 ℃,最后从130 ℃以15 ℃/min 的速度升温到230 ℃,载气流速1.0mL/min,离子源温度230 ℃,通过70 eV电子能量的电子轰击离子化。根据挥发性物质的总离子图,采用计算机进行MS数据库检索以及人工谱图分析,采用峰面积归一化方法求出各化合物的相对含量,以1-己醇(0.1% v/v)为内标进行定量计算各目标物质的含量,计算公式如下:
C = (C内标 × V内标 × A目标)/(A内标 × M目标
式中:M目标表示被检测样品的称量质量(mg/Fw),C内标表示目标物的浓度(μg/g);V内标表示每个样品加入内标物的体积(mL);A内标表示内标物的峰面积;C内标表示内标物的浓度(mg/mL);A目标表示目标物的峰面积。
2)试验结果
为避免柑橘贮藏过程中的气味变化干扰,本研究每个病程的果实均设置了在相同环境下放置相应时间的无菌水接种健康果实对照(HF)。为避免青腐病、绿腐病等柑橘其他常见病害的气体成分相混淆,本研究也相应地设置了青腐病(BM)、绿腐病(GM)接种的全病程果实对照。检测结果表明,本发明中的12种标志物(化学结构如图1所示),除γ-松油烯外,其余11种标志物在健康果实的气体环境中均未检出,而γ-松油烯的含量在健康果实气体环境中的含量远远低于酸腐病果(SR)的气体环境;3-甲氧基-3-甲基-1-丁烯、异戊烯醇、R-氧化柠檬烯、4-萜烯醇、D-二氢香芹酮、D-香芹酮在BM和GM果实气体环境中也未检出;苯乙烯、γ-松油烯、芳樟醇、柠檬烯-1 2-环氧化物、(+)-二氢香芹酮、Z-香芹醇在BM和GM果实中偶有检出,但含量远低于SR果实(图2、图3)。
将12种化合物对SR果实与健康果实以及非酸腐病果(BM和GM)制作ROC曲线结果如图2所示,γ-松油烯、芳樟醇、柠檬烯-1 2-环氧化物、(+)-二氢香芹酮、Z-香芹醇、D-香芹酮、D-二氢香芹酮等7种标志物在的AUC为1;3-甲氧基-3-甲基-1-丁烯、异戊烯醇、苯乙烯、R-氧化柠檬烯、4-萜烯醇等5种标志物的AUC均在0.9以上(图4、图5)。
随着柑橘酸腐病果病程发展的含量变化,12种挥发性标志物的变化规律如图6、图7所示。12种标志物在健康果的气体环境中未能检出,而且均在病程I的果实种即可检出,并且在随后的病程中一直存在。表明该12种化合物灵敏度高,适用于酸腐病早期病害的监测。除了3-甲氧基-3-甲基-1-丁烯和异戊烯醇这两种化合物在病程I中含量最高,4-萜烯醇在病程V含量最高,其余大部分化合物随着病程发展逐渐升高,在病程IV中含量最高,随后在病程V含量略有下降。
实施例2:挥发性标志物在酸腐病果病程监测中的应用
选取不同病程的果实,病程划分标准、果实集气方法、检测方法和定量方法同实施例1。不同病程果实各化合物的含量如表1所示。检测结果表明,不同病程的果实微环境中标志物含量基本符合本说明书所划定的范围。
Figure 549679DEST_PATH_IMAGE002

Claims (1)

1.一种柑橘贮运过程中酸腐病病害监测的方法,该方法通过采集柑橘酸腐病害相关挥发性标志物的信号来预测柑橘果实酸腐病发病情况;其特征在于,所述的柑橘酸腐病害相关挥发性标志物包括:
3-甲氧基-3-甲基-1-丁烯、异戊烯醇、苯乙烯、γ-松油烯、芳樟醇、(+)-顺-柠檬烯-1,2-环氧化物、柠檬烯环氧化物、4-萜烯醇、D-二氢香芹酮、(+)-二氢香芹酮、Z-香芹醇、D-香芹酮;
该方法抽取柑橘贮运过程中的气体样本,采用气相色谱-质谱联用仪进行分析;气相色谱-质谱联用仪的检测参数如下:
采用HP-5毛细管色谱柱进行成分分离;
升温程序:先从40 ℃以3 ℃/min的速度升到70 ℃,再从70 ℃以1 ℃/min的速度升至130 ℃,最后从130 ℃以15 ℃/min 的速度升温到230 ℃,载气流速1.0 mL/min,离子源温度230 ℃,通过70 eV电子能量的电子轰击离子化;
根据挥发性物质的总离子图,采用计算机进行MS数据库检索以及人工谱图分析,采用峰面积归一化方法求出各化合物的相对含量,以0.1% v/v 1-己醇为内标进行定量计算各目标物质的含量,计算公式如下:
C = (C内标 × V内标 × A目标)/(A内标 × M目标
式中:M目标表示被检测样品的称量质量(mg/Fw),C内标表示目标物的浓度(μg/g);V内标表示每个样品加入内标物的体积(mL);A内标表示内标物的峰面积;C内标表示内标物的浓度(mg/mL);A目标表示目标物的峰面积。
CN202210129294.2A 2022-02-11 2022-02-11 一种柑橘贮运过程中酸腐病病害监测的方法 Active CN114527210B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210129294.2A CN114527210B (zh) 2022-02-11 2022-02-11 一种柑橘贮运过程中酸腐病病害监测的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210129294.2A CN114527210B (zh) 2022-02-11 2022-02-11 一种柑橘贮运过程中酸腐病病害监测的方法

Publications (2)

Publication Number Publication Date
CN114527210A CN114527210A (zh) 2022-05-24
CN114527210B true CN114527210B (zh) 2022-10-21

Family

ID=81622372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210129294.2A Active CN114527210B (zh) 2022-02-11 2022-02-11 一种柑橘贮运过程中酸腐病病害监测的方法

Country Status (1)

Country Link
CN (1) CN114527210B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243188B (zh) * 2005-06-09 2013-07-24 先锋高级育种国际公司 抗核盘菌芸苔及开发抗核盘菌的方法
CN101049114B (zh) * 2007-05-08 2011-01-12 浙江大学 一种杨梅果实采后防腐方法
US11432548B2 (en) * 2020-02-14 2022-09-06 The United States Of America, As Represented By The Secretary Of Agriculture Methods for repelling Drosophila species using 2-pentylfuran
CN112695002A (zh) * 2021-02-07 2021-04-23 西南大学 一种细菌合成群落及其在制备控制柑橘果实采后病害的生物防治剂中的应用

Also Published As

Publication number Publication date
CN114527210A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
Li et al. Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa
Morath et al. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential
Morita et al. Antifungal spectrum characterization and identification of strong volatile organic compounds produced by Bacillus pumilus TM-R
Chuankun et al. Soil volatile fungistasis and volatile fungistatic compounds
Toome et al. Leaf rust induced volatile organic compounds signalling in willow during the infection
Yalage Don et al. Aureobasidium pullulans volatilome identified by a novel, quantitative approach employing SPME-GC-MS, suppressed Botrytis cinerea and Alternaria alternata in vitro
Laothawornkitkul et al. Volatile organic compounds as a diagnostic marker of late blight infected potato plants: A pilot study
Ma et al. Antifungal activity of Ziziphora clinopodioides Lam. essential oil against Sclerotinia sclerotiorum on rapeseed plants (Brassica campestris L.)
Kil et al. Allelopathic effects of Pinus densiflora on undergrowth of red pine forest
Cleveland et al. Effect of soybean volatile compounds on Aspergillus flavus growth and aflatoxin production
Degenhardt et al. Temporal Dynamics and Electronic Nose Detection of Stink Bug‐Induced Volatile Emissions from Cotton Bolls
Ling et al. The inhibitory effect of volatile organic compounds produced by Bacillus subtilis CL2 on pathogenic fungi of wolfberry
Fernández et al. Physiological effects of the induction of resistance by compost or Trichoderma asperellum strain T34 against Botrytis cinerea in tomato
CN114527210B (zh) 一种柑橘贮运过程中酸腐病病害监测的方法
Khruengsai et al. Biofumigation activities of volatile compounds from two Trichoderma afroharzianum strains against Fusarium infections in fresh chilies
Ferreira et al. Determination of pesticide residues in coconut tree trunks by modified QuEChERS method and ultra-high-performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry
CN105379748B (zh) 一种抑菌农药组合物及其用途
Xie et al. Targeted acquisition of Fusarium oxysporum f. sp. niveum toxin-deficient mutant and its effects on watermelon Fusarium wilt
Frenguelli The contribution of aerobiology to agriculture
Whitfield et al. Volatile components from the roots of Acacia pulchella R. Br. and their effect on Phytophthora cinnamomi Rands
CN106212507A (zh) 二甲基三硫醚在防治芒果炭疽病中的应用
Dzulkafli et al. Identification of chelidonic acid and asparagine in Ganoderma boninense-inoculated oil palm seedlings
Rondelli et al. Emission of volatiles during the pathogenic interaction between Erwinia amylovora and Malus domestica
CN111440731A (zh) 一种枸杞内生轮状镰刀菌菌株及其应用
CN110308225A (zh) 一种十四烷醇的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant