CN114516904A - Application of OsTMT1 protein in regulation and control of plant yield and/or stress tolerance - Google Patents

Application of OsTMT1 protein in regulation and control of plant yield and/or stress tolerance Download PDF

Info

Publication number
CN114516904A
CN114516904A CN202011286707.5A CN202011286707A CN114516904A CN 114516904 A CN114516904 A CN 114516904A CN 202011286707 A CN202011286707 A CN 202011286707A CN 114516904 A CN114516904 A CN 114516904A
Authority
CN
China
Prior art keywords
ostmt1
protein
plant
sequence
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011286707.5A
Other languages
Chinese (zh)
Other versions
CN114516904B (en
Inventor
王柏臣
沈杰
杨漫宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Botany of CAS
Original Assignee
Institute of Botany of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Botany of CAS filed Critical Institute of Botany of CAS
Priority to CN202011286707.5A priority Critical patent/CN114516904B/en
Publication of CN114516904A publication Critical patent/CN114516904A/en
Application granted granted Critical
Publication of CN114516904B publication Critical patent/CN114516904B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses application of OsTMT1 protein in regulation and control of plant yield and/or stress tolerance. The OsTMT1 mutant is obtained by constructing an OsTMT1 knockout vector, and the yield and the stress tolerance of the OsTMT1 mutant are analyzed and researched. The experimental results show that: the OsTMT1 protein can regulate plant hundred grain weight, 50 grain weight, grain length, grain width, grain thickness and cold resistance. The invention has important value for improving the plant yield and cultivating the stress-tolerant plant variety, especially the cold-tolerant plant variety.

Description

OsTMT1蛋白质在调控植物产量和/或耐逆性中的应用Application of OsTMT1 protein in regulating plant yield and/or stress tolerance

技术领域technical field

本发明属于生物技术领域,具体涉及OsTMT1蛋白质在调控植物产量和/或耐逆性中的应用。The invention belongs to the field of biotechnology, in particular to the application of OsTMT1 protein in regulating plant yield and/or stress tolerance.

背景技术Background technique

绿色植物通过光合作用能够将空气中的二氧化碳吸收,通过一系列固碳反应使其中的C原子能够以碳水化合物的形式储存应用,人类依赖植物作为有机碳的最终来源,因此了解植物如何控制碳的同化和长距离运输十分重要。在高等植物中,糖是在成熟叶片的叶肉细胞中产生的,叶肉细胞被称为源器官。异养细胞,如根和种子,是库器官,它们的营养依赖于糖的供应。碳水化合物分配(CP)是植物从源器官向库器官吸收、运输和分配糖类的过程,是植物生长发育的基础,并且这一过程对植物在非生物胁迫和生物胁迫下的耐受性也至关重要,因此了解碳水化合物分配及其基因调控对突破作物产量和抗逆性十分关键。Green plants can absorb carbon dioxide in the air through photosynthesis, and through a series of carbon fixation reactions, the C atoms in them can be stored and used in the form of carbohydrates. Humans rely on plants as the final source of organic carbon, so understand how plants control carbon. Assimilation and long-distance transport are important. In higher plants, sugars are produced in the mesophyll cells of mature leaves, which are called source organs. Heterotrophic cells, such as roots and seeds, are sink organs and depend on the supply of sugar for their nutrition. Carbohydrate partitioning (CP) is the process of plant uptake, transport and distribution of carbohydrates from source organs to sink organs, which is the basis of plant growth and development, and this process is also responsible for plant tolerance under abiotic stress and biotic stress. Therefore, understanding carbohydrate allocation and its gene regulation is critical to breakthrough crop yield and stress resistance.

TMT的全称为液泡膜单糖转运体Tonoplast Monosaccharide Transporter,水稻中有四个TMT基因,分别是:OsTMT1 Os10g0539900,OsTMT2 Os02g0229400,OsTMT3Os03g0128932,OsTMT4 Os11g0620400。水稻的OsTMT1编码一个由740个氨基酸组成的蛋白产物,含有12个跨膜螺旋,第6个和第7个中间有一个较大的环,这个环的长度为320个氨基酸残基,几乎是原核生物和真核生物中所有已知单糖转运子的相应结构的4到5倍,在同核细胞同源物中不存在。The full name of TMT is Tonoplast Monosaccharide Transporter. There are four TMT genes in rice: OsTMT1 Os10g0539900, OsTMT2 Os02g0229400, OsTMT3Os03g0128932, OsTMT4 Os11g0620400. OsTMT1 of rice encodes a protein product consisting of 740 amino acids containing 12 transmembrane helices with a larger loop between the sixth and seventh, which is 320 amino acid residues in length and is almost prokaryotic. Four to five times the corresponding structure of all known monosaccharide transporters in organisms and eukaryotes, absent in homokaryotic homologues.

水稻作为重要的经济作物,提高水稻产量对我国粮食供应十分关键,同时这也是当下的研究热点。由于现在对OsTMT蛋白在经济作物上的研究还十分欠缺,因此,水稻的液泡膜单糖转运蛋白OsTMT在水稻生长发育过程中起什么作用?对水稻籽粒有什么影响?在面对非生物及生物胁迫时,OsTMT蛋白会起什么作用?这些问题的研究对培育优良水稻品种具有重要的应用价值。Rice is an important economic crop, and increasing rice yield is critical to my country's food supply, and it is also a current research hotspot. Since the research on the OsTMT protein in commercial crops is still very lacking, what role does the rice tonoplast monosaccharide transporter OsTMT play in the process of rice growth and development? What is the effect on rice grains? What is the role of OsTMT protein in the face of abiotic and biotic stress? The research on these problems has important application value for cultivating excellent rice varieties.

发明内容SUMMARY OF THE INVENTION

本发明的第一个目的是提供OsTMT1蛋白质与OsTMT1蛋白质相关的生物材料的新用途。The first object of the present invention is to provide new uses of OsTMT1 protein and OsTMT1 protein-related biomaterials.

本发明提供了OsTMT1蛋白质与OsTMT1蛋白质相关的生物材料在调控植物产量和/或耐逆性中的应用;The invention provides the application of OsTMT1 protein and OsTMT1 protein-related biological materials in regulating plant yield and/or stress tolerance;

所述OsTMT1蛋白质是如下a)或b)或c)或d)所示的蛋白质:The OsTMT1 protein is a protein shown in a) or b) or c) or d) below:

a)由序列表中序列3所示的氨基酸序列组成的蛋白质;a) A protein consisting of the amino acid sequence shown in Sequence 3 in the Sequence Listing;

b)在序列表中序列3所示的蛋白质的N端和/或C端连接标签得到的融合蛋白;b) a fusion protein obtained by linking a tag to the N-terminal and/or C-terminal of the protein shown in SEQ ID NO: 3 in the sequence listing;

c)将序列表中序列3所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且功能相同的蛋白质;c) A protein with the same function as the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing through the substitution and/or deletion and/or addition of one or several amino acid residues;

d)与a)-c)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;d) a protein with more than 99%, more than 95%, more than 90%, more than 85% or more than 80% homology with the amino acid sequence defined in any of a)-c) and having the same function;

所述生物材料为下述A1)至A8)中的任一种:The biological material is any one of the following A1) to A8):

A1)编码OsTMT1蛋白质的核酸分子;A1) nucleic acid molecule encoding OsTMT1 protein;

A2)含有A1)所述核酸分子的表达盒;A2) an expression cassette containing the nucleic acid molecule of A1);

A3)含有A1)所述核酸分子的重组载体;A3) a recombinant vector containing the nucleic acid molecule of A1);

A4)含有A2)所述表达盒的重组载体;A4) a recombinant vector containing the expression cassette described in A2);

A5)含有A1)所述核酸分子的重组微生物;A5) a recombinant microorganism containing the nucleic acid molecule of A1);

A6)含有A2)所述表达盒的重组微生物;A6) a recombinant microorganism containing the expression cassette described in A2);

A7)含有A3)所述重组载体的重组微生物;A7) a recombinant microorganism containing the recombinant vector described in A3);

A8)含有A4)所述重组载体的重组微生物。A8) A recombinant microorganism containing the recombinant vector described in A4).

上述应用中,A1)所述核酸分子为如下1)或2)或3)所示的基因:In the above application, A1) the nucleic acid molecule is the gene shown in the following 1) or 2) or 3):

1)其编码序列是序列1所示的基因组DNA分子或序列2所示的cDNA分子;1) Its coding sequence is the genomic DNA molecule shown in sequence 1 or the cDNA molecule shown in sequence 2;

2)与1)限定的核苷酸序列具有75%或75%以上同一性,且编码所述OsTMT1蛋白质的cDNA分子或基因组DNA分子;2) a cDNA molecule or a genomic DNA molecule that has 75% or more identity with the nucleotide sequence defined in 1) and encodes the OsTMT1 protein;

3)在严格条件下与1)或2)限定的核苷酸序列杂交,且编码所述OsTMT1蛋白质的cDNA分子或基因组DNA分子。3) Hybridize to the nucleotide sequence defined in 1) or 2) under stringent conditions, and encode a cDNA molecule or a genomic DNA molecule of the OsTMT1 protein.

本发明的第二个目的是提供b1或b2所示的物质在降低植物产量和/或耐逆性中的应用:The second object of the present invention is to provide the application of the substances represented by b1 or b2 in reducing plant yield and/or stress tolerance:

b1、抑制或降低植物中OsTMT1蛋白质活性或者含量的物质;b1. Substances that inhibit or reduce the activity or content of OsTMT1 protein in plants;

b2、抑制或降低植物中OsTMT1蛋白质编码核酸表达的物质或敲除植物中OsTMT1蛋白质编码核酸的物质。b2. Substances for inhibiting or reducing the expression of nucleic acid encoding OsTMT1 protein in plants, or substances for knocking out nucleic acid encoding OsTMT1 protein in plants.

上述应用中,所述调控植物产量体现为调控植物百粒重和/或50粒重和/或粒长和/或粒宽和/或粒厚;In above-mentioned application, described regulation and control plant yield is embodied in regulation and control plant 100-grain weight and/or 50 grain weight and/or grain length and/or grain width and/or grain thickness;

所述耐逆性为耐冷性;The reversal resistance is cold resistance;

所述降低植物产量体现为降低或减小植物百粒重和/或50粒重和/或粒长和/或粒宽和/或粒厚。Said reduction in plant yield is embodied in a reduction or reduction in plant 100-grain weight and/or 50-grain weight and/or grain length and/or grain width and/or grain thickness.

本发明还提供了OsTMT1蛋白质或生物材料在培育产量提高和/或耐逆性提高的转基因植物中的应用。The present invention also provides the use of OsTMT1 protein or biomaterial in cultivating transgenic plants with improved yield and/or improved stress tolerance.

本发明还提供了上述b1或b2所示的物质在培育产量降低和/或耐逆性降低的转基因植物中的应用。The present invention also provides the application of the above-mentioned substances represented by b1 or b2 in cultivating transgenic plants with reduced yield and/or reduced stress tolerance.

本发明还有一个目的是提供一种培育产量降低和/或耐逆性降低的转基因植物的方法。Still another object of the present invention is to provide a method of growing transgenic plants with reduced yield and/or reduced stress tolerance.

本发明提供的培育产量降低和/或耐逆性降低的转基因植物的方法包括降低受体植物中OsTMT1蛋白质的含量和/或活性,得到转基因植物的步骤;所述转基因植物的产量和/或耐逆性低于所述受体植物。The method for cultivating transgenic plants with reduced yield and/or reduced stress tolerance provided by the present invention comprises the steps of reducing the content and/or activity of OsTMT1 protein in recipient plants to obtain transgenic plants; the yield and/or tolerance of the transgenic plants Stress resistance is lower than that of the recipient plants.

进一步的,所述转基因植物的产量低于所述受体植物体现为所述转基因植物的百粒重和/或50粒重和/或粒长和/或粒宽和/或粒厚小于所述受体植物。Further, the yield of the transgenic plant is lower than that of the recipient plant, which is reflected in that the 100-grain weight and/or 50-grain weight and/or grain length and/or grain width and/or grain thickness of the transgenic plant are smaller than the recipient plant.

所述耐逆性为耐冷性;所述转基因植物的耐冷性低于所述受体植物体现为在冷处理恢复后,所述转基因植物中叶片恢复正常的植株数少于所述受体植物。所述冷处理恢复具体条件为4℃冷胁迫处理3天后恢复2天。The stress tolerance is cold tolerance; the cold tolerance of the transgenic plant is lower than that of the recipient plant, which means that the number of plants whose leaves are restored to normal in the transgenic plant is less than that of the recipient plant after recovery from the cold treatment. The specific conditions for recovery from the cold treatment are 4°C cold stress treatment for 3 days and then recovery for 2 days.

所述降低受体植物中OsTMT1蛋白质的含量和/或活性的方法通过对所述受体植物中OsTMT1蛋白质的编码基因进行敲除或抑制或沉默来实现。The method for reducing the content and/or activity of the OsTMT1 protein in the recipient plant is achieved by knocking out or inhibiting or silencing the gene encoding the OsTMT1 protein in the recipient plant.

所述OsTMT1蛋白质的编码基因的核苷酸序列是序列1所示的DNA分子。The nucleotide sequence of the gene encoding the OsTMT1 protein is the DNA molecule shown in SEQ ID NO: 1.

更进一步的,敲除所述受体植物中的OsTMT1蛋白质的编码基因的物质为CRISPR/Cas9系统;Further, the substance for knocking out the gene encoding the OsTMT1 protein in the recipient plant is the CRISPR/Cas9 system;

所述CRISPR/Cas9系统中sgRNA的靶序列为序列表中的序列4。The target sequence of the sgRNA in the CRISPR/Cas9 system is sequence 4 in the sequence listing.

上述任一所述应用或方法中,所述植物为单子叶植物或双子叶植物;所述单子叶植物为禾本科植物;所述禾本科植物为水稻。In any one of the above-mentioned applications or methods, the plant is a monocotyledonous plant or a dicotyledonous plant; the monocotyledonous plant is a grass family; the grass family is rice.

本发明最后一个目的是提供一种特异sgRNA或含有所述sgRNA编码基因的表达盒、载体、宿主细胞、工程菌或转基因植物细胞系;所述sgRNA的靶序列为序列4。The last object of the present invention is to provide a specific sgRNA or an expression cassette, vector, host cell, engineered bacteria or transgenic plant cell line containing the sgRNA encoding gene; the target sequence of the sgRNA is sequence 4.

本发明通过构建OsTMT1敲除载体,获得OsTMT1突变体,并对OsTMT1突变体的产量和耐逆性进行了分析和研究。实验结果表明:OsTMT1蛋白质可调控植物百粒重、50粒重、粒长、粒宽、粒厚和耐冷性。本发明对改良植物产量、培育耐逆植物品种尤其是耐冷植物品种具有重要价值。The present invention obtains an OsTMT1 mutant by constructing an OsTMT1 knockout vector, and analyzes and studies the yield and stress tolerance of the OsTMT1 mutant. The experimental results showed that OsTMT1 protein could regulate plant 100-grain weight, 50-grain weight, grain length, grain width, grain thickness and cold tolerance. The invention has important value for improving plant yield and cultivating stress-tolerant plant varieties, especially cold-tolerant plant varieties.

附图说明Description of drawings

图1为水稻OsTMT1敲除突变体ostmt1-1和ostmt1-2的种子表型。Figure 1 shows the seed phenotypes of rice OsTMT1 knockout mutants ostmt1-1 and ostmt1-2.

图2为水稻ostmt1-1和ostmt1-2突变体T2代种子(100粒)的粒重(A)、粒长(B)、粒宽(C)、粒厚(D)的表型统计结果。Figure 2 shows the phenotypic statistics of grain weight (A), grain length (B), grain width (C), and grain thickness (D) of T 2 generation seeds (100 grains) of rice ostmt1-1 and ostmt1-2 mutants .

图3为水稻ostmt1-2和ostmt1-5突变体T3代种子(50粒)的粒重(A)、粒长(B)、粒宽(C)、粒厚(D)的表型统计结果。Figure 3 shows the phenotypic statistics of grain weight (A), grain length (B), grain width (C) and grain thickness (D) of rice ostmt1-2 and ostmt1-5 mutant T 3rd generation seeds (50 seeds) .

图4为低温处理前(A),恢复2天(B),恢复9天(C)后的野生型WT和ostmt1-1,ostmt1-2,ostmt1-3的表型。Figure 4 shows the phenotypes of wild-type WT and ostmt1-1, ostmt1-2 and ostmt1-3 before low temperature treatment (A), after 2 days of recovery (B) and 9 days of recovery (C).

图5为低温胁迫处理WT后OsTMT1的RNA表达量变化。Figure 5 shows the changes in the RNA expression of OsTMT1 after low temperature stress treatment of WT.

图6为盐胁迫处理WT后OsTMT1的RNA表达量变化。Figure 6 shows the changes in the RNA expression of OsTMT1 after salt stress treatment of WT.

具体实施方式Detailed ways

以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的试验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。The following examples facilitate a better understanding of the present invention, but do not limit the present invention. The test methods in the following examples are conventional methods unless otherwise specified. The test materials used in the following examples were purchased from conventional biochemical reagent stores unless otherwise specified. The quantitative tests in the following examples are all set to repeat the experiments three times, and the results are averaged.

下述实施例中的pOs-sgRNA载体和pH-Ubi-cas9-7载体均记载于文献“Miao J,GuoD,Zhang J,Huang Q,Qin G,Zhang X,Wan J,Gu H,Qu LJ.Targeted mutagenesis in riceusing CRISPR-Cas system.Cell Res.2013Oct;23(10):1233-6.doi:10.1038/cr.2013.123.Epub 2013 Sep 3.PMID:23999856;PMCID:PMC3790239.”中。The pOs-sgRNA carrier and pH-Ubi-cas9-7 carrier in the following examples are all described in the document "Miao J, GuoD, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ. Targeted mutagenesis in riceusing CRISPR-Cas system.Cell Res.2013Oct;23(10):1233-6.doi:10.1038/cr.2013.123.Epub 2013 Sep 3.PMID:23999856;PMCID:PMC3790239."

下述实施例中的水稻粳稻品种Kitaake记载于文献“Miao J,Guo D,Zhang J,Huang Q,Qin G,Zhang X,Wan J,Gu H,Qu LJ.Targeted mutagenesis in rice usingCRISPR-Cas system.Cell Res.2013Oct;23(10):1233-6.doi:10.1038/cr.2013.123.Epub2013 Sep 3.PMID:23999856;PMCID:PMC3790239.”中。The rice japonica variety Kitaake in the following examples is described in the document "Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 2013 Oct;23(10):1233-6.doi:10.1038/cr.2013.123.Epub2013 Sep 3.PMID:23999856;PMCID:PMC3790239.”

下述实施例中的农杆菌EHA105记载于文献“Wu C.,Sui Y.(2019)Efficient andFast Production of Transgenic Rice Plants by Agrobacterium-MediatedTransformation.In:Kumar S.,Barone P.,Smith M.(eds)Transgenic Plants.Methodsin Molecular Biology,vol1864.Humana Press,New York,NY.https://doi.org/10.1007/978-1-4939-8778-8_7”中。Agrobacterium EHA105 in the following examples is described in the document "Wu C., Sui Y. (2019) Efficient and Fast Production of Transgenic Rice Plants by Agrobacterium-Mediated Transformation. In: Kumar S., Barone P., Smith M. (eds ) Transgenic Plants. Methods in Molecular Biology, vol 1864. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8778-8_7".

实施例1、OsTMT1敲除突变体的构建及其表型分析Example 1. Construction and phenotypic analysis of OsTMT1 knockout mutants

一、OsTMT1敲除突变体的构建1. Construction of OsTMT1 knockout mutants

1、OsTMT1敲除载体的构建1. Construction of OsTMT1 knockout vector

为了阐明OsTMT1蛋白在水稻的生长发育过程中可能的作用,利用Crispr技术,通过CRISPR-P在线网站(http://cbi.hzau.edu.cn/cgi-bin/CRISPR),筛选水稻OsTMT1(LOC_Os10g0539900)的Crispr靶点,并设计引物进行载体构建。具体步骤如下:In order to elucidate the possible role of OsTMT1 protein in the growth and development of rice, Crispr technology was used to screen rice OsTMT1 (LOC_Os10g0539900) through the CRISPR-P online website (http://cbi.hzau.edu.cn/cgi-bin/CRISPR). ) of the Crispr target, and design primers for vector construction. Specific steps are as follows:

1)Crispr靶点的设计1) Design of Crispr targets

筛选的Crispr靶点序列如下:GCAGTCCTCTGATGTCCGTC(序列4)。The screened Crispr target sequence is as follows: GCAGTCCTCTGATGTCCGTC (sequence 4).

2)Oligo二聚体的合成2) Synthesis of Oligo dimer

在10ul体系中各加入1p的39440-crispr-1-F引物及39440-crispr-1-R引物,94℃10min,0.1℃/s退火至15℃,15℃保持10min,完成退火,得到退火产物。引物序列如下:Add 1p of 39440-crispr-1-F primer and 39440-crispr-1-R primer to each 10ul system, 94°C for 10min, anneal at 0.1°C/s to 15°C, hold at 15°C for 10min, complete the annealing, and obtain the annealed product . The primer sequences are as follows:

39440-crispr-1-F:39440-crispr-1-F:

AGATGATCCGTGGCAGCAGTCCTCTGATGTCCGTCGTTTTAGAGCTATGC;AGATGATCCGTGGCAGCAGTCCTCTGATGTCCGTCGTTTTAGAGCTATGC;

39440-crispr-1-R:39440-crispr-1-R:

GCATAGCTCTAAAACGACGGACATCAGAGGACTGCTGCCACGGATCATCT。GCATAGCTCTAAAACGACGGACATCAGAGGACTGCTGCCACGGATCATCT.

3)敲除载体的构建3) Construction of knockout vector

取1ul退火产物与经AscI酶切后的pOs-sgRNA载体infusion连接,得到连接产物,然后转入DH5α,涂于Kana固体培养基上。经过电泳确定好质粒大小(15kb左右)后再送测序,测序正确的质粒命名为OsTMT1-sgRNA。One ul of the annealed product was infusion ligated with the pOs-sgRNA vector digested with AscI to obtain the ligated product, which was then transferred to DH5α and spread on Kana solid medium. The plasmid size (about 15kb) was determined by electrophoresis and then sent for sequencing. The correctly sequenced plasmid was named OsTMT1-sgRNA.

将OsTMT1-sgRNA与pH-Ubi-cas9-7进行Gateway LR反应(两种质粒各0.5ul,LR酶1ul,补充至5ul体系,25℃反应1h),再次转入DH5α,涂于spec固体培养基上。测序正确的质粒命名为OsTMT1敲除质粒。The OsTMT1-sgRNA and pH-Ubi-cas9-7 were subjected to Gateway LR reaction (0.5ul of each plasmid, 1ul of LR enzyme, supplemented to 5ul system, and reacted at 25°C for 1h), transferred to DH5α again, and coated on spec solid medium superior. The correctly sequenced plasmid was named OsTMT1 knockout plasmid.

敲除质粒的详细构建步骤可参考文献“Miao J,Guo D,Zhang J,Huang Q,Qin G,Zhang X,Wan J,Gu H,Qu LJ.Targeted mutagenesis in rice using CRISPR-Cassystem.Cell Res.2013 Oct;23(10):1233-6.doi:10.1038/cr.2013.123.Epub 2013 Sep3.PMID:23999856;PMCID:PMC3790239.”中的方法。For the detailed construction steps of the knockout plasmid, please refer to "Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ. Targeted mutagenesis in rice using CRISPR-Cassystem. Cell Res. 2013 Oct;23(10):1233-6.doi:10.1038/cr.2013.123.Epub 2013 Sep3.PMID:23999856;PMCID:PMC3790239.”.

2、农杆菌转化及OsTMT1敲除突变体的获得2. Agrobacterium transformation and acquisition of OsTMT1 knockout mutants

将OsTMT1敲除质粒转入农杆菌EHA105进行水稻转基因试验,以水稻粳稻品种Kitaake(Oryza sativa L.cv.Kitaake)为受体材料,对其单糖转运蛋白OsTMT1进行编辑,得到T0代转基因植株。对T0代转基因植株进行DNA检测(DNA检测的引物序列如下:39440-crispr-identify-1-F:ATCATCACGACGTTCTCTGGAG;39440-crispr-identify-1-R:TGCTGGGTAAGACATACAAACCT),确定转基因植物编辑方式及纯杂合,获得T1代种子,在温室进行播种,对T1代水稻再次进行DNA检测并测序,检测编辑方式是否稳定遗传及植株编辑位点的纯杂合,对于纯合编辑的水稻在收获T2代种子后开始进行表型观察。The OsTMT1 knockout plasmid was transferred into Agrobacterium EHA105 for rice transgenic experiments. The japonica rice variety Kitaake (Oryza sativa L. cv. Kitaake) was used as the receptor material to edit its monosaccharide transporter OsTMT1 to obtain T 0 generation transgenic plants . DNA detection of T 0 generation transgenic plants (the primer sequences for DNA detection are as follows: 39440-crispr-identify-1-F: ATCATCACGACGTTCTCTGGAG; 39440-crispr-identify-1-R: TGCTGGGTAAGACATACAAACCT) to determine the editing method and pure hybridization of transgenic plants The T 1 generation seeds were obtained and sown in the greenhouse. The DNA of the T 1 generation rice was tested and sequenced again to check whether the editing method was stable and the editing site was homozygous. For the homozygous edited rice, harvest T Phenotypic observation was started after 2 generations of seeds.

通过测序鉴定,最终获得了T1代OsTMT1纯合突变体OsTMT1-crispr#1(简称ostmt1-1)、OsTMT1-crispr#2(简称ostmt1-2)、OsTMT1-crispr#3(简称ostmt1-3)和OsTMT1-crispr#5(简称ostmt1-5)。Through sequencing identification, the T1 generation OsTMT1 homozygous mutants OsTMT1-crispr#1 (ostmt1-1 for short), OsTMT1-crispr#2 (ostmt1-2 for short), OsTMT1-crispr#3 (ostmt1-3 for short) and OsTMT1-crispr#5 (referred to as ostmt1-5).

与野生型水稻Kitaake基因组DNA相比,ostmt1-1的差异仅在于对应于序列2所示的OsTMT1基因序列发生了5个碱基“GGACA”的缺失(即序列2自5’末端起第381至385位缺失),从而造成移码并提前终止,OsTMT1蛋白功能缺失。Compared with the wild-type rice Kitaake genomic DNA, the difference of ostmt1-1 is only the deletion of 5 bases "GGACA" corresponding to the OsTMT1 gene sequence shown in sequence 2 (that is, sequence 2 from the 381st to the 5' end of sequence 2). 385 deletion), resulting in a frameshift and premature termination, resulting in loss of OsTMT1 protein function.

与野生型水稻Kitaake基因组DNA相比,ostmt1-2的差异仅在于对应于序列2所示的OsTMT1基因序列发生了1个碱基“G”的缺失(即序列2自5’末端起第381位缺失),从而造成移码并提前终止,OsTMT1蛋白功能缺失。Compared with the wild-type rice Kitaake genomic DNA, the difference between ostmt1-2 is only that the OsTMT1 gene sequence corresponding to sequence 2 has a 1-base "G" deletion (that is, the 381st position from the 5' end of sequence 2). deletion), resulting in a frameshift and premature termination, resulting in loss of OsTMT1 protein function.

与野生型水稻Kitaake基因组DNA相比,ostmt1-3的差异仅在于对应于序列2所示的OsTMT1基因序列发生了1个碱基“G”的插入(即序列2自5’末端起第382位和第383位之间插入了一个碱基G),从而造成移码并提前终止,OsTMT1蛋白功能缺失。Compared with the wild-type rice Kitaake genomic DNA, the difference between ostmt1-3 is only the insertion of 1 base "G" corresponding to the OsTMT1 gene sequence shown in sequence 2 (that is, the 382nd position from the 5' end of sequence 2). A base G) was inserted between position 383 and position 383, resulting in a frameshift and premature termination, resulting in loss of OsTMT1 protein function.

与野生型水稻Kitaake基因组DNA相比,ostmt1-5的差异仅在于对应于序列2所示的OsTMT1基因序列第379位发生了一个碱基突变(即序列2自5’末端起第379位由碱基A突变为碱基C),且发生了6个碱基“CGGACA”的缺失(即序列2自5’末端起第380-385位缺失),从而导致2个氨基酸的缺失,OsTMT1蛋白功能缺失。Compared with the wild-type rice Kitaake genomic DNA, the difference between ostmt1-5 is only a base mutation corresponding to the 379th position of the OsTMT1 gene sequence shown in sequence 2 (that is, the 379th position from the 5' end of sequence 2 is composed of a base. Base A was mutated to base C), and a 6-base "CGGACA" was deleted (ie, the 380-385th position of sequence 2 was deleted from the 5' end), resulting in the deletion of 2 amino acids and the loss of OsTMT1 protein function .

二、OsTMT1敲除突变体的表型分析2. Phenotypic analysis of OsTMT1 knockout mutants

1、OsTMT1的缺失会造成种子减产,籽粒减小1. Deletion of OsTMT1 results in reduced seed yield and reduced grain size

将T1代OsTMT1纯合突变体OsTMT1-crispr#1(ostmt1-1)和OsTMT1-crispr#2(ostmt1-2)和OsTMT1-crispr#5(ostmt1-5)后代进行实验。检测T2代和T3代OsTMT1纯合突变体种子的农艺性状,表型结果见图1。同时以野生型水稻粳稻品种Kitaake作为对照。T2代统计了ostmt1-1和ostmt1-2的百粒重,结果如图2所示。T3代统计了ostmt1-5的50粒重,结果如图3所示。The T 1 generation OsTMT1 homozygous mutants OsTMT1-crispr#1 (ostmt1-1) and OsTMT1-crispr#2 (ostmt1-2) and OsTMT1-crispr#5 (ostmt1-5) progeny were used for experiments. The agronomic traits of the OsTMT1 homozygous mutant seeds in the T 2 and T 3 generations were tested, and the phenotypic results are shown in Figure 1. At the same time, the wild-type japonica variety Kitaake was used as a control. The 100-grain weights of ostmt1-1 and ostmt1-2 were counted in the T 2 generation, and the results are shown in Figure 2. The 50-grain weight of ostmt1-5 was counted in the T 3 generation, and the results are shown in Figure 3.

在百粒重方面,ostmt1-1和ostmt1-2与野生型WT的平均百粒重分别为1.79888(ostmt1-1)、1.82615(ostmt1-2)和1.91349(WT),ostmt1-1和ostmt1-2与野生型WT都有极显著差异,明显减小。In terms of 100-kernel weight, the mean 100-kernel weights of ostmt1-1 and ostmt1-2 and wild-type WT were 1.79888 (ostmt1-1), 1.82615 (ostmt1-2) and 1.91349 (WT), respectively, and ostmt1-1 and ostmt1-2 There are extremely significant differences with wild-type WT, which are significantly reduced.

在50粒重方面,ostmt1-5与野生型WT的平均50粒重分别为0.75587(ostmt1-5)和0.957(WT),ostmt1-5的50粒重与野生型WT差异极显著,明显减少。In terms of 50-grain weight, the average 50-grain weights of ostmt1-5 and wild-type WT were 0.75587 (ostmt1-5) and 0.957 (WT), respectively. The 50-grain weight of ostmt1-5 was significantly different from that of wild-type WT.

2、OsTMT1对水稻籽粒的粒长影响较大,其缺失会造成粒长显著变短2. OsTMT1 has a great influence on the grain length of rice grains, and its deletion will cause the grain length to be significantly shortened

T2代统计了ostmt1-1和ostmt1-2的粒长、粒宽和粒厚。结果如图2所示。The grain length, grain width and grain thickness of ostmt1-1 and ostmt1-2 were counted in T 2 generation. The results are shown in Figure 2.

在粒长方面,ostmt1-1和ostmt1-2与野生型WT的平均粒长分别为6.345(ostmt1-1)、6.506(ostmt1-2)和6.77(WT),ostmt1-1和ostmt1-2与WT都有极显著差异,明显减小。In terms of grain length, the mean grain lengths of ostmt1-1 and ostmt1-2 and wild-type WT were 6.345 (ostmt1-1), 6.506 (ostmt1-2) and 6.77 (WT), respectively, and ostmt1-1 and ostmt1-2 were compared with WT. There are extremely significant differences, significantly reduced.

在粒宽方面,ostmt1-1和ostmt1-2与野生型WT的平均粒宽分别为3.1477(ostmt1-1)、3.187(ostmt1-2)和3.464(WT),ostmt1-1与WT有极显著差异,ostmt1-2与WT有显著差异,趋势为缩短。In terms of grain width, the average grain widths of ostmt1-1 and ostmt1-2 and wild-type WT were 3.1477 (ostmt1-1), 3.187 (ostmt1-2) and 3.464 (WT), respectively, and ostmt1-1 was significantly different from WT. , ostmt1-2 was significantly different from WT, with a trend of shortening.

在粒厚方面,ostmt1-1和ostmt1-2与野生型WT的平均粒厚分别为2.119(ostmt1-1)、2.101(ostmt1-2)和2.19(WT),ostmt1-1与WT差异不显著,ostmt1-2与WT有显著差异,趋势为缩短。In terms of grain thickness, the average grain thickness of ostmt1-1 and ostmt1-2 and wild-type WT were 2.119 (ostmt1-1), 2.101 (ostmt1-2) and 2.19 (WT), respectively, and there was no significant difference between ostmt1-1 and WT. ostmt1-2 was significantly different from WT with a trend of shortening.

T3代统计了ostmt1-2和ostmt1-5的粒长、粒宽和粒厚。结果如图3所示。The grain length, grain width and grain thickness of ostmt1-2 and ostmt1-5 were counted in T 3 generations. The results are shown in Figure 3.

在粒长方面,ostmt1-2和ostmt1-5与野生型WT的平均粒长分别为6.929(ostmt1-2)、6.921(ostmt1-5)和7.299(WT),ostmt1-2和ostmt1-5都明显小于WT,差异极显著。In terms of grain length, the average grain lengths of ostmt1-2 and ostmt1-5 and wild-type WT were 6.929 (ostmt1-2), 6.921 (ostmt1-5) and 7.299 (WT), respectively, and both ostmt1-2 and ostmt1-5 were obvious. less than WT, the difference is extremely significant.

在粒宽方面,ostmt1-2和ostmt1-5与野生型WT的平均粒宽分别为3.017(ostmt1-2)、3.173(ostmt1-5)和3.221(WT),ostmt1-2和ostmt1-5都小于WT,ostmt1-2与WT的差异极显著,ostmt1-5与WT的差异不显著。In terms of grain width, the mean grain widths of ostmt1-2 and ostmt1-5 and wild-type WT were 3.017 (ostmt1-2), 3.173 (ostmt1-5) and 3.221 (WT), respectively, and both ostmt1-2 and ostmt1-5 were smaller than The difference between WT, ostmt1-2 and WT was extremely significant, and the difference between ostmt1-5 and WT was not significant.

在粒厚方面,ostmt1-2和ostmt1-5与野生型WT的平均粒厚分别为1.7189(ostmt1-2)、1.949(ostmt1-5)和2.093(WT),ostmt1-2和ostmt1-5都明显小于WT,差异极显著。In terms of grain thickness, the mean grain thickness of ostmt1-2 and ostmt1-5 and wild-type WT were 1.7189 (ostmt1-2), 1.949 (ostmt1-5) and 2.093 (WT), respectively, and both ostmt1-2 and ostmt1-5 were obvious less than WT, the difference is extremely significant.

通过两代种子表型观察,发现水稻OsTMT1敲除突变体的种子与野生型在重量上有极显著差别,在种子的大小方面,粒长上的差别更显著且稳定遗传,而粒宽和粒厚方面的差异不够显著且不稳定,但趋势都是小于野生型。因此水稻中OsTMT1的缺失会影响水稻种子重量下降造成种子减产的表型,OsTMT1对于水稻产量大小起关键作用。Through the observation of two generations of seed phenotypes, it was found that the seeds of the rice OsTMT1 knockout mutant were significantly different from the wild type in weight. In terms of seed size, the difference in grain length was more significant and stable inheritance, while the grain width and grain width Differences in thickness were not significant and unstable, but tended to be smaller than wild type. Therefore, the deletion of OsTMT1 in rice can affect the phenotype of rice seed weight reduction and seed yield reduction, and OsTMT1 plays a key role in rice yield.

三、OsTMT1敲除突变体的耐逆性分析3. Stress tolerance analysis of OsTMT1 knockout mutants

1、OsTMT1与水稻冷胁迫相关1. OsTMT1 is associated with cold stress in rice

将野生型与T2代OsTMT1纯合突变体ostmt1-1,ostmt1-2,ostmt1-3在28℃光照培养箱中用木村B营养液培养至16天,然后在恒温的4℃低温水浴锅中冷胁迫处理3天,处理后再放回光照培养箱恢复2天及9天后观察表型。同时以野生型水稻粳稻品种Kitaake作为对照。每个材料统计32个植株,共计128株。Wild-type and T 2 generation OsTMT1 homozygous mutants ostmt1-1, ostmt1-2, and ostmt1-3 were incubated with Kimura B nutrient solution in a 28°C lighted incubator for 16 days, and then incubated in a constant temperature 4°C low temperature water bath. Treated under cold stress for 3 days, and then returned to the light incubator to recover for 2 days and 9 days to observe the phenotype. At the same time, the wild-type japonica variety Kitaake was used as a control. 32 plants were counted for each material, a total of 128 plants.

结果发现,处理前WT与OsTMT1纯合突变体植株无明显差别。处理并恢复2天后,OsTMT1纯合突变体ostmt1-1和ostmt1-2植株全部卷叶,ostmt1-3植株约2株叶片恢复正常,WT有少量(约4株)叶片恢复正常,但也是大量卷叶。处理并恢复9天后,所有卷叶并未恢复,其余正常生长(图4)。The results showed that there was no significant difference between WT and OsTMT1 homozygous mutant plants before treatment. After 2 days of treatment and recovery, OsTMT1 homozygous mutant ostmt1-1 and ostmt1-2 plants all rolled leaves, about 2 leaves of ostmt1-3 plants returned to normal, and a few (about 4) leaves of WT returned to normal, but also a lot of leaf rolls. leaf. After 9 days of treatment and recovery, all rolled leaves did not recover, and the rest grew normally (Fig. 4).

通过q-PCR技术,检测低温处理后的野生型水稻粳稻品种Kitaake的OsTMT1 RNA水平表达量,发现4℃处理3h后的表达量的下降明显,且变化的趋势和幅度有差别,但在处理时间为0-3h时OsTMT1在RNA水平的表达均上升,3h后下降明显(图5),然后随着处理时间增加,OsTMT1虽然存在几次增加然后降低的变化,但都没有恢复到处理前的水平。通过以上结果推测,在短时间的冷胁迫下,OsTMT1通过增加表达量,响应植物抗寒机制。The expression level of OsTMT1 RNA in wild-type japonica rice variety Kitaake after low temperature treatment was detected by q-PCR technology. The expression of OsTMT1 at the RNA level increased from 0 to 3 h, and decreased significantly after 3 h (Figure 5). Then with the increase of treatment time, although OsTMT1 increased and then decreased several times, it did not return to the level before treatment. . Based on the above results, it is speculated that under short-term cold stress, OsTMT1 responds to the mechanism of plant cold resistance by increasing the expression level.

2、OsTMT1能响应水稻盐胁迫2. OsTMT1 can respond to salt stress in rice

对在木村B营养液中生长至两周的野生型水稻粳稻品种Kitaake进行浓度为250mMNaCl的盐胁迫处理,并通过q-PCR技术进行了OsTMT1的RNA表达量的检测,检测其是否与植物抗盐反应相关。结果发现在盐胁迫下OsTMT1的RNA表达量从处理后1h后开始发生明显上升,在处理3h时表达量最高约为0h时的2倍,6h和24h时有所下降,但仍高于未处理时(图6)。由此推测OsTMT与水稻的盐胁迫下的应激反应有关。The wild-type japonica rice variety Kitaake grown in Kimura B nutrient solution for two weeks was subjected to salt stress treatment with a concentration of 250 mM NaCl, and the RNA expression of OsTMT1 was detected by q-PCR technology to detect whether it is related to the salt tolerance of plants. Reaction related. The results showed that under salt stress, the RNA expression of OsTMT1 increased significantly from 1h after treatment, and the highest expression was about 2 times that of 0h at 3h, and decreased at 6h and 24h, but still higher than untreated. time (Figure 6). Therefore, it is speculated that OsTMT is related to the stress response of rice under salt stress.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the technical principles of the present invention, several improvements and modifications can be made. These improvements and modifications It should also be regarded as the protection scope of the present invention.

序列表 sequence listing

<110> 中国科学院植物研究所<110> Institute of Botany, Chinese Academy of Sciences

<120> OsTMT1蛋白质在调控植物产量和/或耐逆性中的应用<120> Application of OsTMT1 protein in regulating plant yield and/or stress tolerance

<160> 4<160> 4

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 4524<211> 4524

<212> DNA<212> DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 1<400> 1

atggtagtcc aaagagtcca cagcccacac tcactctcct cacccccccc ccctcggccc 60atggtagtcc aaagagtcca cagcccacac tcactctcct cacccccccc ccctcggccc 60

tggactccct cctccaaatc tcccctaaaa gcttcccaat ttggcgagaa ttccccatat 120tggactccct cctccaaatc tcccctaaaa gcttcccaat ttggcgagaa ttccccatat 120

atttgcccca tctcggcgtc ccaacgagcc cttccagatt cccagccgcc tctcttcttg 180atttgcccca tctcggcgtc ccaacgagcc cttccagatt cccagccgcc tctcttcttg 180

ttaggggatc cgaaatctcg gtggacgaga gacttgggta aagaaagggt ttctttctct 240ttaggggatc cgaaatctcg gtggacgaga gacttgggta aagaaagggt ttctttctct 240

ctctgggggg aggcatgttc ttgattctag gaggggattt gttagatcga atcaagtttt 300ctctgggggg aggcatgttc ttgattctag gaggggattt gttagatcga atcaagtttt 300

gtttgtgggt ggggggagtt ttgttgtaag atttgtgttg ctgatggcgt tctttgttgt 360gtttgtgggt ggggggagtt ttgttgtaag atttgtgttg ctgatggcgt tctttgttgt 360

ggtgttgatg gtggtgttcg ttgttttctt ttctttttct ttcttgtgca gtggtaagat 420ggtgttgatg gtggtgttcg ttgttttctt ttctttttct ttcttgtgca gtggtaagat 420

tcgccggcca tggcgggcgc cgtgctggtc gccatcgcgg cctccatcgg caacttgctg 480tcgccggcca tggcgggcgc cgtgctggtc gccatcgcgg cctccatcgg caacttgctg 480

cagggctggg ataatgcaac cattgcaggt aagttcgtgg ttagagaaaa aacgaatctt 540cagggctggg ataatgcaac cattgcaggt aagttcgtgg ttagagaaaa aacgaatctt 540

tttttttctg ccatagtttg tgtgccatgt cgttatgtga cgctagggcc cgtgtttggt 600ttttttttctg ccatagtttg tgtgccatgt cgttatgtga cgctagggcc cgtgtttggt 600

ggcaattatt gtgatacttg tggagatcat gatggatttg gtggaatcat ctgcagtaaa 660ggcaattatt gtgatacttg tggagatcat gatggatttg gtggaatcat ctgcagtaaa 660

aatagtttta gttgttcttc tctgttcatg atatcacaaa aaaaaacaac tgatattttt 720aatagtttta gttgttcttc tctgttcatg atatcacaaa aaaaaacaac tgatattttt 720

ttttcagtag aattttgagt caattatgag taggatttaa caaatgtacg gatctcatga 780ttttcagtag aattttgagt caattatgag taggatttaa caaatgtacg gatctcatga 780

atgatctgta tttatggaac ttgatactgt ctgcatcgta aggtttcaga aatttgattg 840atgatctgta tttatggaac ttgatactgt ctgcatcgta aggtttcaga aatttgattg 840

ataccgatgg ttttgacttc ttgctgaccc tgtggacttg ttgggatgat ctttatcagg 900ataccgatgg ttttgacttc ttgctgaccc tgtggacttg ttgggatgat ctttatcagg 900

tgcggtactg tacatcaaga aggaattcaa cttgcagagc gagcccctta tcgaaggcct 960tgcggtactg tacatcaaga aggaattcaa cttgcagagc gagcccctta tcgaaggcct 960

gatcgtggcc atgtcgctca ttggggcgac gatcatcacg acgttctctg gagcagtggc 1020gatcgtggcc atgtcgctca ttggggcgac gatcatcacg acgttctctg gagcagtggc 1020

tgattctttt ggtaggcggc ccatgctgat cgcgtcggct gtcctctact ttgttagtgg 1080tgattctttt ggtaggcggc ccatgctgat cgcgtcggct gtcctctact ttgttagtgg 1080

gctagtgatg ctttgggcgc caaatgtgta tgtgttgctc ttggcgaggc tcattgacgg 1140gctagtgatg ctttgggcgc caaatgtgta tgtgttgctc ttggcgaggc tcattgacgg 1140

gttcgggatc ggtttggctg tcacgcttgt accattgtac atctctgaga ctgccccgac 1200gttcgggatc ggtttggctg tcacgcttgt accattgtac atctctgaga ctgccccgac 1200

ggacatcaga ggactgctaa acacgctgcc gcagttcagt gggtctggag ggatgttcct 1260ggacatcaga ggactgctaa acacgctgcc gcagttcagt gggtctggag ggatgttcct 1260

ttcatactgc atggtatttg gcatgtccct catgccacag ccagattgga ggatcatgct 1320ttcatactgc atggtatttg gcatgtccct catgccacag ccagattgga ggatcatgct 1320

tggcgttcta tcaataccat cacttatata ctttgcattg accatctttt acttacctga 1380tggcgttcta tcaataccat cacttatata ctttgcattg accatctttt acttacctga 1380

atcgccgagg tggctcgtga gcaaaggaag aatggctgag gccaagcgtg tgttgcaagg 1440atcgccgagg tggctcgtga gcaaaggaag aatggctgag gccaagcgtg tgttgcaagg 1440

cctgcgtgga agagaagatg tttcaggttt gtatgtctta cccagcattt ttccctgtga 1500cctgcgtgga agagaagatg tttcaggttt gtatgtctta cccagcattt ttccctgtga 1500

ggatctagaa agtggagaaa ctatttaatg ctatcagtat aggtatatta tctatgcgat 1560ggatctagaa agtggagaaa ctatttaatg ctatcagtat aggtatatta tctatgcgat 1560

ggagtttctc atgttgaatt aactgtgcag gagaaatggc ccttctcgtt gaaggtctgg 1620ggagttttctc atgttgaatt aactgtgcag gagaaatggc ccttctcgtt gaaggtctgg 1620

gggttgggaa agacacaaaa attgaggaat acataattgg acctgatgat gagcttgctg 1680gggttgggaa agaacacaaaa attgaggaat acataattgg acctgatgat gagcttgctg 1680

atgaagggct ggctccagat ccagagaaga tcaaactgta tggtcctgaa gaaggcttat 1740atgaagggct ggctccagat ccagagaaga tcaaactgta tggtcctgaa gaaggcttat 1740

cgtgggttgc ccgtcctgtt cacgggcaaa gtgcacttgg aagtgcatta ggtctcatct 1800cgtgggttgc ccgtcctgtt cacgggcaaa gtgcacttgg aagtgcatta ggtctcatct 1800

ctcgtcatgg tagtatggtc agtcagggta agccccttgt ggatcctgtt gtcacccttt 1860ctcgtcatgg tagtatggtc agtcagggta agccccttgt ggatcctgtt gtcacccttt 1860

ttggaagtgt ccatgagaag atgcctgaga taatgggaag catgcggagc acattgtttc 1920ttggaagtgt ccatgagaag atgcctgaga taatgggaag catgcggagc acattgtttc 1920

ctaactttgg cagcatgttt agtgtggcgg aacagcagca agctaaaggt gattgggatg 1980ctaactttgg cagcatgttt agtgtggcgg aacagcagca agctaaaggt gattgggatg 1980

ctgagagtca acgggagggt gaagattatg gatcagacca tggtggggat gacattgaag 2040ctgagagtca acgggagggt gaagattatg gatcagacca tggtggggat gacattgaag 2040

atagcctcca aagcccactt atttctcgtc aagcgacaag cgtggaagga aaggagatcg 2100atagcctcca aagcccactt atttctcgtc aagcgacaag cgtggaagga aaggagatcg 2100

ctgcacctca tggcagtata atgggtgctg tgggaagaag tagtagtctc atgcagggcg 2160ctgcacctca tggcagtata atgggtgctg tgggaagaag tagtagtctc atgcagggcg 2160

gggaggcagt aagcagcatg ggcattggtg ggggatggca gttggcttgg aaatggactg 2220gggaggcagt aagcagcatg ggcattggtg ggggatggca gttggcttgg aaatggactg 2220

agagagaagg tgcagatggc gaaaaagaag gtggcttcca acgtatctac ttgcatgaag 2280agagagaagg tgcagatggc gaaaaagaag gtggcttcca acgtatctac ttgcatgaag 2280

agggtgtgac aggtgatcgc aggggctcta tactgtcatt gcctggaggt gatgttcctc 2340agggtgtgac aggtgatcgc aggggctcta tactgtcatt gcctggaggt gatgttcctc 2340

ctggtggtga gttcgtccag gcagctgctc ttgtcagcca acctgctctt tactctaagg 2400ctggtggtga gttcgtccag gcagctgctc ttgtcagcca acctgctctt tactctaagg 2400

aattgatgga gcaacgcctt gctggccctg ctatggtgca tccatctcag gcagttgcta 2460aattgatgga gcaacgcctt gctggccctg ctatggtgca tccatctcag gcagttgcta 2460

aaggtccaaa atgggcagac ttattcgaac ctggagtgaa gcatgctctg tttgttggca 2520aaggtccaaa atgggcagac ttattcgaac ctggagtgaa gcatgctctg tttgttggca 2520

tagggataca aatcctgcaa caggtaaccc tttttctgat tttatgtcat gtacgaatgc 2580tagggataca aatcctgcaa caggtaaccc tttttctgat tttatgtcat gtacgaatgc 2580

atgtgctatg gttgaaccta attttctagt agctccagta taaattactc tgattaatgt 2640atgtgctatg gttgaaccta attttctagt agctccagta taaattactc tgattaatgt 2640

aactggttaa aatcaaagca tcttcatgca gtgtccttct aggtttctag cgagtctctc 2700aactggttaa aatcaaagca tcttcatgca gtgtccttct aggtttctag cgagtctctc 2700

attaaagctc ttacttacct tactcgaaaa acatgtttag ctgttacgtg tttttcttgc 2760attaaagctc ttacttacct tactcgaaaa acatgtttag ctgttacgtg tttttcttgc 2760

atatatattc catacaagga caatgagcta aactgcacaa taaatacacc tttgatgatt 2820atatatattc catacaagga caatgagcta aactgcacaa taaatacacc tttgatgatt 2820

agaatacaaa tgccatcaat gtttgtttag tttttacact agtaaagtca accttaacat 2880agaatacaaa tgccatcaat gtttgtttag tttttacact agtaaagtca accttaacat 2880

cttgcagtat tcattattaa gaaaaccatt gggactgggc tatgtcacat gacctgatta 2940cttgcagtat tcattattaa gaaaaccatt gggactgggc tatgtcacat gacctgatta 2940

cgggtattct atctgaagca cagaaacaaa tgtgcatgca ttcttttatt cctgaattta 3000cgggtattct atctgaagca cagaaacaaa tgtgcatgca ttcttttatt cctgaattta 3000

tttgctgaat atggttctag tttcgcagaa taactttcag aaacttttca cagtggcata 3060tttgctgaat atggttctag tttcgcagaa taactttcag aaacttttca cagtggcata 3060

atcatgtata ttcttctttt acttccctcc actcttccta ttttcccctt gtatatttta 3120atcatgtata ttcttctttt acttccctcc actcttccta ttttcccctt gtatatttta 3120

tatcagtcta ttcatgttta cctcactata gcatactgaa tgttaatgtg ctatcaactt 3180tatcagtcta ttcatgttta cctcactata gcatactgaa tgttaatgtg ctatcaactt 3180

ttccattatg tgcagtttgc tggcattaat ggagttctgt actacactcc acaaattctt 3240ttccattatg tgcagtttgc tggcattaat ggagttctgt actacactcc acaaattctt 3240

gagcaagctg gtgttggtgt tcttcttgca aacattggac ttagctcctc atctgcatct 3300gagcaagctg gtgttggtgt tcttcttgca aacattggac ttagctcctc atctgcatct 3300

attcttatta gcggactgac aaccttgctg atgcttccca gcattggtat tgctatgagg 3360attcttatta gcggactgac aaccttgctg atgcttccca gcattggtat tgctatgagg 3360

ctcatggata tgtctggaag aaggttagac ttcatatttt acattttttt ttgtgattac 3420ctcatggata tgtctggaag aaggttagac ttcatatttt acattttttt ttgtgattac 3420

atgcatcact tctaagtgaa agtattatgc taaccattat tctgcgttgt ttctcattca 3480atgcatcact tctaagtgaa agtattatgc taaccattat tctgcgttgt ttctcattca 3480

ggtttcttct ccttgcaaca atccctatcc tgatagtagc actagctatc ttgattctgg 3540ggtttcttct ccttgcaaca atccctatcc tgatagtagc actagctatc ttgattctgg 3540

tcaatattct ggatgtgggg accatggttc atgcctcact gtccacagtc agtgtcatac 3600tcaatattct ggatgtgggg accatggttc atgcctcact gtccacagtc agtgtcatac 3600

tctacttctg cttctttgtc atggggttcg ggcctattcc aaacattctc tgtgcagaga 3660tctacttctg cttctttgtc atggggttcg ggcctattcc aaacattctc tgtgcagaga 3660

ttttcccgac caccgttcgt ggcatctgca tagccatctg tgccctaaca ttctggatcg 3720ttttcccgac caccgttcgt ggcatctgca tagccatctg tgccctaaca ttctggatcg 3720

gtgatatcat tgtgacatac accctccccg tgatgctcaa cgccattgga ctcgctggag 3780gtgatatcat tgtgacatac accctccccg tgatgctcaa cgccattgga ctcgctggag 3780

tgtttggaat ctacgcagtg gtctgcatac tggctttcct gtttgtcttc atgaaggtgc 3840tgtttggaat ctacgcagtg gtctgcatac tggctttcct gtttgtcttc atgaaggtgc 3840

cggagacaaa gggcatgcct cttgaagtca tcaccgagtt cttctctgtc ggagcaaagc 3900cggagacaaa gggcatgcct cttgaagtca tcaccgagtt cttctctgtc ggagcaaagc 3900

aggccaagga ggactagttg ctcggatcaa gtgatcaatc agattgctgg tggtaatttt 3960aggccaagga ggactagttg ctcggatcaa gtgatcaatc agattgctgg tggtaatttt 3960

gttgcttcca aatcgcgctg cgggttaaac ctgtgatgga tgctttgtta aagaatcttg 4020gttgcttcca aatcgcgctg cgggttaaac ctgtgatgga tgctttgtta aagaatcttg 4020

gaagagatca aaatgcagtg agcctaaaga gatgatttgg ctgtacatca tgaggctgaa 4080gaagagatca aaatgcagtg agcctaaaga gatgatttgg ctgtacatca tgaggctgaa 4080

tcctgtcgta gactggattt tggagcttag gatatgtaga tcatctgttc cttttggttt 4140tcctgtcgta gactggattt tggagcttag gatatgtaga tcatctgttc cttttggttt 4140

ggtcattttc catttgtgtt tctttggaat tcttctccct gtaactagtg gtctatcaca 4200ggtcattttc catttgtgtt tctttggaat tcttctccct gtaactagtg gtctatcaca 4200

gttgtgttac tggttttgcc ttactcttga gtttgttttc ttctctcggt tgtgagttct 4260gttgtgttac tggttttgcc ttactcttga gtttgttttc ttctctcggt tgtgagttct 4260

gaatattagc atagccgagt actagttctg aattggtttc ctctctgctg aacatctttc 4320gaatattagc atagccgagt actagttctg aattggtttc ctctctgctg aacatctttc 4320

attgatgctt ggatttcatc aagtactaaa aacccaagct cacagggtaa aaagaaatgg 4380attgatgctt ggatttcatc aagtactaaa aacccaagct cacagggtaa aaagaaatgg 4380

tgaaaggtga aaggggagaa aaggagaagc aaagcaaagg taatgctttg agttccatat 4440tgaaaggtga aaggggagaa aaggagaagc aaagcaaagg taatgctttg agttccatat 4440

acccaggaaa agaattgtgc ccactcttgt aaaggagttc aggagtagga gaagtacttt 4500acccaggaaa agaattgtgc ccactcttgt aaaggagttc aggagtagga gaagtacttt 4500

gtgaataaaa tttcaatttt gtta 4524gtgaataaaa tttcaatttt gtta 4524

<210> 2<210> 2

<211> 2223<211> 2223

<212> DNA<212> DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 2<400> 2

atggcgggcg ccgtgctggt cgccatcgcg gcctccatcg gcaacttgct gcagggctgg 60atggcgggcg ccgtgctggt cgccatcgcg gcctccatcg gcaacttgct gcagggctgg 60

gataatgcaa ccattgcagg tgcggtactg tacatcaaga aggaattcaa cttgcagagc 120gataatgcaa ccattgcagg tgcggtactg tacatcaaga aggaattcaa cttgcagagc 120

gagcccctta tcgaaggcct gatcgtggcc atgtcgctca ttggggcgac gatcatcacg 180gagcccctta tcgaaggcct gatcgtggcc atgtcgctca ttggggcgac gatcatcacg 180

acgttctctg gagcagtggc tgattctttt ggtaggcggc ccatgctgat cgcgtcggct 240acgttctctg gagcagtggc tgattctttt ggtaggcggc ccatgctgat cgcgtcggct 240

gtcctctact ttgttagtgg gctagtgatg ctttgggcgc caaatgtgta tgtgttgctc 300gtcctctact ttgttagtgg gctagtgatg ctttgggcgc caaatgtgta tgtgttgctc 300

ttggcgaggc tcattgacgg gttcgggatc ggtttggctg tcacgcttgt accattgtac 360ttggcgaggc tcattgacgg gttcgggatc ggtttggctg tcacgcttgt accattgtac 360

atctctgaga ctgccccgac ggacatcaga ggactgctaa acacgctgcc gcagttcagt 420atctctgaga ctgccccgac ggacatcaga ggactgctaa acacgctgcc gcagttcagt 420

gggtctggag ggatgttcct ttcatactgc atggtatttg gcatgtccct catgccacag 480gggtctggag ggatgttcct ttcatactgc atggtatttg gcatgtccct catgccacag 480

ccagattgga ggatcatgct tggcgttcta tcaataccat cacttatata ctttgcattg 540ccagattgga ggatcatgct tggcgttcta tcaataccat cacttatata ctttgcattg 540

accatctttt acttacctga atcgccgagg tggctcgtga gcaaaggaag aatggctgag 600accatctttt acttacctga atcgccgagg tggctcgtga gcaaaggaag aatggctgag 600

gccaagcgtg tgttgcaagg cctgcgtgga agagaagatg tttcaggaga aatggccctt 660gccaagcgtg tgttgcaagg cctgcgtgga agagaagatg tttcaggaga aatggccctt 660

ctcgttgaag gtctgggggt tgggaaagac acaaaaattg aggaatacat aattggacct 720ctcgttgaag gtctgggggt tgggaaagac acaaaaattg aggaatacat aattggacct 720

gatgatgagc ttgctgatga agggctggct ccagatccag agaagatcaa actgtatggt 780gatgatgagc ttgctgatga agggctggct ccagatccag agaagatcaa actgtatggt 780

cctgaagaag gcttatcgtg ggttgcccgt cctgttcacg ggcaaagtgc acttggaagt 840cctgaagaag gcttatcgtg ggttgcccgt cctgttcacg ggcaaagtgc acttggaagt 840

gcattaggtc tcatctctcg tcatggtagt atggtcagtc agggtaagcc ccttgtggat 900gcattaggtc tcatctctcg tcatggtagt atggtcagtc agggtaagcc ccttgtggat 900

cctgttgtca ccctttttgg aagtgtccat gagaagatgc ctgagataat gggaagcatg 960cctgttgtca ccctttttgg aagtgtccat gagaagatgc ctgagataat gggaagcatg 960

cggagcacat tgtttcctaa ctttggcagc atgtttagtg tggcggaaca gcagcaagct 1020cggagcacat tgtttcctaa ctttggcagc atgtttagtg tggcggaaca gcagcaagct 1020

aaaggtgatt gggatgctga gagtcaacgg gagggtgaag attatggatc agaccatggt 1080aaaggtgatt gggatgctga gagtcaacgg gagggtgaag attatggatc agaccatggt 1080

ggggatgaca ttgaagatag cctccaaagc ccacttattt ctcgtcaagc gacaagcgtg 1140ggggatgaca ttgaagatag cctccaaagc ccacttattt ctcgtcaagc gacaagcgtg 1140

gaaggaaagg agatcgctgc acctcatggc agtataatgg gtgctgtggg aagaagtagt 1200gaaggaaagg agatcgctgc acctcatggc agtataatgg gtgctgtggg aagaagtagt 1200

agtctcatgc agggcgggga ggcagtaagc agcatgggca ttggtggggg atggcagttg 1260agtctcatgc agggcgggga ggcagtaagc agcatgggca ttggtggggg atggcagttg 1260

gcttggaaat ggactgagag agaaggtgca gatggcgaaa aagaaggtgg cttccaacgt 1320gcttggaaat ggactgagag agaaggtgca gatggcgaaa aagaaggtgg cttccaacgt 1320

atctacttgc atgaagaggg tgtgacaggt gatcgcaggg gctctatact gtcattgcct 1380atctacttgc atgaagaggg tgtgacaggt gatcgcaggg gctctatact gtcattgcct 1380

ggaggtgatg ttcctcctgg tggtgagttc gtccaggcag ctgctcttgt cagccaacct 1440ggaggtgatg ttcctcctgg tggtgagttc gtccaggcag ctgctcttgt cagccaacct 1440

gctctttact ctaaggaatt gatggagcaa cgccttgctg gccctgctat ggtgcatcca 1500gctctttact ctaaggaatt gatggagcaa cgccttgctg gccctgctat ggtgcatcca 1500

tctcaggcag ttgctaaagg tccaaaatgg gcagacttat tcgaacctgg agtgaagcat 1560tctcaggcag ttgctaaagg tccaaaatgg gcagacttat tcgaacctgg agtgaagcat 1560

gctctgtttg ttggcatagg gatacaaatc ctgcaacagt ttgctggcat taatggagtt 1620gctctgtttg ttggcatagg gatacaaatc ctgcaacagt ttgctggcat taatggagtt 1620

ctgtactaca ctccacaaat tcttgagcaa gctggtgttg gtgttcttct tgcaaacatt 1680ctgtactaca ctccacaaat tcttgagcaa gctggtgttg gtgttcttct tgcaaacatt 1680

ggacttagct cctcatctgc atctattctt attagcggac tgacaacctt gctgatgctt 1740ggacttagct cctcatctgc atctattctt attagcggac tgacaacctt gctgatgctt 1740

cccagcattg gtattgctat gaggctcatg gatatgtctg gaagaaggtt tcttctcctt 1800cccagcattg gtattgctat gaggctcatg gatatgtctg gaagaaggtt tcttctcctt 1800

gcaacaatcc ctatcctgat agtagcacta gctatcttga ttctggtcaa tattctggat 1860gcaacaatcc ctatcctgat agtagcacta gctatcttga ttctggtcaa tattctggat 1860

gtggggacca tggttcatgc ctcactgtcc acagtcagtg tcatactcta cttctgcttc 1920gtggggacca tggttcatgc ctcactgtcc acagtcagtg tcatactcta cttctgcttc 1920

tttgtcatgg ggttcgggcc tattccaaac attctctgtg cagagatttt cccgaccacc 1980tttgtcatgg ggttcgggcc tattccaaac attctctgtg cagagatttt cccgaccacc 1980

gttcgtggca tctgcatagc catctgtgcc ctaacattct ggatcggtga tatcattgtg 2040gttcgtggca tctgcatagc catctgtgcc ctaacattct ggatcggtga tatcattgtg 2040

acatacaccc tccccgtgat gctcaacgcc attggactcg ctggagtgtt tggaatctac 2100acatacaccc tccccgtgat gctcaacgcc attggactcg ctggagtgtt tggaatctac 2100

gcagtggtct gcatactggc tttcctgttt gtcttcatga aggtgccgga gacaaagggc 2160gcagtggtct gcatactggc tttcctgttt gtcttcatga aggtgccgga gacaaagggc 2160

atgcctcttg aagtcatcac cgagttcttc tctgtcggag caaagcaggc caaggaggac 2220atgcctcttg aagtcatcac cgagttcttc tctgtcggag caaagcaggc caaggaggac 2220

tag 2223tag 2223

<210> 3<210> 3

<211> 740<211> 740

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 3<400> 3

Met Ala Gly Ala Val Leu Val Ala Ile Ala Ala Ser Ile Gly Asn LeuMet Ala Gly Ala Val Leu Val Ala Ile Ala Ala Ser Ile Gly Asn Leu

1 5 10 151 5 10 15

Leu Gln Gly Trp Asp Asn Ala Thr Ile Ala Gly Ala Val Leu Tyr IleLeu Gln Gly Trp Asp Asn Ala Thr Ile Ala Gly Ala Val Leu Tyr Ile

20 25 30 20 25 30

Lys Lys Glu Phe Asn Leu Gln Ser Glu Pro Leu Ile Glu Gly Leu IleLys Lys Glu Phe Asn Leu Gln Ser Glu Pro Leu Ile Glu Gly Leu Ile

35 40 45 35 40 45

Val Ala Met Ser Leu Ile Gly Ala Thr Ile Ile Thr Thr Phe Ser GlyVal Ala Met Ser Leu Ile Gly Ala Thr Ile Ile Thr Thr Phe Ser Gly

50 55 60 50 55 60

Ala Val Ala Asp Ser Phe Gly Arg Arg Pro Met Leu Ile Ala Ser AlaAla Val Ala Asp Ser Phe Gly Arg Arg Pro Met Leu Ile Ala Ser Ala

65 70 75 8065 70 75 80

Val Leu Tyr Phe Val Ser Gly Leu Val Met Leu Trp Ala Pro Asn ValVal Leu Tyr Phe Val Ser Gly Leu Val Met Leu Trp Ala Pro Asn Val

85 90 95 85 90 95

Tyr Val Leu Leu Leu Ala Arg Leu Ile Asp Gly Phe Gly Ile Gly LeuTyr Val Leu Leu Leu Ala Arg Leu Ile Asp Gly Phe Gly Ile Gly Leu

100 105 110 100 105 110

Ala Val Thr Leu Val Pro Leu Tyr Ile Ser Glu Thr Ala Pro Thr AspAla Val Thr Leu Val Pro Leu Tyr Ile Ser Glu Thr Ala Pro Thr Asp

115 120 125 115 120 125

Ile Arg Gly Leu Leu Asn Thr Leu Pro Gln Phe Ser Gly Ser Gly GlyIle Arg Gly Leu Leu Asn Thr Leu Pro Gln Phe Ser Gly Ser Gly Gly

130 135 140 130 135 140

Met Phe Leu Ser Tyr Cys Met Val Phe Gly Met Ser Leu Met Pro GlnMet Phe Leu Ser Tyr Cys Met Val Phe Gly Met Ser Leu Met Pro Gln

145 150 155 160145 150 155 160

Pro Asp Trp Arg Ile Met Leu Gly Val Leu Ser Ile Pro Ser Leu IlePro Asp Trp Arg Ile Met Leu Gly Val Leu Ser Ile Pro Ser Leu Ile

165 170 175 165 170 175

Tyr Phe Ala Leu Thr Ile Phe Tyr Leu Pro Glu Ser Pro Arg Trp LeuTyr Phe Ala Leu Thr Ile Phe Tyr Leu Pro Glu Ser Pro Arg Trp Leu

180 185 190 180 185 190

Val Ser Lys Gly Arg Met Ala Glu Ala Lys Arg Val Leu Gln Gly LeuVal Ser Lys Gly Arg Met Ala Glu Ala Lys Arg Val Leu Gln Gly Leu

195 200 205 195 200 205

Arg Gly Arg Glu Asp Val Ser Gly Glu Met Ala Leu Leu Val Glu GlyArg Gly Arg Glu Asp Val Ser Gly Glu Met Ala Leu Leu Val Glu Gly

210 215 220 210 215 220

Leu Gly Val Gly Lys Asp Thr Lys Ile Glu Glu Tyr Ile Ile Gly ProLeu Gly Val Gly Lys Asp Thr Lys Ile Glu Glu Tyr Ile Ile Gly Pro

225 230 235 240225 230 235 240

Asp Asp Glu Leu Ala Asp Glu Gly Leu Ala Pro Asp Pro Glu Lys IleAsp Asp Glu Leu Ala Asp Glu Gly Leu Ala Pro Asp Pro Glu Lys Ile

245 250 255 245 250 255

Lys Leu Tyr Gly Pro Glu Glu Gly Leu Ser Trp Val Ala Arg Pro ValLys Leu Tyr Gly Pro Glu Glu Gly Leu Ser Trp Val Ala Arg Pro Val

260 265 270 260 265 270

His Gly Gln Ser Ala Leu Gly Ser Ala Leu Gly Leu Ile Ser Arg HisHis Gly Gln Ser Ala Leu Gly Ser Ala Leu Gly Leu Ile Ser Arg His

275 280 285 275 280 285

Gly Ser Met Val Ser Gln Gly Lys Pro Leu Val Asp Pro Val Val ThrGly Ser Met Val Ser Gln Gly Lys Pro Leu Val Asp Pro Val Val Thr

290 295 300 290 295 300

Leu Phe Gly Ser Val His Glu Lys Met Pro Glu Ile Met Gly Ser MetLeu Phe Gly Ser Val His Glu Lys Met Pro Glu Ile Met Gly Ser Met

305 310 315 320305 310 315 320

Arg Ser Thr Leu Phe Pro Asn Phe Gly Ser Met Phe Ser Val Ala GluArg Ser Thr Leu Phe Pro Asn Phe Gly Ser Met Phe Ser Val Ala Glu

325 330 335 325 330 335

Gln Gln Gln Ala Lys Gly Asp Trp Asp Ala Glu Ser Gln Arg Glu GlyGln Gln Gln Ala Lys Gly Asp Trp Asp Ala Glu Ser Gln Arg Glu Gly

340 345 350 340 345 350

Glu Asp Tyr Gly Ser Asp His Gly Gly Asp Asp Ile Glu Asp Ser LeuGlu Asp Tyr Gly Ser Asp His Gly Gly Asp Asp Ile Glu Asp Ser Leu

355 360 365 355 360 365

Gln Ser Pro Leu Ile Ser Arg Gln Ala Thr Ser Val Glu Gly Lys GluGln Ser Pro Leu Ile Ser Arg Gln Ala Thr Ser Val Glu Gly Lys Glu

370 375 380 370 375 380

Ile Ala Ala Pro His Gly Ser Ile Met Gly Ala Val Gly Arg Ser SerIle Ala Ala Pro His Gly Ser Ile Met Gly Ala Val Gly Arg Ser Ser

385 390 395 400385 390 395 400

Ser Leu Met Gln Gly Gly Glu Ala Val Ser Ser Met Gly Ile Gly GlySer Leu Met Gln Gly Gly Glu Ala Val Ser Ser Met Gly Ile Gly Gly

405 410 415 405 410 415

Gly Trp Gln Leu Ala Trp Lys Trp Thr Glu Arg Glu Gly Ala Asp GlyGly Trp Gln Leu Ala Trp Lys Trp Thr Glu Arg Glu Gly Ala Asp Gly

420 425 430 420 425 430

Glu Lys Glu Gly Gly Phe Gln Arg Ile Tyr Leu His Glu Glu Gly ValGlu Lys Glu Gly Gly Phe Gln Arg Ile Tyr Leu His Glu Glu Gly Val

435 440 445 435 440 445

Thr Gly Asp Arg Arg Gly Ser Ile Leu Ser Leu Pro Gly Gly Asp ValThr Gly Asp Arg Arg Gly Ser Ile Leu Ser Leu Pro Gly Gly Asp Val

450 455 460 450 455 460

Pro Pro Gly Gly Glu Phe Val Gln Ala Ala Ala Leu Val Ser Gln ProPro Pro Gly Gly Glu Phe Val Gln Ala Ala Ala Leu Val Ser Gln Pro

465 470 475 480465 470 475 480

Ala Leu Tyr Ser Lys Glu Leu Met Glu Gln Arg Leu Ala Gly Pro AlaAla Leu Tyr Ser Lys Glu Leu Met Glu Gln Arg Leu Ala Gly Pro Ala

485 490 495 485 490 495

Met Val His Pro Ser Gln Ala Val Ala Lys Gly Pro Lys Trp Ala AspMet Val His Pro Ser Gln Ala Val Ala Lys Gly Pro Lys Trp Ala Asp

500 505 510 500 505 510

Leu Phe Glu Pro Gly Val Lys His Ala Leu Phe Val Gly Ile Gly IleLeu Phe Glu Pro Gly Val Lys His Ala Leu Phe Val Gly Ile Gly Ile

515 520 525 515 520 525

Gln Ile Leu Gln Gln Phe Ala Gly Ile Asn Gly Val Leu Tyr Tyr ThrGln Ile Leu Gln Gln Phe Ala Gly Ile Asn Gly Val Leu Tyr Tyr Thr

530 535 540 530 535 540

Pro Gln Ile Leu Glu Gln Ala Gly Val Gly Val Leu Leu Ala Asn IlePro Gln Ile Leu Glu Gln Ala Gly Val Gly Val Leu Leu Ala Asn Ile

545 550 555 560545 550 555 560

Gly Leu Ser Ser Ser Ser Ala Ser Ile Leu Ile Ser Gly Leu Thr ThrGly Leu Ser Ser Ser Ser Ala Ser Ile Leu Ile Ser Gly Leu Thr Thr

565 570 575 565 570 575

Leu Leu Met Leu Pro Ser Ile Gly Ile Ala Met Arg Leu Met Asp MetLeu Leu Met Leu Pro Ser Ile Gly Ile Ala Met Arg Leu Met Asp Met

580 585 590 580 585 590

Ser Gly Arg Arg Phe Leu Leu Leu Ala Thr Ile Pro Ile Leu Ile ValSer Gly Arg Arg Phe Leu Leu Leu Ala Thr Ile Pro Ile Leu Ile Val

595 600 605 595 600 605

Ala Leu Ala Ile Leu Ile Leu Val Asn Ile Leu Asp Val Gly Thr MetAla Leu Ala Ile Leu Ile Leu Val Asn Ile Leu Asp Val Gly Thr Met

610 615 620 610 615 620

Val His Ala Ser Leu Ser Thr Val Ser Val Ile Leu Tyr Phe Cys PheVal His Ala Ser Leu Ser Thr Val Ser Val Ile Leu Tyr Phe Cys Phe

625 630 635 640625 630 635 640

Phe Val Met Gly Phe Gly Pro Ile Pro Asn Ile Leu Cys Ala Glu IlePhe Val Met Gly Phe Gly Pro Ile Pro Asn Ile Leu Cys Ala Glu Ile

645 650 655 645 650 655

Phe Pro Thr Thr Val Arg Gly Ile Cys Ile Ala Ile Cys Ala Leu ThrPhe Pro Thr Thr Val Arg Gly Ile Cys Ile Ala Ile Cys Ala Leu Thr

660 665 670 660 665 670

Phe Trp Ile Gly Asp Ile Ile Val Thr Tyr Thr Leu Pro Val Met LeuPhe Trp Ile Gly Asp Ile Ile Val Thr Tyr Thr Leu Pro Val Met Leu

675 680 685 675 680 685

Asn Ala Ile Gly Leu Ala Gly Val Phe Gly Ile Tyr Ala Val Val CysAsn Ala Ile Gly Leu Ala Gly Val Phe Gly Ile Tyr Ala Val Val Cys

690 695 700 690 695 700

Ile Leu Ala Phe Leu Phe Val Phe Met Lys Val Pro Glu Thr Lys GlyIle Leu Ala Phe Leu Phe Val Phe Met Lys Val Pro Glu Thr Lys Gly

705 710 715 720705 710 715 720

Met Pro Leu Glu Val Ile Thr Glu Phe Phe Ser Val Gly Ala Lys GlnMet Pro Leu Glu Val Ile Thr Glu Phe Phe Ser Val Gly Ala Lys Gln

725 730 735 725 730 735

Ala Lys Glu AspAla Lys Glu Asp

740 740

<210> 4<210> 4

<211> 20<211> 20

<212> DNA<212> DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 4<400> 4

gcagtcctct gatgtccgtc 20gcagtcctct gatgtccgtc 20

Claims (10)

1.OsTMT1蛋白质与OsTMT1蛋白质相关的生物材料在调控植物产量和/或耐逆性中的应用;1. The application of OsTMT1 protein and OsTMT1 protein-related biomaterials in regulating plant yield and/or stress tolerance; 所述OsTMT1蛋白质是如下a)或b)或c)或d)所示的蛋白质:The OsTMT1 protein is a protein shown in a) or b) or c) or d) below: a)由序列表中序列3所示的氨基酸序列组成的蛋白质;a) A protein consisting of the amino acid sequence shown in Sequence 3 in the Sequence Listing; b)在序列表中序列3所示的蛋白质的N端和/或C端连接标签得到的融合蛋白;b) a fusion protein obtained by linking a tag to the N-terminal and/or C-terminal of the protein shown in SEQ ID NO: 3 in the sequence listing; c)将序列表中序列3所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且功能相同的蛋白质;c) A protein with the same function as the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing through the substitution and/or deletion and/or addition of one or several amino acid residues; d)与a)-c)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;d) a protein with more than 99%, more than 95%, more than 90%, more than 85% or more than 80% homology with the amino acid sequence defined in any of a)-c) and having the same function; 所述生物材料为下述A1)至A8)中的任一种:The biological material is any one of the following A1) to A8): A1)编码OsTMT1蛋白质的核酸分子;A1) nucleic acid molecule encoding OsTMT1 protein; A2)含有A1)所述核酸分子的表达盒;A2) an expression cassette containing the nucleic acid molecule of A1); A3)含有A1)所述核酸分子的重组载体;A3) a recombinant vector containing the nucleic acid molecule of A1); A4)含有A2)所述表达盒的重组载体;A4) a recombinant vector containing the expression cassette described in A2); A5)含有A1)所述核酸分子的重组微生物;A5) a recombinant microorganism containing the nucleic acid molecule of A1); A6)含有A2)所述表达盒的重组微生物;A6) a recombinant microorganism containing the expression cassette described in A2); A7)含有A3)所述重组载体的重组微生物;A7) a recombinant microorganism containing the recombinant vector described in A3); A8)含有A4)所述重组载体的重组微生物。A8) A recombinant microorganism containing the recombinant vector described in A4). 2.根据权利要求1所述的应用,其特征在于:A1)所述核酸分子为如下1)或2)或3)所示的基因:2. application according to claim 1 is characterized in that: A1) described nucleic acid molecule is the gene shown in following 1) or 2) or 3): 1)其编码序列是序列1所示的基因组DNA分子或序列2所示的cDNA分子;1) Its coding sequence is the genomic DNA molecule shown in sequence 1 or the cDNA molecule shown in sequence 2; 2)与1)限定的核苷酸序列具有75%或75%以上同一性,且编码权利要求1中所述的OsTMT1蛋白质的cDNA分子或基因组DNA分子;2) a cDNA molecule or a genomic DNA molecule that has 75% or more identity with the nucleotide sequence defined in 1) and encodes the OsTMT1 protein described in claim 1; 3)在严格条件下与1)或2)限定的核苷酸序列杂交,且编码权利要求1中所述的OsTMT1蛋白质的cDNA分子或基因组DNA分子。3) A cDNA molecule or a genomic DNA molecule that hybridizes to the nucleotide sequence defined in 1) or 2) under stringent conditions and encodes the OsTMT1 protein described in claim 1. 3.b1或b2所示的物质在降低植物产量和/或耐逆性中的应用:3. Use of the substances shown in b1 or b2 to reduce plant yield and/or stress tolerance: b1、抑制或降低植物中OsTMT1蛋白质活性或者含量的物质;b1. Substances that inhibit or reduce the activity or content of OsTMT1 protein in plants; b2、抑制或降低植物中OsTMT1蛋白质编码核酸表达的物质或敲除植物中OsTMT1蛋白质编码核酸的物质;b2. Substances that inhibit or reduce the expression of nucleic acid encoding OsTMT1 protein in plants or knock out substances that encode nucleic acid encoding OsTMT1 protein in plants; 所述OsTMT1蛋白质是如下a)或b)或c)或d)所示的蛋白质:The OsTMT1 protein is a protein shown in a) or b) or c) or d) below: a)由序列表中序列3所示的氨基酸序列组成的蛋白质;a) A protein consisting of the amino acid sequence shown in Sequence 3 in the Sequence Listing; b)在序列表中序列3所示的蛋白质的N端和/或C端连接标签得到的融合蛋白;b) a fusion protein obtained by linking a tag to the N-terminal and/or C-terminal of the protein shown in SEQ ID NO: 3 in the sequence listing; c)将序列表中序列3所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且功能相同的蛋白质;c) A protein with the same function as the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing through the substitution and/or deletion and/or addition of one or several amino acid residues; d)与a)-c)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质。d) A protein having 99% or more, 95% or more, 90% or more, 85% or more or 80% or more homology with the amino acid sequence defined in any of a)-c) and having the same function. 4.根据权利要求1-3任一所述的应用,其特征在于:所述调控植物产量体现为调控植物百粒重和/或50粒重和/或粒长和/或粒宽和/或粒厚;4. according to any described application of claim 1-3, it is characterized in that: described regulation and control plant yield is embodied as regulation and control plant 100-grain weight and/or 50 grain weight and/or grain length and/or grain width and/or grain thickness; 和/或,所述耐逆性为耐冷性;And/or, the stress resistance is cold resistance; 和/或,所述降低植物产量体现为降低或减小植物百粒重和/或50粒重和/或粒长和/或粒宽和/或粒厚。And/or, said reducing plant yield is embodied by reducing or reducing plant 100-grain weight and/or 50-grain weight and/or grain length and/or grain width and/or grain thickness. 5.权利要求1或2中所述的OsTMT1蛋白质或生物材料在培育产量提高和/或耐逆性提高的转基因植物中的应用;5. the application of the OsTMT1 protein described in claim 1 or 2 or biological material in the transgenic plant that cultivates yield improvement and/or stress tolerance improves; 或,权利要求3中的物质在培育产量降低和/或耐逆性降低的转基因植物中的应用。Or, the use of the substance of claim 3 in cultivating transgenic plants with reduced yield and/or reduced stress tolerance. 6.一种培育产量降低和/或耐逆性降低的转基因植物的方法,包括降低受体植物中权利要求1中所述的OsTMT1蛋白质的含量和/或活性,得到转基因植物的步骤;所述转基因植物的产量和/或耐逆性低于所述受体植物。6. a method for cultivating the reduced transgenic plant of yield and/or stress tolerance, comprising reducing the content and/or activity of the OsTMT1 protein described in claim 1 in the recipient plant, to obtain the step of the transgenic plant; the described The yield and/or stress tolerance of the transgenic plants is lower than that of the recipient plants. 7.根据权利要求6所述的方法,其特征在于:所述降低受体植物中权利要求1中所述的OsTMT1蛋白质的含量和/或活性的方法通过对所述受体植物中权利要求1中所述的OsTMT1蛋白质的编码基因进行敲除或抑制或沉默来实现。7. The method according to claim 6, characterized in that: the method for reducing the content and/or activity of the OsTMT1 protein described in claim 1 in the recipient plant The gene encoding the OsTMT1 protein described in is knocked out or inhibited or silenced. 8.根据权利要求7所述的方法,其特征在于:所述OsTMT1蛋白质的编码基因的核苷酸序列是序列1所示的DNA分子;8. The method according to claim 7, wherein the nucleotide sequence of the coding gene of the OsTMT1 protein is the DNA molecule shown in sequence 1; 和/或,敲除所述受体植物中的OsTMT1蛋白质的编码基因的物质为CRISPR/Cas9系统;And/or, the substance that knocks out the gene encoding the OsTMT1 protein in the recipient plant is the CRISPR/Cas9 system; 和/或,所述CRISPR/Cas9系统中sgRNA的靶序列为序列表中的序列4。And/or, the target sequence of the sgRNA in the CRISPR/Cas9 system is sequence 4 in the sequence listing. 9.根据权利要求1-5任一所述的应用或权利要求6-8任一所述的方法,其特征在于:所述植物为单子叶植物或双子叶植物;9. The application according to any one of claims 1-5 or the method according to any one of claims 6-8, wherein the plant is a monocotyledonous plant or a dicotyledonous plant; 和/或,所述单子叶植物为禾本科植物;And/or, the monocotyledonous plant is a grass; 和/或,所述禾本科植物为水稻。And/or, the grass plant is rice. 10.一种特异sgRNA或含有所述sgRNA编码基因的表达盒、载体、宿主细胞、工程菌或转基因植物细胞系,所述sgRNA的靶序列为序列4。10. A specific sgRNA or an expression cassette, vector, host cell, engineered bacteria or transgenic plant cell line containing the sgRNA encoding gene, the target sequence of the sgRNA is sequence 4.
CN202011286707.5A 2020-11-17 2020-11-17 Use of OsTMT protein in regulating plant yield and/or stress tolerance Active CN114516904B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011286707.5A CN114516904B (en) 2020-11-17 2020-11-17 Use of OsTMT protein in regulating plant yield and/or stress tolerance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011286707.5A CN114516904B (en) 2020-11-17 2020-11-17 Use of OsTMT protein in regulating plant yield and/or stress tolerance

Publications (2)

Publication Number Publication Date
CN114516904A true CN114516904A (en) 2022-05-20
CN114516904B CN114516904B (en) 2024-06-07

Family

ID=81594839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011286707.5A Active CN114516904B (en) 2020-11-17 2020-11-17 Use of OsTMT protein in regulating plant yield and/or stress tolerance

Country Status (1)

Country Link
CN (1) CN114516904B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110085729A (en) * 2010-01-21 2011-07-27 경희대학교 산학협력단 Rice seedling gene derived from rice involved in the transport of sugar in vacuole
KR20110085732A (en) * 2010-01-21 2011-07-27 경희대학교 산학협력단 Rice seedling gene derived from rice involved in the transport of sugar in vacuoles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110085729A (en) * 2010-01-21 2011-07-27 경희대학교 산학협력단 Rice seedling gene derived from rice involved in the transport of sugar in vacuole
KR20110085732A (en) * 2010-01-21 2011-07-27 경희대학교 산학협력단 Rice seedling gene derived from rice involved in the transport of sugar in vacuoles

Also Published As

Publication number Publication date
CN114516904B (en) 2024-06-07

Similar Documents

Publication Publication Date Title
CN111763682B (en) Application of ZmSBP12 gene in regulation of drought resistance, plant height and spike height of corn
US11692200B2 (en) Method for improving rice yield and/or rice blast resistance and protein used thereof
CN114369147B (en) Application of BFNE gene in tomato plant type improvement and biological yield improvement
CN113308479B (en) Application of SlNAC100 gene in improvement of low-temperature resistance of tomato
CN110804090B (en) Protein CkWRKY33 and coding gene and application thereof
CN108218968B (en) A plant grain trait-related protein and its encoding gene and application
CN109913473B (en) A gene for improving seed size and quality and its application
CN113501867B (en) Maize Drought Resistance Gene ZmMYBR38 and Its Application
CN111979253B (en) TrFQR1 gene, cloning thereof, expression vector construction method and application
CN107266543A (en) Resistance relevant protein IbRAP2 12 and its encoding gene and application
CN107326035A (en) A kind of adjusting and controlling rice grain type and the deubiquitination enzyme gene UBP5 of leaf color and its application
CN116120415B (en) Seed weight and yield related protein GmPHD6, related biological material and application thereof
CN114907465B (en) OsLEA9 protein related to cold tolerance during the booting stage of rice and its related biological materials and applications
CN102718849B (en) Protein related to chlorophyll synthesis and coding gene and application thereof
HU228383B1 (en) Overexpression of phosphoenolpyruvate carboxylase
CN113429467B (en) Application of NPF7.6 Protein in Regulating Nitrogen Tolerance of Legume Root Nodules
CN114516904A (en) Application of OsTMT1 protein in regulation and control of plant yield and/or stress tolerance
CN110407922B (en) Rice cold tolerance gene qSCT11 and its application
CN111518181B (en) Method for increasing rice yield and protein used therefor
CN115160422A (en) Salt-tolerant drought-resistant sweet potato related protein IbMYB44 as well as coding gene and application thereof
CN108795949B (en) Rice leaf color regulation related gene OsWSL6 and encoding protein and application thereof
CN114525298A (en) Application of soybean protein GmFVE in plant salt tolerance regulation
CN110760524B (en) A specific DNA fragment com58276 and its application in regulating plant stress resistance
CN111534536A (en) Methods for improving rice blast resistance in rice and related biological materials
CN108409845B (en) Application of protein TaNRT2.5 in regulating nitrogen use efficiency of plants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant