CN114518514A - 间歇性局部放电绝缘缺陷检测系统及局部放电模拟方法 - Google Patents

间歇性局部放电绝缘缺陷检测系统及局部放电模拟方法 Download PDF

Info

Publication number
CN114518514A
CN114518514A CN202210127939.9A CN202210127939A CN114518514A CN 114518514 A CN114518514 A CN 114518514A CN 202210127939 A CN202210127939 A CN 202210127939A CN 114518514 A CN114518514 A CN 114518514A
Authority
CN
China
Prior art keywords
partial discharge
voltage
discharge
basin
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210127939.9A
Other languages
English (en)
Inventor
杨旭
程林
江翼
罗传仙
张静
刘诣
文豪
邱虎
程立丰
黄勤清
周文
陈孝信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan NARI Ltd
State Grid Zhejiang Electric Power Co Ltd
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
State Grid Electric Power Research Institute
Original Assignee
Wuhan NARI Ltd
State Grid Zhejiang Electric Power Co Ltd
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
State Grid Electric Power Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan NARI Ltd, State Grid Zhejiang Electric Power Co Ltd, Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd, State Grid Electric Power Research Institute filed Critical Wuhan NARI Ltd
Priority to CN202210127939.9A priority Critical patent/CN114518514A/zh
Publication of CN114518514A publication Critical patent/CN114518514A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明公开了一种间歇性局部放电绝缘缺陷检测系统,它的试验用盆式绝缘子和参考用盆式绝缘子的中心固定穿在金属导杆上,金属导杆的顶端穿过放电缺陷模拟罐的顶端与进线套管固定连接,超声波传感器安装在放电缺陷模拟罐外表面,特高频传感器安装在放电缺陷模拟罐内表面;无局部放电加压模块的电压信号输出端连接金属导杆,无局部放电加压模块的脉冲电流信号输出端接入主机,试验用盆式绝缘子通过检测阻抗接入主机,超声波传感器的超声信号输出端接入主机,特高频传感器的特高频信号输出端接入主机,无局部放电加压模块的交流相位信号输出端接入主机。本发明可有效实现微弱局部放电特征信号的有效检测、间歇局部放电的有效模拟。

Description

间歇性局部放电绝缘缺陷检测系统及局部放电模拟方法
技术领域
本发明涉及电力装备绝缘状态检测技术领域,具体地指一种间歇性局部放电绝缘缺陷检测系统及局部放电模拟方法。
背景技术
气体绝缘组合电器是国家电网的核心电力装备,具有价值高、占地面积小等优点,是我国电网系统中高压变电站的必备设备,一旦发生损害将会严重影响大面积范围内供电的可靠性。气体绝缘组合电器一般采用SF6气体作为绝缘介质,SF6绝缘气体可有效提高气体绝缘组合电器的绝缘能力,但是生产、安装、维修和运行过程中无可避免的将引入绝缘缺陷,诱发局部放电的产生。局部放电类似于气体绝缘组合电器绝缘系统中的“恶行肿瘤”,如果在局部放电绝缘缺陷演变成击穿放电前没有通过检测技术发现局部放电绝缘缺陷,局部放电绝缘缺陷将逐渐演变成击穿放电,导致气体绝缘组合电器停运、损坏,所以需要利用有效的检测技术实现局部放电绝缘缺陷的有效检测。
目前,常用于气体绝缘组合电器局部放电绝缘缺陷的检测技术包括特高频法、超声波法、高频电流法、光学检测法等方法,这些方法能已经能实现稳定的局部放电绝缘缺陷的有效检测。但是对于间歇性局部放电绝缘缺陷目前还没有有效的检测手段,这是因为缺乏有效的间歇放电模拟方法,导致目前对间歇局部放电的放电机理和其放电特征还不清楚,尤其是在缺乏有效模拟间歇性放电演变成击穿性放电的过程的模拟方法。
发明内容
本发明的目的就是要提供一种间歇性局部放电绝缘缺陷检测系统及局部放电模拟方法,本发明可有效实现微弱局部放电特征信号的有效检测、间歇性局部放电的有效模拟,为气体绝缘组合电器间歇性局部放电绝缘缺陷放电机理和放电特征的理解、以及间歇性局部放电绝缘缺陷的有效检测提供可靠的技术支撑。
为实现此目的,本发明所设计的间歇性局部放电绝缘缺陷检测系统,其特征在于:它包括无局部放电加压模块、气体绝缘组合电器局部放电缺陷模型和主机;
所述气体绝缘组合电器局部放电缺陷模型包括放电缺陷模拟罐、试验用盆式绝缘子、参考用盆式绝缘子、金属导杆、进线套管、超声波传感器和特高频传感器,其中,试验用盆式绝缘子和参考用盆式绝缘子的中心固定穿在金属导杆上,试验用盆式绝缘子和参考用盆式绝缘子均位于放电缺陷模拟罐内,金属导杆的顶端穿过放电缺陷模拟罐的顶端与进线套管固定连接,超声波传感器安装在放电缺陷模拟罐外表面,特高频传感器为柔性二维结构安装在放电缺陷模拟罐内表面;
无局部放电加压模块的电压信号输出端通过进线套管连接金属导杆,无局部放电加压模块的脉冲电流信号输出端连接主机的脉冲电流信号第一输入端,试验用盆式绝缘子通过检测阻抗Z2连接主机的脉冲电流信号第二输入端,参考用盆式绝缘子通过检测阻抗Z3连接主机的脉冲电流信号第三输入端,超声波传感器的超声信号输出端连接主机的超声信号输入端,特高频传感器的特高频信号输出端连接主机的特高频信号输入端,无局部放电加压模块的交流相位信号输出端连接主机的交流相位信号输入端。
本发明可有效实现微弱局部放电特征信号的有效检测,间歇性局部放电的有效模拟,为气体绝缘组合电器间歇性局部放电绝缘缺陷放电机理和放电特征理解,以及间歇放局部放电绝缘缺陷的有效检测提供可靠的技术支撑。
附图说明
图1为本发明的结构示意图;
图2为本发明中绝缘缺陷特征信号采集方法的流程图;
图3为本发明中间歇性局部放电演变成击穿放电的绝缘缺陷模拟方法的流程图。
其中,1—无局部放电加压模块、2—气体绝缘组合电器局部放电缺陷模型、2.1—放电缺陷模拟罐、2.2—试验用盆式绝缘子、2.3—参考用盆式绝缘子、2.4—金属导杆、2.5—进线套管、2.6—超声波传感器、2.7—特高频传感器、3—振动平台、3.1—可编程电机、3.2—传动轴、3.3—振动平板、4—主机。
具体实施方式
以下结合附图和具体实施例对本发明作进一步的详细说明:
如图1所示的间歇性局部放电绝缘缺陷检测系统,它包括无局部放电加压模块1、气体绝缘组合电器局部放电缺陷模型2和主机4;
所述气体绝缘组合电器局部放电缺陷模型2包括放电缺陷模拟罐2.1、试验用盆式绝缘子2.2、参考用盆式绝缘子2.3、金属导杆2.4、进线套管2.5、超声波传感器2.6和特高频传感器2.7,其中,试验用盆式绝缘子2.2和参考用盆式绝缘子2.3的中心固定穿在金属导杆2.4上,试验用盆式绝缘子2.2和参考用盆式绝缘子2.3均位于放电缺陷模拟罐2.1内,金属导杆2.4的顶端穿过放电缺陷模拟罐2.1的顶端与进线套管2.5固定连接,超声波传感器2.6安装在放电缺陷模拟罐2.1外表面,特高频传感器2.7安装在放电缺陷模拟罐2.1内表面;
无局部放电加压模块1的电压信号输出端通过进线套管2.5连接金属导杆2.4,无局部放电加压模块1的脉冲电流信号输出端连接主机4的脉冲电流信号第一输入端,试验用盆式绝缘子2.2通过检测阻抗Z2连接主机4的脉冲电流信号第二输入端,参考用盆式绝缘子2.3通过检测阻抗Z3连接主机4的脉冲电流信号第三输入端,超声波传感器2.6的超声信号输出端连接主机4的超声信号输入端,特高频传感器2.7的特高频信号输出端连接主机4的特高频信号输入端,无局部放电加压模块1的交流相位信号输出端连接主机4的交流相位信号输入端。交流相位信号为脉冲电流信号提供工频交流相位信息,通过观察不同相位出现脉冲电流信号的频率,可判断是否为间歇性、稳定性放电。特高频传感器2.7输出300M~3GHz的电磁波信号,电力现场干扰电磁波信号的频率范围一般是低于300MHz,采集300MHz以上的电磁波信号能有效反应设备局部放电缺陷,提高整个系统的灵敏度和抗干扰能力。
上述技术方案中,它还包括振动平台3,振动平台3用于对气体绝缘组合电器局部放电缺陷模型2施加振动信号,模拟气体绝缘组合电器中断路器开关打开或闭合过程中对气体绝缘组合电器造成的振动影响,以及模拟气体绝缘组合电器在运行过程中产生的振动实际情况。由于现场运行的气体绝缘组合电气内部存在断路器,断路器动作(断开/闭合)的过程中会对气体绝缘组合电器本身造成振动。而局部放电绝缘缺陷本身受到振动的影响,其放电特性可能会发生变化,例如金属微粒绝缘缺陷,振动情况下会发生移动,导致金属微粒绝缘缺陷产生的局部放电特性发生改变。所以,为了更贴切的模拟现场气体绝缘组合电器中局部放电特征,需要为试验模拟平台添加能够模拟现场振动的环境条件。
上述技术方案中,所述振动平台3包括可编程电机3.1、传动轴3.2和振动平板3.3,所述可编程电机3.1的输出轴通过传动轴3.2连接振动平板3.3,可编程电机3.1用于通过传动轴3.2带动振动平板3.3振动,放电缺陷模拟罐2.1放置在所述振动平板3.3上。现场运行的气体绝缘组合电器的振动是整体性的,所以需要将模拟平台整体放置于整块振动平板上,采用可编程电机是因为气体绝缘组合电器的现场振动有其自身规律,需要用可编程电机编程实现其振动规律。
上述技术方案中,所述无局部放电加压模块(1)包括调压台T1、升压变压器T2、限流电阻Rr、电容C1~电容C3、检测阻抗Z1,调压台T1的输入端连接电流电压AC,升压变压器T2初级的一端连接调压台T1的调压电阻,升压变压器T2初级的另一端连接调压台T1的调压抽头,升压变压器T2次级的一端连接限流电阻Rr的一端,限流电阻Rr的另一端为无局部放电加压模块1的电压信号输出端,电容C3的一端连接限流电阻Rr的另一端,电容C3的另一端连接检测阻抗Z1的一端,升压变压器T2次级的另一端连接检测阻抗Z1的另一端,升压变压器T2次级的另一端接地;
电容C1的一端连接限流电阻Rr的另一端,电容C1的另一端连接电容C2的一端,电容C2的另一端连接检测阻抗Z1的另一端,电容C1的另一端为无局部放电加压模块1的交流相位信号输出端;
检测阻抗Z1的一端为无局部放电加压模块1的脉冲电流信号输出端。
上述技术方案中,所述无局部放电加压模块1还包括电压表V,电压表V的一端连接电容C2的一端,电压表V的另一端连接升压变压器T2次级的另一端。
上述技术方案中,所述试验用盆式绝缘子2.2和参考用盆式绝缘子2.3均接地,试验用盆式绝缘子2.2与参考用盆式绝缘子2.3能处于不同的实验间隔。处于不同的试验间隔是为了模拟两个相同的试验环境,这样如果有外界干扰信号,此时这两个间隔所对应的脉冲电流信号就会表现出相同的时域特征,就可以判断是外界干扰信号。
上述技术方案中,所述金属导杆2.4的底端为光滑无棱角头。无棱角是为了防止导杆底端出现放电现象,防止给模拟的局部放电绝缘缺陷造成干扰。
上述技术方案中,所述参考用盆式绝缘子2.3为无缺陷盆式绝缘子。
一种基于上述系统的绝缘缺陷特征信号采集方法,如图2所示,它包括如下步骤:
步骤1:启动振动平台3使气体绝缘组合电器局部放电缺陷模型2模拟气体绝缘组合电器运行时振动状态;
步骤2:利用无局部放电加压模块1给气体绝缘组合电器局部放电缺陷模型2的金属导杆2.4施加电压U,根据无局部放电加压模块1的脉冲电流信号输出端输出的第一脉冲电流信号或试验用盆式绝缘子2.2输出的第二脉冲电流信号利用脉冲电流法确定试验用盆式绝缘子2.2起始放电电压UPDIV,然后降低所加电压U至电压U1,保证电压U1低于起始放电电压UPDIV,如果在此所加电压U1条件下试验用盆式绝缘子2.2不能产生间歇性局部放电特征,则进一步调大或调小所施加到气体绝缘组合电器局部放电缺陷模型2上的电压U直至试验用盆式绝缘子2.2能产生稳定的间歇性局部放电特征,调整时保证电压U1低于起始放电电压UPDIV
如果气体绝缘组合电器局部放电缺陷模型2在所加电压U1条件下能够产生间歇性局部放电特征,则通过超声波传感器2.6和特高频传感器2.7分别采集气体绝缘组合电器局部放电缺陷模型2的超声波信号和特高频信号,主机4显示和存储超声波信号和特高频信号,并利用超声波信号和特高频信号进行稀疏性局部放电绝缘缺陷放电特征检测。
上述技术特征的步骤2中,将无局部放电加压模块1和试验用盆式绝缘子2.2中放电脉冲电流感知灵敏度高的脉冲电流信号利用脉冲电流法确定试验用盆式绝缘子2.2起始放电电压UPDIV
上述技术特征的步骤2中,参考用盆式绝缘子2.3输出的第三脉冲电流信号用于判断是否存在干扰信号。如果没有干扰,第二脉冲电流信号和第三脉冲电流信号的波形一样,如果有干扰则不同。
一种基于上述系统的间歇性局部放电演变成击穿放电的绝缘缺陷模拟方法,如图3所示,首先在气体绝缘组合电器局部放电缺陷模型2的试验用盆式绝缘子2.2对应间隔中进行典型局部放电绝缘缺陷的模拟,然后调整典型局部放电绝缘缺陷的模拟参数,获取典型局部放电绝缘缺陷不同模拟参数下典型局部放电绝缘缺陷所对应的起始放电电压UPDIV和击穿电压UBD,选取使得起始放电电压UPDIV与击穿电压UBD最接近的典型局部放电绝缘缺陷模拟参数作为实验参量,最后在该实验参量下采用气体绝缘组合电器稳定的间歇性局部放电模拟方法为局部放电绝缘缺陷施加电压,实现间歇性局部放电演变成击穿放电的绝缘缺陷模拟。用该方法可有效解决间歇性局部放电绝缘缺陷放电电压和击穿电压数值差别过大的技术问题(差别过大,会一直产生稳定的放电特征,无法模拟从间歇性放电到击穿放电的自然模拟),利用稳定的间歇性局部放电模拟方法无法模拟间歇性局部放电绝缘缺陷自我演变成击穿放电的难题。
典型局部放电绝缘缺陷包括金属微粒缺陷、金属突出物缺陷、气隙缺陷等,典型局部放电绝缘缺陷的模拟参数包括尺寸、距离、SF6气体压力。其中,尺寸指典型局部放电绝缘缺陷本身的尺寸,例如大小和厚度;距离是指绝缘缺陷本身高低压电极之间的距离;气体压力是指间隔内所充SF6气体的压力。
本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (10)

1.一种间歇性局部放电绝缘缺陷检测系统,其特征在于:它包括无局部放电加压模块(1)、气体绝缘组合电器局部放电缺陷模型(2)和主机(4);
所述气体绝缘组合电器局部放电缺陷模型(2)包括放电缺陷模拟罐(2.1)、试验用盆式绝缘子(2.2)、参考用盆式绝缘子(2.3)、金属导杆(2.4)、进线套管(2.5)、超声波传感器(2.6)和特高频传感器(2.7),其中,试验用盆式绝缘子(2.2)和参考用盆式绝缘子(2.3)的中心固定穿在金属导杆(2.4)上,试验用盆式绝缘子(2.2)和参考用盆式绝缘子(2.3)均位于放电缺陷模拟罐(2.1)内,金属导杆(2.4)的顶端穿过放电缺陷模拟罐(2.1)的顶端与进线套管(2.5)固定连接,超声波传感器(2.6)安装在放电缺陷模拟罐(2.1)外表面,特高频传感器(2.7)安装在放电缺陷模拟罐(2.1)内表面;
无局部放电加压模块(1)的电压信号输出端通过进线套管(2.5)连接金属导杆(2.4),无局部放电加压模块(1)的脉冲电流信号输出端连接主机(4)的脉冲电流信号第一输入端,试验用盆式绝缘子(2.2)通过检测阻抗Z2连接主机(4)的脉冲电流信号第二输入端,参考用盆式绝缘子(2.3)通过检测阻抗Z3连接主机(4)的脉冲电流信号第三输入端,超声波传感器(2.6)的超声信号输出端连接主机(4)的超声信号输入端,特高频传感器(2.7)的特高频信号输出端连接主机(4)的特高频信号输入端,无局部放电加压模块(1)的交流相位信号输出端连接主机(4)的交流相位信号输入端。
2.根据权利要求1所述的间歇性局部放电绝缘缺陷检测系统,其特征在于:它还包括振动平台(3),振动平台(3)用于对气体绝缘组合电器局部放电缺陷模型(2)施加振动信号,模拟气体绝缘组合电器中断路器开关打开或闭合过程中对气体绝缘组合电器造成的振动影响,以及模拟气体绝缘组合电器在运行过程中产生的振动实际情况。
3.根据权利要求2所述的间歇性局部放电绝缘缺陷检测系统,其特征在于:所述振动平台(3)包括可编程电机(3.1)、传动轴(3.2)和振动平板(3.3),所述可编程电机(3.1)的输出轴通过传动轴(3.2)连接振动平板(3.3),可编程电机(3.1)用于通过传动轴(3.2)带动振动平板(3.3)振动,放电缺陷模拟罐(2.1)放置在所述振动平板(3.3)上。
4.根据权利要求1所述的间歇性局部放电绝缘缺陷检测系统,其特征在于:所述无局部放电加压模块(1)包括调压台T1、升压变压器T2、限流电阻Rr、电容C1~电容C3、检测阻抗Z1,调压台T1的输入端连接电流电压AC,升压变压器T2初级的一端连接调压台T1的调压电阻,升压变压器T2初级的另一端连接调压台T1的调压抽头,升压变压器T2次级的一端连接限流电阻Rr的一端,限流电阻Rr的另一端为无局部放电加压模块(1)的电压信号输出端,电容C3的一端连接限流电阻Rr的另一端,电容C3的另一端连接检测阻抗Z1的一端,升压变压器T2次级的另一端连接检测阻抗Z1的另一端,升压变压器T2次级的另一端接地;
电容C1的一端连接限流电阻Rr的另一端,电容C1的另一端连接电容C2的一端,电容C2的另一端连接检测阻抗Z1的另一端,电容C1的另一端为无局部放电加压模块(1)的交流相位信号输出端;
检测阻抗Z1的一端为无局部放电加压模块(1)的脉冲电流信号输出端。
5.根据权利要求4所述的间歇性局部放电绝缘缺陷检测系统,其特征在于:所述无局部放电加压模块(1)还包括电压表V,电压表V的一端连接电容C2的一端,电压表V的另一端连接升压变压器T2次级的另一端。
6.根据权利要求1或4所述的间歇性局部放电绝缘缺陷检测系统,其特征在于:所述试验用盆式绝缘子(2.2)和参考用盆式绝缘子(2.3)均接地,试验用盆式绝缘子(2.2)与参考用盆式绝缘子(2.3)能处于不同的实验间隔。
7.根据权利要求1所述的间歇性局部放电绝缘缺陷检测系统,其特征在于:所述金属导杆(2.4)的底端为光滑无棱角头。
8.根据权利要求1所述的间歇性局部放电绝缘缺陷检测系统,其特征在于:所述参考用盆式绝缘子(2.3)为无缺陷盆式绝缘子。
9.一种基于权利要求1所述系统的绝缘缺陷特征信号采集方法,其特征在于,它包括如下步骤:
步骤1:启动振动平台(3)使气体绝缘组合电器局部放电缺陷模型(2)模拟气体绝缘组合电器运行时振动状态;
步骤2:利用无局部放电加压模块(1)给气体绝缘组合电器局部放电缺陷模型(2)的金属导杆(2.4)施加电压U,根据无局部放电加压模块(1)的脉冲电流信号输出端输出的第一脉冲电流信号或试验用盆式绝缘子(2.2)输出的第二脉冲电流信号利用脉冲电流法确定试验用盆式绝缘子(2.2)起始放电电压UPDIV,然后降低所加电压U至电压U1,保证电压U1低于起始放电电压UPDIV,如果在此所加电压U1条件下试验用盆式绝缘子(2.2)不能产生间歇性局部放电特征,则进一步调大或调小所施加到气体绝缘组合电器局部放电缺陷模型(2)上的电压U直至试验用盆式绝缘子(2.2)能产生稳定的间歇性局部放电特征,调整时保证电压U1低于起始放电电压UPDIV
如果气体绝缘组合电器局部放电缺陷模型(2)在所加电压U1条件下能够产生间歇性局部放电特征,则通过超声波传感器(2.6)和特高频传感器(2.7)分别采集气体绝缘组合电器局部放电缺陷模型(2)的超声波信号和特高频信号。
10.一种基于权利要求1所述系统的间歇性局部放电演变成击穿放电的绝缘缺陷模拟方法,其特征在于:首先在气体绝缘组合电器局部放电缺陷模型(2)的试验用盆式绝缘子(2.2)对应间隔中进行典型局部放电绝缘缺陷的模拟,然后调整典型局部放电绝缘缺陷的模拟参数,获取典型局部放电绝缘缺陷不同模拟参数下典型局部放电绝缘缺陷所对应的起始放电电压UPDIV和击穿电压UBD,选取使得起始放电电压UPDIV与击穿电压UBD最接近的典型局部放电绝缘缺陷模拟参数作为实验参量,最后在该实验参量下采用气体绝缘组合电器稳定的间歇性局部放电模拟方法为局部放电绝缘缺陷施加电压,实现间歇性局部放电演变成击穿放电的绝缘缺陷模拟。
CN202210127939.9A 2022-02-11 2022-02-11 间歇性局部放电绝缘缺陷检测系统及局部放电模拟方法 Pending CN114518514A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210127939.9A CN114518514A (zh) 2022-02-11 2022-02-11 间歇性局部放电绝缘缺陷检测系统及局部放电模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210127939.9A CN114518514A (zh) 2022-02-11 2022-02-11 间歇性局部放电绝缘缺陷检测系统及局部放电模拟方法

Publications (1)

Publication Number Publication Date
CN114518514A true CN114518514A (zh) 2022-05-20

Family

ID=81596573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210127939.9A Pending CN114518514A (zh) 2022-02-11 2022-02-11 间歇性局部放电绝缘缺陷检测系统及局部放电模拟方法

Country Status (1)

Country Link
CN (1) CN114518514A (zh)

Similar Documents

Publication Publication Date Title
JP5530966B2 (ja) ガス絶縁機器の絶縁性能試験方法及び装置
EP3182114A1 (en) Partial discharge monitoring of electrical machines using acoustic emission sensors and electrical sensors
CN104166080A (zh) 一种非工频工况gis设备局部放电缺陷模拟装置
JP4726654B2 (ja) インバータ駆動モータの絶縁評価方法及びその方法を利用した設計方法、検査方法、診断方法並びにそれらの装置
WO2007063647A1 (ja) 部分放電電荷量測定方法および装置
CN107505551B (zh) 气体绝缘组合开关设备特高频传感器布置试验装置及应用
CN207114702U (zh) 一种电力变压器局部放电模拟实验平台
EP2402775B1 (en) Insulation inspection/diagnosis device and method of dynamo-electric machine
CN203811751U (zh) 一种基于对比拟合分析的电力设备局部放电实验系统
CN106707048A (zh) 一种gis组合电器智能组件性能检测装置
CN203191508U (zh) 一种基于暂态地电波的gis局部放电检测试验平台
Wang et al. Considering the parameters of pulse width modulation voltage to improve the signal-to-noise ratio of partial discharge tests for inverter-fed motors
CN111880059A (zh) 一种用于高压开关柜绝缘件的局部放电试验平台及方法
CN107167715B (zh) 一种智能化gis局放ied试验回路及方法
CN207114695U (zh) 一种变压器内部金属颗粒局部放电模型
CN204028293U (zh) 一种非工频工况gis设备局部放电缺陷模拟装置
CN114518514A (zh) 间歇性局部放电绝缘缺陷检测系统及局部放电模拟方法
Li et al. Partial discharge monitoring system for PD characteristics of typical defects in GIS using UHF method
CN110196382A (zh) 一种无检测盲区振荡波局部放电检测装置
Bhatt et al. Partial discharge analysis in time and time-frequency domain of solid dielectric in power transformer
Tikakosol et al. Application of the integrated AE and HFCT sensors for online Dry-type Transformer Partial Discharge Monitoring. Case study
Srinangyam et al. Online PD Measurement by Detecting the Pulsed Compensating Current in High Voltage Equipment
CN207114696U (zh) 一种变压器内部沿面局部放电模型
JP2015114185A (ja) 部分放電検出方法および部分放電検出装置
Guo et al. Comparison of partial discharge characterizations under 60 Hz sinusoidal waveform and high-frequency PWM waveform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination