CN114519456A - 一种绿色农业零碳供能系统及其智能配置分层优化算法 - Google Patents
一种绿色农业零碳供能系统及其智能配置分层优化算法 Download PDFInfo
- Publication number
- CN114519456A CN114519456A CN202210041177.0A CN202210041177A CN114519456A CN 114519456 A CN114519456 A CN 114519456A CN 202210041177 A CN202210041177 A CN 202210041177A CN 114519456 A CN114519456 A CN 114519456A
- Authority
- CN
- China
- Prior art keywords
- carbon
- methane
- equipment
- carbon dioxide
- dry reforming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 178
- 238000005457 optimization Methods 0.000 title claims abstract description 57
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 126
- 238000002407 reforming Methods 0.000 claims abstract description 87
- KDRIEERWEFJUSB-UHFFFAOYSA-N carbon dioxide;methane Chemical compound C.O=C=O KDRIEERWEFJUSB-UHFFFAOYSA-N 0.000 claims abstract description 86
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 35
- 230000008569 process Effects 0.000 claims abstract description 21
- 230000002195 synergetic effect Effects 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims description 46
- 238000004146 energy storage Methods 0.000 claims description 45
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 39
- 230000009919 sequestration Effects 0.000 claims description 16
- 230000005611 electricity Effects 0.000 claims description 13
- 238000012423 maintenance Methods 0.000 claims description 13
- 238000007600 charging Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 238000012360 testing method Methods 0.000 claims description 11
- 230000006870 function Effects 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000010248 power generation Methods 0.000 claims description 10
- 239000002351 wastewater Substances 0.000 claims description 10
- 244000144972 livestock Species 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000002028 Biomass Substances 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 6
- 230000003068 static effect Effects 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 5
- 125000004122 cyclic group Chemical group 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- 238000004088 simulation Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims description 3
- 230000013016 learning Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000008213 purified water Substances 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 230000009326 social learning Effects 0.000 claims description 3
- 239000002699 waste material Substances 0.000 claims description 3
- 238000012271 agricultural production Methods 0.000 abstract description 17
- 230000000694 effects Effects 0.000 abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 239000011541 reaction mixture Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 238000009395 breeding Methods 0.000 description 5
- 230000001488 breeding effect Effects 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 238000009360 aquaculture Methods 0.000 description 2
- 244000144974 aquaculture Species 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 1
- GMACPFCYCYJHOC-UHFFFAOYSA-N [C].C Chemical compound [C].C GMACPFCYCYJHOC-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000019637 foraging behavior Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S10/00—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
- H02S10/10—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
- H02S10/12—Hybrid wind-PV energy systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S10/00—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
- H02S10/20—Systems characterised by their energy storage means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/10—Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/40—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Power Engineering (AREA)
- Theoretical Computer Science (AREA)
- Tourism & Hospitality (AREA)
- Development Economics (AREA)
- General Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Quality & Reliability (AREA)
- Game Theory and Decision Science (AREA)
- Health & Medical Sciences (AREA)
- Operations Research (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Treating Waste Gases (AREA)
Abstract
本发明公开了一种在未来高可再生能源接入的能源系统格局下,一种绿色农业零碳供能系统及其智能配置分层优化的方法。通过接入直接空气碳捕集系统,实现区域农业场所CO2排放的完全吸收,并通过甲烷‑二氧化碳干重整、微藻固碳抵消区域农业生产生活过程以CO2、CH4为主的含碳排放,更好地缓解温室效应。为保证系统零碳、经济、稳定运行,研究一种智能的系统配置分层优化算法,上层综合考虑经济、零碳指标,确定系统最优结构和各装置的最佳容量;下层结合可再生出力和农业用户的负荷需求,优化系统中各装置的最佳协同出力,从而支撑系统稳定、可靠、经济与零碳运行。
Description
技术领域
本发明涉及一种绿色农业零碳供能系统及其智能配置分层优化技术,属于低碳能源技术领域。
背景技术
全球气候变暖而造成环境异常的问题,收到当今国际社会的广泛关注,因人类活动而导致的二氧化碳排放已被认定为全球气候变暖的主要原因。由于农地利用过程中农业生产资料的投入、农业能源的消耗以及畜牧养殖产生的大量碳排放,我国农业碳排放已占全国碳排放总量的17%,因此,在农业生产生活中加入负碳排环节具有指导性意义。
二氧化碳和甲烷为农业含碳排放的重要组成部分。由于农业生产生活场所具有生物密度大、碳排放呈点源分布式的特点,考虑到直接空气碳捕集技术 (DAC)能够补偿生产、生活中难以脱碳环节的碳排放,是实现净零排放与负排放的必要手段,因此,将直接空气碳捕集技术应用于农业碳减排过程,从空气中直接捕捉CO2,从而抵消农业生产生活中的CO2排放量,实现低碳农业。由于农业生产生活过程中产生的沼气是碳排放的重要组成部分,其主要包括CO2和甲烷,甲烷-二氧化碳干重整工艺(DRM)以甲烷和二氧化碳为原料生产合成气,产物中CO/H2约为1,可用于下游生产高附加值产品,因此,将DRM工艺引入农业生产生活,协同DAC技术实现农业生产生活碳排放的完全消纳。由于农业生产生活过程中不可避免地排放含有大量氮、磷元素的废水,考虑到藻类植物能够吸收水体中的氮、磷元素转化为自身的生物质并具备一定的固碳量,因此,将微藻应用于农业生产生活过程,处理一定量的农业生产生活污水并消纳一定的农业碳排放,实现绿色农业。
近年来,我国可再生能源装机容量逐步增加,逐渐成为未来可再生能源的发展趋势。综合能源系统因其多元供能、就地消纳可再生能源等优势,被认为是推进能源系统低碳转型的关键技术。将可再生能源应用于绿色农业系统,由可再生能源满足上层零碳、经济的目标以及下层用户电、热供需平衡的关系有利于推动绿色农业的建设。
因此,为实现绿色、零碳的农业生产生活过程,开发一种绿色农业零碳供能系统很有必要。针对整体系统设备种类多、特性差异大、电-热-碳多能耦合以及可再生能源出力间歇波动与不确定性的特点,为保证该系统的灵活运行,提出一种绿色农业零碳供能系统的智能配置分层优化算法很有必要。
发明内容
技术问题:
本发明所要解决的技术问题在于,提出一种绿色农业零碳供能系统,以及适用于该系统的智能配置分层优化的算法,绿色农业零碳供能系统运行过程中能够抵消区域农业生产生活过程以CO2、CH4为主的含碳排放,智能配置分层优化的算法能够保证系统零碳、经济、稳定运行。
技术方案:
本发明公开了一种基于绿色农业的零碳供能系统,
包括微藻系统,沼气池,电池储能设备,可再生能源,电锅炉设备,甲烷- 二氧化碳干重整设备,直接空气碳捕集设备,用户和畜牧养殖场;
所述直接空气碳捕集设备捕集空气中的CO2的,将CO2送入甲烷-二氧化碳干重整设备以及微藻系统实现CO2的完全消纳;
所述可再生能源驱动直接空气碳捕集设备以及甲烷-二氧化碳干重整设备,并满足农业区域居民电、热能源需求;
甲烷-二氧化碳干重整设备与所述直接空气碳捕集设备协同运作,结合具备一定固碳能力的微藻,实现对农业沼气池中CH4的完全消纳;
所述电池储能设备在可再生能源产出力高峰期,储存多余的电能,在可再生能源产出力较弱时,释放电能;
所述电锅炉设备为系统及用户提供热能源需求;
所述畜牧养殖场的养殖废弃物于沼气池中分解反应,生成的CO2和CH4送入甲烷-二氧化碳干重整设备,实现CH4的完全消纳;
所述畜牧养殖场的养殖废水送入微藻系统,实现农业养殖废水的低污处理,所述低污处理后的净水提供给甲烷-二氧化碳干重整设备用于冷却。
本发明还公开了一种绿色农业零碳供能系统的智能配置分层优化的算法,包括构建DAC静态模型、微藻固碳能力模型、甲烷-二氧化碳干重整设备模型以及可再生能源出力模型,设定整体系统优化指标,在约束条件下,对绿色农业零碳供能系统进行整体配置分层优化;
所述整体配置分层优化上层综合考虑经济、零碳指标,确定系统最优结构和各装置的最佳容量;下层结合可再生出力和农业用户的负荷需求,优化系统中各装置的最佳协同出力,从而保证系统零碳、经济、稳定运行。
进一步的,所述DAC静态模型,以CO2产量为输入变量,直接空气碳捕集设备电耗、热耗为输出变量:
式中,PDAC,E[kWh]为DAC电耗,HDAC,t[kWh]为DAC系统热耗,为DAC 系统的CO2小时产量;a[kWh/kg]为捕集单位质量CO2电耗系数;b[kWh/kg]为捕集单位质量CO2热耗系数;
微藻固碳能力模型:
甲烷-二氧化碳干重整设备模型:
其中,PDRM,t[kW]为甲烷-二氧化碳干重整设备电耗;HDRM,t[kW]为甲烷-二氧化碳干重整设备热耗;为甲烷-二氧化碳干重整设备每小时CH4输入量;为甲烷-二氧化碳干重整设备每小时H2产量;mCO,t为甲烷-二氧化碳干重整设备每小时CO产量;
所述可再生能源出力模型,包括风力发电系统、光伏发电系统,其出力模型式为:
式中,Pt Wind[kW]为t时刻风机预测输出功率;Uhub,t[m/s]为t时刻风机轮毂高度处的预测风速;a,b,c,d为拟合系数,vci[m/s],vr[m/s],vco[m/s]分别为风机的切入速度、额定风速与切出速度;
Pt PV[kW]表示时刻光伏发电机组的输出功率;YPV[kW]是光伏发电机组的额定容量,表示标准测试条件下的输出功率,所述标准测试条件为:光照辐射强度为1kW/m2,温度为298K,无风;fPV为光伏降额因子;GT[Kw/m2]为当前时间步长的太阳辐照强度;GT,STC[[Kw/m2]为标准测试条件下的太阳辐照强度,通常取1;αP[%/K]为光伏电池板的功率温度系数;Tc[K]为当前时间步长的光伏电池温度; Tc,STC[K]为标准测试条件下的光伏电池温度。
进一步的,所述系统整体优化指标为:min Mtotal=Minf+Mom
其中,Mtotal为总成本,Minf[¥]为初始投资成本,Mom[¥]为运行维护成本。
其中,所述初始投资成本Minf为:
其中,k表示第k个设备;K为综合能源系统中总的设备数量;Cinfk[¥/kWh] 为第k个设备单位容量的初始投资成本系数;Pcap,k[kWh]为第k个设备的额定容量;为直接空气碳捕捉设备年化投资成本;Qcap[tCO2·a]为直接空气碳捕捉设备年捕集CO2产量;为甲烷-二氧化碳干重整设备年化投资成本;QDMR[tCH4·a]为甲烷-二氧化碳干重整设备年输入甲烷量;R 为投资回报率;y为设备服役年限;r为银行利率;
所述运行维护成本为:
进一步的,所述约束条件包括功率平衡约束与设备运行约束;
所述功率平衡约束包括电功率平衡约束与热功率平衡约束;
所述电功率平衡约束:
其中,Pt load,E[kW]为用户电负荷;
所述热功率平衡约束:
所述设备运行约束包括直接空气碳捕集系统CO2捕集量约束,直接空气碳捕集系统CO2每小时捕集量约束,电锅炉设备输入电量上下限约束,电池储能容量上下限约束,电池储能充放电功率约束,电池储能循环利用约束,微藻固碳上下限约束,CO2物料分配约束,甲烷-二氧化碳干重整设备CH4物料输入约束以及甲烷-二氧化碳干重整设备CH4处理量约束。
进一步的,用于实现农业区域生产生活碳排放的完全捕集,所述直接空气碳捕集系统CO2捕集量约束为:
所述直接空气碳捕集系统每小时捕集量约束约束为:
所述电锅炉设备输入电量上下限约束为:
进一步的,所述电池储能容量上下限约束为:
所述电池储能充放电功率约束为:
所述电池储能循环利用约束为:
所述微藻固碳上下限约束为:
所述CO2物料分配约束如式为:
式中,DAC设备吸收的CO2全部用于甲烷-二氧化碳干重整设备原料输入以及微藻固碳;
所述甲烷-二氧化碳干重整设备CH4物料输入约束为:
所述甲烷-二氧化碳干重整设备CH4处理量约束如式为:
进一步的,所述绿色农业零碳供能系统配置分层优化,包括如下步骤:
步骤一、设定初始参数,包括种群规模、粒子个数、迭代次数、变量约束;种群中的每个粒子都包含待求解的决策输入变量信息,包括直接空气捕捉设备 CO2产量,电锅炉设备输入电量,甲烷-二氧化碳干重整输入CH4质量以及各设备配置容量,每个粒子都是配置优化问题的可行解;
步骤二、将每个粒子送到所构建的系统能耗-产量稳态模型中进行仿真,可以得到相关的输出变量,包括直接空气碳捕集设备要求电耗及热耗,电锅炉设备输出热功率,甲烷-二氧化碳干重整设备要求电耗及热耗等;
基于给定天气数据,用户负荷需求数据及农业碳排放数据,通过系统整体优化指标就可以求解每个粒子的适应度函数,如果粒子违背模型约束,额外的惩罚会添加到适应度函数;
步骤三、在每次迭代过程中,每个粒子更新个体最优值;所有的个体最优值会进行比较来获取全局最优值;在下一次迭代过程中,粒子会根据个体最优经验和全局最优信息以更新他们的速度和位置信息:
步骤四、当迭代满足终止条件时,即达到最大迭代次数或者最小适应度函数,粒子群算法将停止优化,最终全局最优的粒子将会被挑选出作为最合适的解。
有益效果:
1.本发明设计了一种绿色农业零碳供能系统,该系统包括可再生供能单元,即以风、光为代表的完全绿色的可再生能源、储能单元,即电池储能设备、空气碳捕集单元,即捕集空气中的CO2的直接空气碳捕集(DAC)设备、污水处理单元,即微藻、CO2资源化利用单元,即甲烷-二氧化碳干重整设备;该系统依托可再生能源完全供能,满足区域农业场所用户电-热需求,实现区域农业 CO2排放的完全吸收,进而甲烷-二氧化碳干重整设备,实现农业碳排放的完全消纳,实现农业污水的处理、二氧化碳的资源化利用并产生一定的经济效益;
2.在此基础上研发了一种智能的零碳能源系统分层优化配置方法,以保证系统零碳、经济、稳定运行;其中,优化算法上层综合考虑系统经济与零碳目标,确定系统最优结构和各装置的最佳容量;下层结合典型场景下可再生出力和农业用户的电热负荷需求,优化系统中各装置的最佳协同出力,保证系统稳定供能。采用粒子群算法进行系统的智能优化配置求解;
3.通过所提系统配置分层优化算法,能够充分发挥系统中直接空气碳捕集设备、电锅炉设备、甲烷-二氧化碳干重整设备、电池储能设备灵活运行特性;
在用户电、热需求较高时,上述灵活运行设备能够降低自身用能负荷以优先满足用户用能需求;
在用户电、热需求较低时,上述灵活运行设备能自由提高自身用能负荷以满足区域农业生产生活的日CO2、CH4减排需求并消纳可再生能源。
附图说明
图1为本发明中绿色农业零碳供能系统的整体结构示意图;
图2为本发明中绿色农业零碳供能系统的智能配置分层优化算法示意图;
图3为本发明中江苏某农业地区用户电、热需求折线图;
图4为本发明中绿色农业零碳供能系统容量配置的最优容量示意图;
图5为本发明中粒子群算法应用于零碳供能系统配置优化的算法示意图;
图6为本发明实施例中绿色农业的零碳供能系统冬季、过渡季、春季典型日下电功率调度结果图;
图7本发明实施例中绿色农业的零碳供能系统冬季、过渡季、春季典型日下热功率调度结果图;
图8本发明中实施例中色农业零碳供能系统冬季、过渡季、春季典型日下 CO2调度结果图。
其中,附图标记包括:1-微藻,2-沼气池,3-电池储能设备,4-可再生能源, 5-电锅炉设备,6-甲烷-二氧化碳干重整设备,7-直接空气碳捕集设备,8-用户、 9-畜牧养殖场。
具体实施方式
如图1、图2所示,本发明提供一种绿色农业零碳供能系统设计方法及其智能配置分层优化算法示意图;
如图1所示,在本系统中,风光发电系统4将电能储蓄到电池储能设备3中,由电池储能设备3为绿色农业零碳供能系统整体供电,如图1中的用户8、直接空气捕捉设备7、甲烷-二氧化碳干重整设备6、电锅炉设备5及沼气池2提供电能;
直接空气捕捉设备7捕捉空气中极低浓度的CO2,进而将CO2送入甲烷-二氧化碳干重整设备6以及微藻系统1实现CO2的完全消纳;
畜牧养殖场9的养殖废弃物于沼气池2中分解反应,生成的CO2和CH4送入甲烷-二氧化碳干重整设备,实现CH4的完全消纳;畜牧养殖场9的养殖废水送入微藻系统1,实现农业养殖废水的低污处理,进而净水可以提供给甲烷-二氧化碳干重整设备6用于冷却;
直接空气捕捉设备7、甲烷-二氧化碳干重整设备6、用户8以及畜牧养殖场9的电、热需求由风光发电系统4、电池储能设备3、电锅炉设备5提供。
本发明中,系统依托可再生能源完全供能,满足区域农业场所用户电-热需求,通过空气碳捕集系统实现区域农业CO2排放的完全吸收,进而基于微藻的固碳净水能力与甲烷-二氧化碳干重整,实现农业含碳温室气体排放的完全消纳、农业养殖废水的低污处理。
系统设计及智能配置分层优化算法的实现包括如下步骤:
S1:基于农业场所碳排放具有分布式点源的特征,将直接空气碳捕集(DAC) 设备应用于农业生产生活过程,抵消农业活动碳排放;
S2:基于微藻能够富集水体中的氮、磷元素并转化为自身生物质以及相比于陆生植物具有更优的固碳能力,将微藻用于农业生产生活过程中,实现农业废水低污处理;
S3:采用甲烷-二氧化碳干重整设备对农业沼气中的CH4进行处理,生产合成气用于下游高附加值产品的生产,结合微藻一定的固碳能力,协同DAC设备实现碳排放的完全消纳;
S4:为实现农业区域的净零碳排放,采用以风、光为代表的完全绿色可再生能源驱动直接空气碳捕集设备以及甲烷-二氧化碳干重整设备,并满足农业区域居民电、热能源需求;系统、用户热需求由电锅炉设备满足;
S5:基于可再生能源出力的间歇波动性,引入电池储能设备,在可再生能源出力高峰期,储存多余的电能,在可再生能源出力较弱时,释放电能;
S6:构建整体系统优化指标,在约束条件下对绿色农业零碳供能系统进行整体配置分层优化,上层综合考虑经济、零碳指标,确定系统最优结构和各装置的最佳容量;下层结合可再生出力和农业用户的负荷需求,优化系统中各装置的最佳协同出力,从而保证系统零碳、经济、稳定运行;
其中,步骤S1中的直接空气碳捕集设备采用化学吸附法捕集空气中的CO2,相比于溶液吸收法以及物理吸附法,其具备更优的CO2选择性以及较低的吸附剂再生阶段热耗需求。
实现该系统运行目标需要建立系统各设备出力、产量-能耗静态模型用于配置优化。
S1中所述直接空气碳捕集系统的模型,是基于S-TVSA工艺的直接空气碳捕集系统运行数据,包括风机电耗、真空泵电耗、压缩机电耗以及蒸汽吹扫热耗,建立以CO2产量为输入变量,直接空气碳捕集设备电耗、热耗为输出变量的静态模型,如式(1-2)所示:
式(1-2)中,PDAC,E[kWh]为DAC电耗,HDAC,t[kWh]为DAC系统热耗,为DAC系统的CO2小时产量;a[kWh/kg]为捕集单位质量CO2电耗系数;b[kWh/kg] 为捕集单位质量CO2热耗系数;
S2中所述的微藻固碳能力模型如式(3)所述:
式(3)中,表示微藻的小时固碳量,即每小时微藻将外源CO2转化为生物质的质量(每小时藻液能固定的CO2质量);ξMA[kg/(kg·h)]表示微藻固碳模型CO2固定系数;mMA[kg]表示微藻的质量。
S3中所述的甲烷-二氧化碳干重整设备模型如式(4-7)所述:
式(4-7)中,PDRM,t[kW]为甲烷-二氧化碳干重整设备电耗;HDRM,t[kW]为甲烷-二氧化碳干重整设备热耗;为甲烷-二氧化碳干重整设备每小时CH4输入量;为甲烷-二氧化碳干重整设备每小时H2产量;mCO,t为甲烷-二氧化碳干重整设备每小时CO产量;
S3中所述的甲烷-二氧化碳干重整设备需要与直接空气碳捕集设备协同运作实现CH4的消纳,这是因为沼气中CH4、CO2比例并不是1:1,甲烷摩尔分数占比较高,因此,完全实现沼气中CH4的消纳需要直接空气碳捕集设备提供CO2,该部分CO2按式(8)计算:
S4中所述的可再生能源出力模型,包括风力发电系统、光伏发电系统,其出力模型如式(9-10)所示:
式(9)中,Pt Wind[kW]为t时刻风机预测输出功率;Uhub,t[m/s]为t时刻风机轮毂高度处的预测风速;a,b,c,d为拟合系数,vci[m/s],vr[m/s],vco[m/s]分别为风机的切入速度、额定风速与切出速度;
式(10)中,Pt PV[kW]表示时刻光伏发电机组的输出功率;YPV[kW]是光伏发电机组的额定容量,表示标准测试条件下的输出功率(光照辐射强度为1kW/m2,温度为298K,无风);fPV为光伏降额因子;GT[Kw/m2]为当前时间步长的太阳辐照强度;GT,STC[[Kw/m2]为标准测试条件下的太阳辐照强度,通常取1;αP[%/K]为光伏电池板的功率温度系数;Tc[K]为当前时间步长的光伏电池温度;Tc,STC[K]为标准测试条件下的光伏电池温度。
S4中所述系统、用户热能需求由电锅炉设备提供,由电锅炉设备实现电转热,其模型如式(10)所示:
S5中所述的电池储能设备模型如式(10)所示:
基于上述模型,考虑整体系统初始投资成本,运行维护成本,提出系统整体优化指标,如式(13)所示:
min Mtotal=Minf+Mom (13)
式(13)中,Mtotal为总成本。Minf[¥]为初始投资成本,Mom[¥]为运行维护成本。
初始投资成本Minf按式(13)计算:
式(14)中,k表示第k个设备;K为综合能源系统中总的设备数量;Cinfk[¥/kWh] 为第k个设备单位容量的初始投资成本系数;Pcap,k[kWh]为第k个设备的额定容量;为直接空气碳捕捉设备年化投资成本;Qcap[tCO2·a]为直接空气碳捕捉设备年捕集CO2产量;为甲烷-二氧化碳干重整设备年化投资成本;QDMR[tCH4·a]为甲烷-二氧化碳干重整设备年输入甲烷量;R 为投资回报率;y为设备服役年限;r为银行利率。
运行维护成本按式(15)计算:
配置优化模型的约束主要包括功率平衡约束与设备运行约束;
所述功率平衡约束包括电功率平衡约束与热功率平衡约束;
所述电功率平衡如式(16)所示
式(16)中,Pt load,E[kW]为用户电负荷;
所述热功率平衡如式(17)所示:
所述设备运行约束包括直接空气碳捕集系统CO2捕集量约束,直接空气碳捕集系统CO2每小时捕集量约束,电锅炉设备输入电量上下限约束,电池储能容量上下限约束,电池储能充放电功率约束,电池储能循环利用约束,微藻固碳上下限约束,CO2物料分配约束,甲烷-二氧化碳干重整设备CH4物料输入约束,甲烷 -二氧化碳干重整设备CH4处理量约束;
所述直接空气碳捕集系统CO2捕集量约束,旨在实现农业区域生产生活碳排放的完全捕集,如式(18)所示:
所述直接空气碳捕集系统每小时捕集量约束约束如式(19)所示:
所述电锅炉设备输入电量上下限约束如式(20)所示:
所述电池储能容量上下限约束如式(21)所示:
所述电池储能充放电功率约束如式(22-24)所示:
所述电池储能循环利用约束如式(25)所示:
所述微藻固碳上下限约束如式(26)所示:
所述CO2物料分配约束如式(27)所示:
式(27)中,DAC设备吸收的CO2全部用于甲烷-二氧化碳干重整设备原料输入以及微藻固碳;
所述甲烷-二氧化碳干重整设备CH4物料输入约束如式(28)所示:
所述甲烷-二氧化碳干重整设备CH4处理量约束如式(29)所示:
所述系统配置优化采用粒子群算法进行模型求解;
所述粒子群算法是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。在粒子群算法中,首先要随机生成一群无质量和体积的粒子,每个粒子都具有一个位置向量和速度向量,并可以根据目标函数来计算当前所在位置的适应值。在每次的迭代中,粒子除了根据自身的历史位置进行学习以外,还可以根据种群里最优粒子的经验进行学习,从而确定下一次迭代需要如何调整自身飞行的方向和速度。粒子通过不断循环迭代,寻找全局最优解;
如图5所示,所述粒子群算法用于求解绿色农业零碳供能系统配置分层优化流程为:
(1)设定初始参数,包括种群规模、粒子个数、迭代次数、变量约束。种群中的每个粒子都包含待求解的决策输入变量信息,包括直接空气捕捉设备CO2产量,电锅炉设备输入电量,甲烷-二氧化碳干重整输入CH4质量以及各设备配置容量,每个粒子都是配置优化问题的可行解;
(2)将每个粒子送到所构建的系统能耗-产量稳态模型中进行仿真,可以得到相关的输出变量,包括直接空气碳捕集设备要求电耗及热耗,电锅炉设备输出热功率,甲烷-二氧化碳干重整设备要求电耗及热耗等。基于给定天气数据,用户负荷需求数据及农业碳排放数据,通过式(13)就可以求解每个粒子的适应度函数。如果粒子违背模型约束,额外的惩罚会添加到适应度函数;
(3)在每次迭代过程中,每个粒子更新个体最优值。所有的个体最优值会进行比较来获取全局最优值。在下一次迭代过程中,粒子会根据个体最优经验和全局最优信息以更新他们的速度和位置信息,如式(30-31)所示:
(4)当迭代满足终止条件时(达到最大迭代次数或者最小适应度函数),粒子群算法将停止优化。最终全局最优的粒子将会被挑选出作为最合适的解。
通过本文所提出的智能配置优化方法可获得满足零碳、经济目标的最优系统配置,以江苏某农业地区的冬季、过渡季、春季典型日的气象数据为例进行智能配置分层优化,验证了所提智能配置分层优化算法的可行性。
具体实施例
江苏某农业地区用户电、热需求如图3所示,1-24h为冬季典型日下用户电、热负荷,冬季典型日取150天;25-48h为过渡季典型日下用户电、热负荷,过渡季典型日取95天;49-72h为夏季典型日下用户电、热负荷,夏季典型日取120 天;
基于可再生能源供能情况、用户电-热需求、零碳目标以及系统投资、运维成本,以最小初始投资成本为目标,进行零碳供能系统的配置优化,依托系统配置的结果,以最小运行成本为目标,进行绿色农业可再生供能减排系统的调度优化,进而由调度结果重新进行系统的配置优化,逐步迭代,寻求最优解,仿真参数设置及初始投资、运维成本结果如表1所示:
表1
最终确定风力发电系统、光伏发电系统、直接空气碳捕集系统、电池储能设备、电锅炉设备、甲烷-二氧化碳干重整设备最优容量,如图4所示;
由表1可知,该绿色农业零碳供能系统年初始投资成本为746.15万元,年运维成本为38.75万元,由图3可知,该绿色农业零碳供能系统旨在满足全年该农业区域用户电负荷需求2106.63MWh和热负荷需求1790.82MWh,实现可再生能源100%利用,并达到农业场景下以CO2、CH4为主的含碳温室气体零排放的目标;通过该智能配置优化方法也可充分发挥直接空气碳捕捉、甲烷-二氧化碳干重整设备灵活运行特性,
如图6所示,在白天用户电热负荷需求较高时,上述灵活运行设备可自由降低自身用能负荷以优先满足用户用能需求,而在晚上用户电热负荷需求较低时,上述灵活运行设备可自由提高自身用能负荷以满足一天的CO2、CH4减排需求同时帮助消纳可再生能源。
如图7所示,通过电锅炉设备可完全满足直接空气捕捉、甲烷-二氧化碳干重整、用户耗热量;电锅炉设备供热量为5731.33MWh,直接空气捕捉耗热量为 2067.41MWh,甲烷-二氧化碳干重整耗热量为1783.10MWh,用户耗热量为 1790.82MWh;由式(5),可得一年通过甲烷-二氧化碳干重整工艺处理的农业甲烷排放为313.78吨,取沼气中CO2-CH4比例质量换算系数为1.862,可知通过甲烷 -二氧化碳干重整工艺协同处理的沼气中的CO2为587.05吨;将甲烷-二氧化碳干重整设备产出的合成气(CO和H2)用于高附加值产品的生产以及将成熟的微藻送入市场,能够产生一定的经济效益。
如图8所示,一年中通过直接空气捕捉设备所捕获的CO2总量为752.81吨,其中有269.32吨即35.78%的CO2送入甲烷-二氧化碳干重整设备进行化工高附加值产品的生产,有483.49吨即64.22%的CO2送到农业微藻中进行固定,帮助提高微藻生长速率,实现直接空气捕捉设备捕捉的CO2的完全消纳;
综上所述,本发明提出一种能够保证绿色农业供能系统零碳、经济、稳定运行一种绿色农业零碳供能系统及其智能配置分层优化方法,且具备如下优点,
(1)基于农业场所碳排放具有分布式点源的特征,将直接空气碳捕集(DAC)设备应用于农业生产生活过程,抵消农业活动碳排放;
(2)基于微藻能够富集水体中的氮、磷元素并转化为自身生物质以及相比于陆生植物具有更优的固碳能力,将微藻用于农业生产生活过程中,实现农业废水低污处理;
(3)采用甲烷-二氧化碳干重整设备对农业沼气中的CH4进行处理,生产合成气用于下游高附加值产品的生产,结合微藻一定的固碳能力,协同DAC设备实现碳排放的完全消纳;
(4)为实现农业区域的净零碳排放,采用以风、光为代表的完全绿色可再生能源驱动直接空气碳捕集设备以及甲烷-二氧化碳干重整设备,并满足农业区域居民电、热能源需求;系统、用户热需求由电锅炉设备满足;
(5)基于可再生能源出力的间歇波动性,引入电池储能设备,在可再生能源出力高峰期,储存多余的电能,在可再生能源出力较弱时,释放电能;
(6)构建整体系统优化指标,在约束条件下对绿色农业零碳供能系统进行整体配置分层优化,上层综合考虑经济、零碳指标,确定系统最优结构和各装置的最佳容量;下层结合可再生出力和农业用户的负荷需求,优化系统中各装置的最佳协同出力,从而保证系统零碳、经济、稳定运行。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发眀范围内。本发明要求保护范围由所附的权利要求书及其效物界定。
Claims (8)
1.一种基于绿色农业的零碳供能系统,其特征在于:
包括微藻系统(1),沼气池(2),电池储能设备(3),可再生能源(4),电锅炉设备(5),甲烷-二氧化碳干重整设备(6),直接空气碳捕集设备(7),用户(8)和畜牧养殖场(9);
所述直接空气碳捕集设备(7)捕集空气中的CO2的,将CO2送入甲烷-二氧化碳干重整设备(6)以及微藻系统(1)实现CO2的完全消纳;
所述可再生能源(4)驱动直接空气碳捕集设备(7)以及甲烷-二氧化碳干重整设备(6),并满足农业区域居民电、热能源需求;
甲烷-二氧化碳干重整设备(6)与所述直接空气碳捕集设备(7)协同运作,结合具备一定固碳能力的微藻(1),实现对农业沼气池(2)中CH4的完全消纳;
所述电池储能设备(3)在可再生能源(4)产出力高峰期,储存多余的电能,在可再生能源(4)产出力较弱时,释放电能;
所述电锅炉设备(5)为系统及用户(4)提供热能源需求;
所述畜牧养殖场(9)的养殖废弃物于沼气池(2)中分解反应,生成的CO2和CH4送入甲烷-二氧化碳干重整设备(6),实现CH4的完全消纳;
所述畜牧养殖场(9)的养殖废水送入微藻系统(1),实现农业养殖废水的低污处理,所述低污处理后的净水提供给甲烷-二氧化碳干重整设备(6)用于冷却。
2.一种绿色农业零碳供能系统智能配置分层优化的算法,其特征在于:构建DAC静态模型、微藻固碳能力模型、甲烷-二氧化碳干重整设备模型以及可再生能源出力模型,设定整体系统优化指标,在约束条件下,对绿色农业零碳供能系统进行整体配置分层优化;
所述整体配置分层优化上层综合考虑经济、零碳指标,确定系统最优结构和各装置的最佳容量;下层结合可再生出力和农业用户的负荷需求,优化系统中各装置的最佳协同出力,从而保证系统零碳、经济、稳定运行。
3.根据权利要求2所述的智能配置分层优化的算法,其特征在于:所述DAC静态模型,以CO2产量为输入变量,直接空气碳捕集设备电耗、热耗为输出变量:
式中,PDAC,E[kWh]为DAC电耗,HDAC,t[kWh]为DAC系统热耗,为DAC系统的CO2小时产量;a[kWh/kg]为捕集单位质量CO2电耗系数;b[kWh/kg]为捕集单位质量CO2热耗系数;
微藻固碳能力模型:
甲烷-二氧化碳干重整设备模型:
其中,PDRM,t[kW]为甲烷-二氧化碳干重整设备电耗;HDRM,t[kW]为甲烷-二氧化碳干重整设备热耗;为甲烷-二氧化碳干重整设备每小时CH4输入量;为甲烷-二氧化碳干重整设备每小时H2产量;mCO,t为甲烷-二氧化碳干重整设备每小时CO产量;
所述可再生能源出力模型,包括风力发电系统、光伏发电系统,其出力模型式为:
式中,Pt Wind[kW]为t时刻风机预测输出功率;Uhub,t[m/s]为t时刻风机轮毂高度处的预测风速;a,b,c,d为拟合系数,vci[m/s],vr[m/s],vco[m/s]分别为风机的切入速度、额定风速与切出速度;
Pt PV[kW]表示时刻光伏发电机组的输出功率;YPV[kW]是光伏发电机组的额定容量,表示标准测试条件下的输出功率,所述标准测试条件为:光照辐射强度为1kW/m2,温度为298K,无风;fPV为光伏降额因子;GT[Kw/m2]为当前时间步长的太阳辐照强度;GT,STC[[Kw/m2]为标准测试条件下的太阳辐照强度,通常取1;αP[%/K]为光伏电池板的功率温度系数;Tc[K]为当前时间步长的光伏电池温度;Tc,STC[K]为标准测试条件下的光伏电池温度。
4.根据权利要求3所述智能配置分层优化的算法,其特征在于:
所述系统整体优化指标为:min Mtotal=Minf+Mom
其中,Mtotal为总成本,Minf[¥]为初始投资成本,Mom[¥]为运行维护成本;
其中,所述初始投资成本Minf为:
其中,k表示第k个设备;K为综合能源系统中总的设备数量;Cinfk[¥/kWh]为第k个设备单位容量的初始投资成本系数;Pcap,k[kWh]为第k个设备的额定容量;为直接空气碳捕捉设备年化投资成本;Qcap[tCO2·a]为直接空气碳捕捉设备年捕集CO2产量;为甲烷-二氧化碳干重整设备年化投资成本;QDMR[t CH4·a]为甲烷-二氧化碳干重整设备年输入甲烷量;R为投资回报率;y为设备服役年限;r为银行利率;
所述运行维护成本为:
5.根据权利要求4所述的智能配置分层优化的算法,其特征在于:所述约束条件包括功率平衡约束与设备运行约束;
所述功率平衡约束包括电功率平衡约束与热功率平衡约束;
所述电功率平衡约束:
其中,Pt load,E[kW]为用户电负荷;
所述热功率平衡约束:
所述设备运行约束包括直接空气碳捕集系统CO2捕集量约束,直接空气碳捕集系统CO2每小时捕集量约束,电锅炉设备输入电量上下限约束,电池储能容量上下限约束,电池储能充放电功率约束,电池储能循环利用约束,微藻固碳上下限约束,CO2物料分配约束,甲烷-二氧化碳干重整设备CH4物料输入约束以及甲烷-二氧化碳干重整设备CH4处理量约束。
7.根据权利要求4所述的智能配置分层优化的算法,其特征在于:所述电池储能容量上下限约束为:
所述电池储能充放电功率约束为:
所述电池储能循环利用约束为:
所述微藻固碳上下限约束为:
所述CO2物料分配约束如式为:
式中,DAC设备吸收的CO2全部用于甲烷-二氧化碳干重整设备原料输入以及微藻固碳;
所述甲烷-二氧化碳干重整设备CH4物料输入约束为:
所述甲烷-二氧化碳干重整设备CH4处理量约束如式为:
8.根据权利要求2-7中任一所述的智能配置分层优化的算法,其特征在于:
所述绿色农业零碳供能系统配置分层优化,包括如下步骤
步骤一、设定初始参数,包括种群规模、粒子个数、迭代次数、变量约束;种群中的每个粒子都包含待求解的决策输入变量信息,包括直接空气捕捉设备CO2产量,电锅炉设备输入电量,甲烷-二氧化碳干重整输入CH4质量以及各设备配置容量,每个粒子都是配置优化问题的可行解;
步骤二、将每个粒子送到所构建的系统能耗-产量稳态模型中进行仿真,可以得到相关的输出变量,包括直接空气碳捕集设备要求电耗及热耗,电锅炉设备输出热功率,甲烷-二氧化碳干重整设备要求电耗及热耗等;
基于给定天气数据,用户负荷需求数据及农业碳排放数据,通过系统整体优化指标就可以求解每个粒子的适应度函数;如果粒子违背模型约束,额外的惩罚会添加到适应度函数;
步骤三、在每次迭代过程中,每个粒子更新个体最优值;所有的个体最优值会进行比较来获取全局最优值;在下一次迭代过程中,粒子会根据个体最优经验和全局最优信息以更新他们的速度和位置信息:
步骤四、当迭代满足终止条件时,即达到最大迭代次数或者最小适应度函数,粒子群算法将停止优化,最终全局最优的粒子将会被挑选出作为最合适的解。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210041177.0A CN114519456B (zh) | 2022-01-14 | 2022-01-14 | 一种绿色农业零碳供能系统及其智能配置分层优化算法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210041177.0A CN114519456B (zh) | 2022-01-14 | 2022-01-14 | 一种绿色农业零碳供能系统及其智能配置分层优化算法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114519456A true CN114519456A (zh) | 2022-05-20 |
CN114519456B CN114519456B (zh) | 2024-04-30 |
Family
ID=81595908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210041177.0A Active CN114519456B (zh) | 2022-01-14 | 2022-01-14 | 一种绿色农业零碳供能系统及其智能配置分层优化算法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114519456B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117455183A (zh) * | 2023-11-09 | 2024-01-26 | 国能江苏新能源科技开发有限公司 | 一种基于深度强化学习的综合能源系统优化调度方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012131414A1 (en) * | 2011-03-28 | 2012-10-04 | Krisada Kampanatsanyakorn | Zero carbon dioxide and heat emission integrated system of power generation from natural/renewable energy sources, organic waste reclamation and commodities production and method of conduction |
CN206645989U (zh) * | 2017-04-01 | 2017-11-17 | 广东合即得能源科技有限公司 | 生物质热电联产的微藻养殖系统 |
CN111428850A (zh) * | 2020-03-24 | 2020-07-17 | 国电南瑞科技股份有限公司 | 基于改进粒子群算法的综合能源系统运行优化方法及装置 |
-
2022
- 2022-01-14 CN CN202210041177.0A patent/CN114519456B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012131414A1 (en) * | 2011-03-28 | 2012-10-04 | Krisada Kampanatsanyakorn | Zero carbon dioxide and heat emission integrated system of power generation from natural/renewable energy sources, organic waste reclamation and commodities production and method of conduction |
CN206645989U (zh) * | 2017-04-01 | 2017-11-17 | 广东合即得能源科技有限公司 | 生物质热电联产的微藻养殖系统 |
CN111428850A (zh) * | 2020-03-24 | 2020-07-17 | 国电南瑞科技股份有限公司 | 基于改进粒子群算法的综合能源系统运行优化方法及装置 |
Non-Patent Citations (1)
Title |
---|
梁作放 等: "考虑碳交易的区域综合能源系统经济调度研究", 山东电力技术, vol. 47, no. 02, 25 February 2020 (2020-02-25), pages 20 - 26 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117455183A (zh) * | 2023-11-09 | 2024-01-26 | 国能江苏新能源科技开发有限公司 | 一种基于深度强化学习的综合能源系统优化调度方法 |
CN117455183B (zh) * | 2023-11-09 | 2024-08-27 | 国能江苏新能源科技开发有限公司 | 一种基于深度强化学习的综合能源系统优化调度方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114519456B (zh) | 2024-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102236342B (zh) | 一种系统能效控制方法及控制系统 | |
CN111539572B (zh) | 光沼微能源网的优化规划方法 | |
Zhang et al. | A review on basic theory and technology of agricultural energy internet | |
CN112232603B (zh) | 一种计及电转气协同的虚拟电厂优化调度方法 | |
Long et al. | Key technologies and applications of rural energy internet in China | |
CN113159407B (zh) | 基于区域综合能源系统的多能储存模块容量优化配置方法 | |
CN115471074A (zh) | 一种综合能源微网的规划模型构建方法 | |
CN116681545B (zh) | 一种计及生物质-p2g耦合的设施农业园区近零碳实现方法 | |
CN107203136A (zh) | 一种智慧农业大棚微型能源网的优化调度方法及装置 | |
CN115660304A (zh) | 一种基于多元产业协同的乡村综合能源系统规划方法 | |
Aziz et al. | Rural electrification through an optimized off-grid microgrid based on biogas, solar, and hydro power | |
CN116263890A (zh) | 一种考虑乡村生产生活碳排放的乡村微能源网多目标优化方法 | |
Gao et al. | Optimal dispatching of integrated agricultural energy system considering ladder-type carbon trading mechanism and demand response | |
CN114519456B (zh) | 一种绿色农业零碳供能系统及其智能配置分层优化算法 | |
Castley et al. | Modeling and optimization of combined cooling, heating and power systems with integrated biogas upgrading | |
Nahian et al. | Prospects and potential of biogas technology in Bangladesh | |
CN202465466U (zh) | 禽畜粪便沼气发电系统 | |
CN109802447A (zh) | 一种cchp系统调度评价方法 | |
CN116260166B (zh) | 电-气耦合的乡村光沼弹性综合能源系统及其运行模型 | |
CN116960970A (zh) | 场景驱动的含电转气综合能源系统鲁棒优化调控方法 | |
CN116663818A (zh) | 一种阶梯碳交易机制下的虚拟电厂低碳经济调度方法 | |
CN109004663A (zh) | 三侧互补分布式能源系统及三侧互补分布式能源微网系统 | |
CN114530882A (zh) | 一种多分布式能源的供用能协同自治方法及系统 | |
CN117094507B (zh) | 基于生物质资源规划农业产业楼宇综合能源的方法和系统 | |
CN118659440A (zh) | 一种混合发酵的生物质能季节性储气配置优化系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |