CN114508439A - 一种适用废气涡轮增压发动机冷起动过程的控制方法 - Google Patents

一种适用废气涡轮增压发动机冷起动过程的控制方法 Download PDF

Info

Publication number
CN114508439A
CN114508439A CN202011279244.XA CN202011279244A CN114508439A CN 114508439 A CN114508439 A CN 114508439A CN 202011279244 A CN202011279244 A CN 202011279244A CN 114508439 A CN114508439 A CN 114508439A
Authority
CN
China
Prior art keywords
combustion
engine
cylinder
exhaust gas
combustion efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011279244.XA
Other languages
English (en)
Other versions
CN114508439B (zh
Inventor
刘海峰
王灿
尧命发
郑尊清
王浒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202011279244.XA priority Critical patent/CN114508439B/zh
Publication of CN114508439A publication Critical patent/CN114508439A/zh
Application granted granted Critical
Publication of CN114508439B publication Critical patent/CN114508439B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

本发明公开了一种适用废气涡轮增压发动机冷起动过程的控制方法:发动机冷起动过程中,ECU读取缸压、振动、曲轴转速信号,判断发动机冷起动燃烧情况;如果判断为燃烧效率低或失火,ECU控制排气门早开晚关;废气驱动废气涡轮增压器后全部导回缸内重新燃烧;降低下一循环喷油量;如果判断为燃烧效率中等,ECU控制排气门早关较早开;部分废气留在缸内重新燃烧,其余废气驱动废气涡轮增压器后进入后处理器;降低下一循环喷油量;如果判断为燃烧效率高或正常燃烧,ECU控制排气门晚开晚关;废气全部排出驱动废气涡轮增压器后进入后处理器;下一循环正常喷油。本发明能够改善发动机冷起动着火性能并提高燃油经济性,降低未燃HC和CO排放。

Description

一种适用废气涡轮增压发动机冷起动过程的控制方法
技术领域
本发明涉及发动机领域,更具体的说,是涉及一种适用废气涡轮增压发动机冷起动过程的控制方法。
背景技术
我国石油对外依存度逐年升高,2019年已达70.8%,而发动机消耗石油占比超过60%,因此提高发动机热效率及燃油经济性对我国能源安全具有重要意义。同时排放法规的升级也为发动机高效清洁燃烧提出了巨大挑战。
研究表明,发动机冷起动阶段的有害排放物占排放物总量的60-80%,同时存在动力不足的问题。这是由于发动机冷起动过程中,气缸内壁面温度及冷却水温度低,不利于燃油的雾化混合,使着火困难,甚至发生失火,从而大量燃料未经完全燃烧便排出,导致发动机冷起动时动力不足,且燃油经济性和排放性能差。冬季空气温度低与高原环境中大气密度下降导致进气不足将加剧这一情况。对于废气涡轮增压发动机,冷起动工况下,发动机转速低,且由于燃烧不充分,废气压力温度低,废气能量的不足使废气涡轮增压器的效率降低,无法满足动力需求。目前发动机冷起动多采用进气预热的方式,但需要额外的冷起动辅助装置。
发明内容
本发明的目的是为了克服现有技术中的不足,提出一种适用废气涡轮增压发动机冷起动过程的控制方法,能够通过调整排气门开闭时刻和喷油量来改善发动机冷起动着火性能并提高燃油经济性,降低未燃HC和CO排放。
本发明的目的是通过以下技术方案实现的。
本发明适用废气涡轮增压发动机冷起动过程的控制方法,包括以下过程:
发动机实际运行的冷起动过程中,ECU分别读取缸压信号、振动信号、曲轴转速信号,判断发动机冷起动的燃烧情况,控制调整排气门开闭时刻和喷油量;
如果ECU的判断结果为燃烧效率低或失火,ECU控制排气门早开晚关,EVO:50-75℃A BBDC,EVC:15-30℃A ATDC;废气驱动废气涡轮增压器后全部导回缸内重新燃烧;降低下一循环喷油量;
如果ECU的判断结果为燃烧效率中等,ECU控制排气门早关较早开,EVO:30-50℃ABBDC,EVC:0-15℃AATDC;部分废气留在缸内重新燃烧,其余废气驱动废气涡轮增压器后进入后处理器;降低下一循环喷油量;
如果ECU的判断结果为燃烧效率高或正常燃烧,ECU控制排气门晚开晚关,EVO:10-30℃A BBDC,EVC:15-30℃A ATDC;废气全部排出驱动废气涡轮增压器后进入后处理器;下一循环正常喷油。
根据下述条件联合判断发动机冷起动的燃烧情况:
通过缸压传感器、曲轴位置传感器及振动传感器得到发动机冷起动各个循环的缸压数据、曲轴转速数据及振动数据;根据公式(1)计算燃烧效率:
Figure BDA0002780185500000021
其中,gb为循环喷油量,kg/cycle;Hu为燃料热值,kJ/kg;Q为循环放热量,kJ/cycle,由放热率积分得到,其中,放热率根据测得的缸压数据,即
Figure BDA0002780185500000022
示功图计算得到;
当燃烧效率ηb≤30%时,定义为情况1:燃烧效率低或失火;
当燃烧效率30%<ηb<85%时,定义为情况2:燃烧效率中等;
当燃烧效率ηb≥85%时,定义为情况3:燃烧效率高或正常燃烧;
将测试循环的数据进行整理统计,分别对情况1和情况3的循环的缸内平均压力、转速、振动信号幅值取平均值,得到:
情况1:缸内平均压力p1,转速n1,振动信号幅值A1
情况3:缸内平均压力p2,转速n2,振动信号幅值A2
根据缸内平均压力、转速、振动信号幅值联合判断发动机冷起动燃烧情况;即:
情况1-燃烧效率低或失火:p≤p1&n≤n1&A≥A1
情况3-燃烧效率高或正常燃烧:p≥p2&n≥n2&A≤A2
当缸内平均压力、转速和振动信号幅值不在上述范围内时,归入情况2-燃烧效率中等。
与现有技术相比,本发明的技术方案所带来的有益效果是:
在不增加额外进气辅助加热装置的情况下,通过有效利用三种燃烧情况下的排气能量及排气中的活性成分来提高发动机冷起动的着火稳定性,并改善燃油经济性及排放性能。燃料未完全燃烧时,缸内气体的压力和温度在发动机膨胀冲程中下降,排气能量低,使废气涡轮增压器效率降低,可提前开启排气门,使排气压力、温度未迅速下降时,便排出经过废气涡轮增压器,有利于提高废气涡轮增压器效率,为下一循环提高进气量。此外,排气中含有大量中间产物等活性成分,有利于促进着火,可导入缸内促进下一循环的着火燃烧;燃料完全燃烧时,废气能量高,可有效驱动废气涡轮增压器;同时排气中CO2浓度较高,不利于着火,应减少缸内残余废气。
附图说明
图1是本发明适用废气涡轮增压发动机冷起动过程的控制方法的控制原理图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细描述。
本发明适用废气涡轮增压发动机冷起动过程的控制方法,根据对冷起动过程燃烧情况的判断,采用排气门早开晚关、早关较早开或晚开晚关三种策略,同时根据情况为下一循环匹配不同喷油量,以更好地利用排气能量及排气中的中间产物来提高发动机冷起动稳定性,并改善其燃油经济性和排放特性。
本发明适用废气涡轮增压发动机冷起动过程的控制方法,包括以下过程:
将发动机冷启动过程的燃烧情况分为三类:燃烧效率低或失火、燃烧效率中等、燃烧效率高或正常燃烧。具体步骤为:首先对发动机的冷起动工况进行多个循环的测试,通过缸压传感器、曲轴位置传感器及振动传感器得到各个循环的缸压数据、曲轴转速数据及振动数据。然后,根据公式(1)计算燃烧效率:
Figure BDA0002780185500000031
其中,gb为循环喷油量,kg/cycle;Hu为燃料热值,kJ/kg;Q为循环放热量,kJ/cycle,由放热率积分得到,其中,放热率根据测得的缸压数据,即
Figure BDA0002780185500000041
示功图(缸压p随曲轴转角
Figure BDA0002780185500000042
的变化)计算得到。
当燃烧效率ηb≤30%时,定义为情况1:燃烧效率低或失火;
当燃烧效率30%<ηb<85%时,定义为情况2:燃烧效率中等;
当燃烧效率ηb≥85%时,定义为情况3:燃烧效率高或正常燃烧。
将测试循环的数据进行整理统计,分别对情况1和情况3的循环的缸内平均压力、转速、振动信号幅值取平均值,得到:
情况1:缸内平均压力p1,转速n1,振动信号幅值A1
情况3:缸内平均压力p2,转速n2,振动信号幅值A2
缸内发生失火时,缸内平均压力会下降;由于发动机一缸或多缸没有做功,曲轴瞬时角速度会明显下降,且发生较大波动。此外,失火会导致曲轴连杆运动惯性力变化,导致冲击振动增大,振动信号增强。而当缸内燃烧正常时,缸内平均压力较高,转速波动小,振动信号弱。故可根据缸内平均压力、转速、振动信号幅值联合判断发动机冷起动燃烧情况。即:
情况1(燃烧效率低或失火):p≤p1&n≤n1&A≥A1
情况3(燃烧效率高或正常燃烧):p≥p2&n≥n2&A≤A2
当缸内平均压力、转速和振动信号幅值不在上述范围内时,归入情况2(燃烧效率中等)。
如图1所示,发动机实际运行的冷起动过程中,ECU分别读取缸压信号、振动信号、曲轴转速信号,根据上述条件联合判断发动机冷起动的燃烧情况,然后控制调整排气门开闭时刻和喷油量。
如果ECU的判断结果为燃烧效率低或失火(情况1),ECU控制排气门早开晚关,EVO:50-75℃A BBDC;EVC:15-30℃A ATDC,EVO表示排气门开启时刻;EVC表示排气门关闭时刻;CA表示曲轴转角,Crank Angle;BBDC表示下止点前;ATDC表示上止点后,下文同理。气缸内气体经过压缩冲程后,温度压力升高,而在膨胀冲程中由于燃烧效果差,温度压力下降,因此控制排气门早开,在缸内气体经过膨胀过程压力温度未大幅降低之前,便排出废气,废气驱动废气涡轮增压器后全部导入缸内重新燃烧。一方面高温高压废气有利于提高废气涡轮增压器效率,为下一循环提供更多新鲜空气,同时再次导入缸内的废气中的中间产物等活性成分,有利于促进着火,另一方面也避免了大量未燃HC和CO的排放。同时由于废气中未燃HC、CO含量高,可用于下一循环继续燃烧放热,故可在下一循环减少喷油量。
如果ECU的判断结果为燃烧效率中等(情况2),ECU控制排气门早关较早开(EVO:30-50℃A BBDC;EVC:0-15℃A ATDC)。燃烧结束时,开启排气门排出废气,避免缸内气体的温度压力在膨胀过程中降低。排出的废气经过废气涡轮增压器后进入后处理器,其中的HC、CO在后处理器中被氧化为二氧化碳和水后排入大气。同时,排气门早关将部分废气留在缸内,废气中的中间产物等活性成分有利于促进下一循环的着火燃烧。下一循环可适当减少喷油量。
如果ECU的判断结果为燃烧效率高或正常燃烧(情况3),ECU控制排气门晚开晚关(EVO:10-30℃ABBDC;EVC:15-30℃AATDC),使缸内混合气有足够的燃烧时间,由于燃烧效率高,排气温度提高,废气能量的提高可有效驱动废气涡轮增压器,提高下一循环进气量。同时排气中CO2含量升高,留在缸内不利于下一循环燃烧,所以排气门晚关,尽可能排出废气从而减少缸内残余废气。废气全部排出驱动废气涡轮增压器后进入后处理器,其中的HC、CO被氧化为二氧化碳和水后排入大气。下一循环正常喷油。
尽管上面结合附图对本发明的功能及工作过程进行了描述,但本发明并不局限于上述的具体功能和工作过程,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式,这些均属于本发明的保护之内。

Claims (2)

1.一种适用废气涡轮增压发动机冷起动过程的控制方法,其特征在于,包括以下过程:
发动机实际运行的冷起动过程中,ECU分别读取缸压信号、振动信号、曲轴转速信号,判断发动机冷起动的燃烧情况,控制调整排气门开闭时刻和喷油量;
如果ECU的判断结果为燃烧效率低或失火,ECU控制排气门早开晚关,EVO:50-75°CABBDC,EVC:15-30°CA ATDC;废气驱动废气涡轮增压器后全部导回缸内重新燃烧;降低下一循环喷油量;
如果ECU的判断结果为燃烧效率中等,ECU控制排气门早关较早开,EVO:30-50°CABBDC,EVC:0-15°CA ATDC;部分废气留在缸内重新燃烧,其余废气驱动废气涡轮增压器后进入后处理器;降低下一循环喷油量;
如果ECU的判断结果为燃烧效率高或正常燃烧,ECU控制排气门晚开晚关,EVO:10-30°CA BBDC,EVC:15-30°CA ATDC;废气全部排出驱动废气涡轮增压器后进入后处理器;下一循环正常喷油。
2.根据权利要求1所述的适用废气涡轮增压发动机冷起动过程的控制方法,其特征在于,根据下述条件联合判断发动机冷起动的燃烧情况:
通过缸压传感器、曲轴位置传感器及振动传感器得到发动机冷起动各个循环的缸压数据、曲轴转速数据及振动数据;根据公式(1)计算燃烧效率:
Figure FDA0002780185490000011
其中,gb为循环喷油量,kg/cycle;Hu为燃料热值,kJ/kg;Q为循环放热量,kJ/cycle,由放热率积分得到,其中,放热率根据测得的缸压数据,即p-
Figure FDA0002780185490000012
示功图计算得到;
当燃烧效率ηb≤30%时,定义为情况1:燃烧效率低或失火;
当燃烧效率30%<ηb<85%时,定义为情况2:燃烧效率中等;
当燃烧效率ηb≥85%时,定义为情况3:燃烧效率高或正常燃烧;
将测试循环的数据进行整理统计,分别对情况1和情况3的循环的缸内平均压力、转速、振动信号幅值取平均值,得到:
情况1:缸内平均压力p1,转速n1,振动信号幅值A1
情况3:缸内平均压力[2,转速n2,振动信号幅值A2
根据缸内平均压力、转速、振动信号幅值联合判断发动机冷起动燃烧情况;即:
情况1-燃烧效率低或失火:p≤p1&n≤n1&A≥A1
情况3-燃烧效率高或正常燃烧:p≥p2&n≥n2&A≤A2
当缸内平均压力、转速和振动信号幅值不在上述范围内时,归入情况2-燃烧效率中等。
CN202011279244.XA 2020-11-16 2020-11-16 一种适用废气涡轮增压发动机冷起动过程的控制方法 Active CN114508439B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011279244.XA CN114508439B (zh) 2020-11-16 2020-11-16 一种适用废气涡轮增压发动机冷起动过程的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011279244.XA CN114508439B (zh) 2020-11-16 2020-11-16 一种适用废气涡轮增压发动机冷起动过程的控制方法

Publications (2)

Publication Number Publication Date
CN114508439A true CN114508439A (zh) 2022-05-17
CN114508439B CN114508439B (zh) 2023-06-23

Family

ID=81546876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011279244.XA Active CN114508439B (zh) 2020-11-16 2020-11-16 一种适用废气涡轮增压发动机冷起动过程的控制方法

Country Status (1)

Country Link
CN (1) CN114508439B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030070637A1 (en) * 2001-10-12 2003-04-17 Yoshihiro Majima Valve timing control device for internal combustion engine
CN1434193A (zh) * 2003-02-27 2003-08-06 上海交通大学 实现柴油机低排放均质燃烧的方法
US20030183185A1 (en) * 2002-04-02 2003-10-02 Jinhui Sun Control strategy for improving cold cranking, starting, and warm-up of an engine having a variable valve actuation mechanism
JP2003301738A (ja) * 2002-04-08 2003-10-24 Toyota Motor Corp 筒内噴射式火花点火内燃機関
JP2006161666A (ja) * 2004-12-07 2006-06-22 Mazda Motor Corp エンジンの吸排気制御装置
JP2009235950A (ja) * 2008-03-26 2009-10-15 Toyota Motor Corp 内燃機関の制御装置
CN104196617A (zh) * 2014-07-31 2014-12-10 长城汽车股份有限公司 全可变气门增压柴油机及其控制方法
CN106460717A (zh) * 2014-05-30 2017-02-22 丰田自动车株式会社 内燃机的控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030070637A1 (en) * 2001-10-12 2003-04-17 Yoshihiro Majima Valve timing control device for internal combustion engine
US20030183185A1 (en) * 2002-04-02 2003-10-02 Jinhui Sun Control strategy for improving cold cranking, starting, and warm-up of an engine having a variable valve actuation mechanism
JP2003301738A (ja) * 2002-04-08 2003-10-24 Toyota Motor Corp 筒内噴射式火花点火内燃機関
CN1434193A (zh) * 2003-02-27 2003-08-06 上海交通大学 实现柴油机低排放均质燃烧的方法
JP2006161666A (ja) * 2004-12-07 2006-06-22 Mazda Motor Corp エンジンの吸排気制御装置
JP2009235950A (ja) * 2008-03-26 2009-10-15 Toyota Motor Corp 内燃機関の制御装置
CN106460717A (zh) * 2014-05-30 2017-02-22 丰田自动车株式会社 内燃机的控制装置
CN104196617A (zh) * 2014-07-31 2014-12-10 长城汽车股份有限公司 全可变气门增压柴油机及其控制方法

Also Published As

Publication number Publication date
CN114508439B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
EP2527632B1 (en) Fuel injection control device for internal-combustion engine
Saanum et al. Lean burn versus stoichiometric operation with EGR and 3-way catalyst of an engine fueled with natural gas and hydrogen enriched natural gas
JP2002242709A (ja) 自動車用4サイクルエンジン
US10704524B2 (en) Control system of compression-ignition engine
US10920655B2 (en) Control device for compression ignition engine
CN102889148A (zh) 补偿湿度和海拔高度对hcci燃烧的影响的方法
CN106762294B (zh) 一种灵活控制发动机燃烧模式的方法
Wheeler et al. Increasing EGR Tolerance using High Tumble in a Modern GTDI Engine for Improved Low-Speed Performance
Willand et al. Limits on downsizing in spark ignition engines due to pre-ignition
Hitomi et al. Mechanism of improving fuel efficiency by Miller cycle and its future prospect
Garcia et al. Impact of miller cycle strategies on combustion characteristics, emissions and efficiency in heavy-duty diesel engines
Feng et al. Investigations of Atkinson cycle converted from conventional Otto cycle gasoline engine
CN109707505A (zh) 一种基于喷水控制压升率氧气闭路循环的零氮发动机及其控制方法
Kulzer et al. Multi-mode combustion strategies with CAI for a GDI engine
Stokes et al. Development experience of a poppet-valved two-stroke flagship engine
CN114508439B (zh) 一种适用废气涡轮增压发动机冷起动过程的控制方法
Kumar et al. Scavenging phenomena based post-oxidation in exhaust manifold of a turbocharged spark ignition engine
Okamoto et al. Development of a late intake-valve closing (LIVC) miller cycle for stationary natural gas engines-effect of EGR utilization
Guan et al. Exploring the Potential of Miller Cycle with and without EGR for Maximum Efficiency and Minimum Exhaust Emissions in a Heavy-Duty Diesel Engine
US11136925B2 (en) Device and method for controlling engine
Bonatesta et al. Factors influencing the burn rate characteristics of a spark ignition engine with variable valve timing
Osborne et al. Magma xEV and sustainable liquid fuels–steps towards net-zero propulsion
US20160032821A1 (en) Six Stroke Internal-Combustion Engine
Yang et al. Investigation of CAI combustion with positive valve overlap and enlargement of CAI operating range
Bahri et al. The effect of ethanol combustion on HCCI engine performance and emissions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant