CN114499452A - Miniaturized temperature compensation crystal oscillator - Google Patents
Miniaturized temperature compensation crystal oscillator Download PDFInfo
- Publication number
- CN114499452A CN114499452A CN202111550124.3A CN202111550124A CN114499452A CN 114499452 A CN114499452 A CN 114499452A CN 202111550124 A CN202111550124 A CN 202111550124A CN 114499452 A CN114499452 A CN 114499452A
- Authority
- CN
- China
- Prior art keywords
- crystal
- base
- temperature compensation
- crystal resonator
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 177
- 239000003990 capacitor Substances 0.000 claims abstract description 34
- 230000010355 oscillation Effects 0.000 claims abstract description 8
- 230000000295 complement effect Effects 0.000 claims abstract description 7
- 238000001914 filtration Methods 0.000 claims abstract description 5
- 239000010453 quartz Substances 0.000 claims description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 239000000919 ceramic Substances 0.000 claims description 30
- 239000003292 glue Substances 0.000 claims description 16
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 16
- 239000010931 gold Substances 0.000 claims description 15
- 229910052737 gold Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 10
- 238000012536 packaging technology Methods 0.000 claims description 6
- 238000005476 soldering Methods 0.000 claims description 6
- 230000006866 deterioration Effects 0.000 abstract description 5
- 239000000306 component Substances 0.000 description 9
- 230000001133 acceleration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000011222 crystalline ceramic Substances 0.000 description 1
- 229910002106 crystalline ceramic Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/205—Constructional features of resonators consisting of piezoelectric or electrostrictive material having multiple resonators
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L1/00—Stabilisation of generator output against variations of physical values, e.g. power supply
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Oscillators With Electromechanical Resonators (AREA)
Abstract
Description
技术领域technical field
本发明涉及振荡器技术领域。更具体地,涉及一种小型化温补晶振。The present invention relates to the technical field of oscillators. More specifically, it relates to a miniaturized temperature compensated crystal oscillator.
背景技术Background technique
随着电子设备中高精度温补晶振的广泛应用,对温补晶振在体积、温度、频率温度稳定度、耐振动和耐冲击等方面提出了更高的要求,因此需要对晶体振荡器小型化、高精度和抗振性能方面进行设计,实现产品的小型化、高指标和高可靠特性,满足电子设备的相关要求。With the wide application of high-precision temperature-compensated crystal oscillators in electronic equipment, higher requirements have been placed on temperature-compensated crystal oscillators in terms of volume, temperature, frequency-temperature stability, vibration resistance and shock resistance. It is designed in terms of high precision and anti-vibration performance to achieve miniaturization, high index and high reliability of products, and to meet the relevant requirements of electronic equipment.
传统的温补晶振在存在剧烈振动的工作环境中,振动传递至晶体振荡器处将会影响输出信号的稳定性,导致输出频率产生偏差,系统性能下降,严重时可能会出现电子系统工作异常现象。因此无法满足在剧烈振动条件下的温补晶体振荡器高精度的需求。In the traditional temperature-compensated crystal oscillator in a working environment with severe vibration, the vibration transmitted to the crystal oscillator will affect the stability of the output signal, resulting in deviation of the output frequency, system performance degradation, and abnormal operation of the electronic system may occur in severe cases. . Therefore, it cannot meet the high-precision requirements of temperature-compensated crystal oscillators under severe vibration conditions.
发明内容SUMMARY OF THE INVENTION
为了解决上述问题中的至少一个,本申请提出了一种小型化温补晶振,包括:基座、设置于所述基座上的第一晶体谐振器组件、第二晶体谐振器组件、温补芯片、以及滤波电容组件,其中,In order to solve at least one of the above problems, the present application proposes a miniaturized temperature compensated crystal oscillator, comprising: a base, a first crystal resonator assembly, a second crystal resonator assembly, a temperature compensated chip, and filter capacitor assembly, wherein,
所述第一晶体谐振器组件、第二晶体谐振器组件、温补芯片、以及滤波电容组件通过所述基座实现电气连接;The first crystal resonator assembly, the second crystal resonator assembly, the temperature compensation chip, and the filter capacitor assembly are electrically connected through the base;
所述第一晶体谐振器组件与第二晶体谐振器组件互补,对振荡进行抵消;The first crystal resonator component and the second crystal resonator component are complementary to cancel oscillation;
所述温补芯片用于对所述第一晶体谐振器组件和第二晶体谐振器组件进行温度补偿;The temperature compensation chip is used to perform temperature compensation on the first crystal resonator assembly and the second crystal resonator assembly;
所述滤波电容组件用于对所述温补芯片进行滤波。The filter capacitor component is used for filtering the temperature compensation chip.
在一个具体实施例中,所述第一晶体谐振器组件包括:第一晶体陶瓷底座、第一晶体石英晶片、第一晶体金电极及第一晶体金属盖板。In a specific embodiment, the first crystal resonator assembly includes: a first crystal ceramic base, a first crystal quartz wafer, a first crystal gold electrode and a first crystal metal cover plate.
在一个具体实施例中,所述第二晶体谐振器组件包括:第二晶体陶瓷底座、第二晶体石英晶片、第二晶体金电极及第二晶体金属盖板。In a specific embodiment, the second crystal resonator assembly includes: a second crystal ceramic base, a second crystal quartz wafer, a second crystal gold electrode and a second crystal metal cover plate.
在一个具体实施例中,所述第一晶体金电极通过镀膜工艺设置于所述第一晶体石英晶片上以形成第一晶体石英振子;In a specific embodiment, the first crystalline gold electrode is disposed on the first crystalline quartz wafer through a coating process to form a first crystalline quartz oscillator;
所述第一晶体石英振子通过导电胶粘接于所述第一晶体陶瓷底座;The first crystal quartz oscillator is bonded to the first crystal ceramic base through conductive glue;
所述第一晶体金属盖板通过平行焊封装技术焊接于所述第一晶体陶瓷底座以形成第一晶体谐振器组件。The first crystal metal cover plate is welded to the first crystal ceramic base by a parallel soldering packaging technology to form a first crystal resonator assembly.
在一个具体实施例中,所述第二晶体金电极通过镀膜工艺设置于所述第二晶体石英晶片上以形成第二晶体石英振子;In a specific embodiment, the second crystalline gold electrode is disposed on the second crystalline quartz wafer through a coating process to form a second crystalline quartz oscillator;
所述第二晶体石英振子通过导电胶粘接于所述第二晶体陶瓷底座;The second crystal quartz oscillator is bonded to the second crystal ceramic base through conductive glue;
所述第二晶体金属盖板通过平行焊封装技术焊接于所述第二晶体陶瓷底座以形成第二晶体谐振器组件。The second crystal metal cover plate is welded to the second crystal ceramic base by the parallel soldering packaging technology to form a second crystal resonator assembly.
在一个具体实施例中,所述滤波电容组件包括:第一滤波电容、第二滤波电容以及第三滤波电容,其中,所述滤波电容组件通过导电胶粘接于所述基座的电容焊盘以实现对所述温补芯片进行滤波。In a specific embodiment, the filter capacitor assembly includes: a first filter capacitor, a second filter capacitor and a third filter capacitor, wherein the filter capacitor assembly is adhered to the capacitor pad of the base through conductive glue to filter the temperature compensation chip.
在一个具体实施例中,所述温补芯片通过导电胶粘接于所述基座内的凹槽;In a specific embodiment, the temperature compensation chip is adhered to the groove in the base by conductive glue;
所述温补芯片的引脚和所述基座的焊盘通过金丝键合的方式进行电气连接。The pins of the temperature compensation chip and the pads of the base are electrically connected by gold wire bonding.
在一个具体实施例中,所述第一晶体谐振器和第二晶体谐振器通过导电胶粘接于所述基座的焊盘,以完成小型化温补晶振的装配。In a specific embodiment, the first crystal resonator and the second crystal resonator are bonded to the pads of the base through conductive glue, so as to complete the assembly of the miniaturized temperature compensated crystal oscillator.
在一个具体实施例中,所述第一晶体陶瓷底座和第二晶体陶瓷底座的型号为SMD3225晶体底座。In a specific embodiment, the models of the first crystal ceramic base and the second crystal ceramic base are SMD3225 crystal bases.
在一个具体实施例中,所述基座的型号为SMD7050晶体基座。In a specific embodiment, the model of the base is SMD7050 crystal base.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本申请针对目前现有问题,制定一种小型化温补晶振,通过设置两个互补的晶体谐振器,优化了在剧烈振动条件下其相噪恶化程度,满足了电子设备对温补晶体振荡器小型化、高精度和抗振性方面的需求,具有广泛的应用前景。Aiming at the existing problems at present, the present application formulates a miniaturized temperature-compensated crystal oscillator. By setting two complementary crystal resonators, the phase noise deterioration degree under severe vibration conditions is optimized, which satisfies the requirements of electronic equipment for temperature-compensated crystal oscillators. The demand for miniaturization, high precision and vibration resistance has a wide range of application prospects.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1示出根据本申请的一个实施例的小型化温补晶振的结构示意图。FIG. 1 shows a schematic structural diagram of a miniaturized temperature-compensated crystal oscillator according to an embodiment of the present application.
图2示出根据本申请的一个实施例的第一晶体谐振器组件的结构示意图。FIG. 2 shows a schematic structural diagram of a first crystal resonator assembly according to an embodiment of the present application.
图3示出根据本申请的一个实施例的第二晶体谐振器组件的结构示意图。FIG. 3 shows a schematic structural diagram of a second crystal resonator assembly according to an embodiment of the present application.
图4示出根据本申请的一个实施例的封装完成的温补晶振的示意图。FIG. 4 shows a schematic diagram of a packaged temperature compensated crystal oscillator according to an embodiment of the present application.
具体实施方式Detailed ways
为了更清楚地说明本申请,下面结合优选实施例和附图对本申请做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本申请的保护范围。In order to illustrate the present application more clearly, the present application will be further described below with reference to the preferred embodiments and the accompanying drawings. Similar parts in the figures are denoted by the same reference numerals. Those skilled in the art should understand that the content specifically described below is illustrative rather than restrictive, and should not limit the protection scope of the present application.
为了满足温补晶振产品在剧烈振动条件下高稳定度的要求以及产品小型化方面的要求,必须对产品进行小型化和高精度方面的设计,本发明提出了一种小型化温补晶振,如图1所示,该温补晶振包括:In order to meet the requirements of high stability of temperature-compensated crystal oscillator products under severe vibration conditions and the requirements of product miniaturization, it is necessary to design the product in terms of miniaturization and high precision. The present invention proposes a miniaturized temperature-compensated crystal oscillator, such as As shown in Figure 1, the temperature compensated crystal oscillator includes:
基座10、设置于所述基座10上的第一晶体谐振器组件20、第二晶体谐振器组件30、温补芯片40、以及滤波电容组件50。The
本实施例中,基座10用于放置第一晶体谐振器组件20、第二晶体谐振器组件30、温补芯片40、以及滤波电容组件50,并对各个组件进行电气连接和提供最终输入输出端口。第一晶体谐振器组件20、第二晶体谐振器组件30、温补芯片40、以及滤波电容组件50通过所述基座10实现电气连接。In this embodiment, the
本领域技术人员能够理解表贴双晶体温补陶瓷基座的小型化决定最终外形尺寸,因此本实施例中表贴双晶体谐振器温补陶瓷基座小型化是产品实现SMD7050封装的基础,换句话说,所述基座的型号为SMD7050晶体基座。Those skilled in the art can understand that the miniaturization of the surface mount dual-crystal thermocompensated ceramic base determines the final size. Therefore, in this embodiment, the miniaturization of the surface mount dual-crystal resonator thermocompensated ceramic base is the basis for the product to realize the SMD7050 package. In other words, the model of the base is SMD7050 crystal base.
在一个可选示例中,如图2所示,所述第一晶体谐振器组件20包括:第一晶体陶瓷底座200、第一晶体石英晶片202、第一晶体金电极204及第一晶体金属盖板206,其中,在具体的制作工艺中,In an optional example, as shown in FIG. 2 , the first
首先,将第一晶体金电极204通过镀膜工艺设置于所述第一晶体石英晶片202上以形成第一晶体石英振子。First, a first
也就是说,第一晶体金电极204用于作为第一晶体石英晶片202的电极,制作成第一晶体石英振子。需要说明的是,传统的蒸发镀膜制作的电极膜层附着力差,电极膜内部、电极膜与晶片之间存在应力大,影响产品的老化率。通过采用高真空离子束溅射镀膜工艺,比传统的蒸发镀膜真空度更高,提高了镀膜牢固度、降低膜层应力,使得晶片表面的电极膜的膜层附着力增强、应力降低,提高了产品的长期稳定性,使得产品的老化性能更好。本示例通过采用离子刻蚀微调,即采用离子束少量刻蚀电极材料,以微量调整频率,刻蚀微调可以避免二次蒸镀带来的附着力和膜层应力,从而减小产品的老化率。That is to say, the first
本示例中在第一晶体石英晶片202上镀上第一晶体金电极,用于配合温补芯片产生振荡回路。由于采用寄存器控制多次项系数的方法,只能按多项式光滑曲线来形成所需要的控制电压,对于谐振器附加在光滑曲线上的突跳是不能补偿的。因此要求,频率温度特性曲线光滑,频率跳点不得超过要求温度频差的1/2。通过调节第一石英晶片的切角,优化了第一石英振子的频率温度稳定度特性,使得其和温补芯片补偿算法曲线更好匹配,并通过调节晶片的宽度-厚度比,降低了石英振子随温度变化产生的频率跳变量,优化了产品的频率温度稳定度特性,使其频率跳点小于±0.5ppm。In this example, a first crystalline gold electrode is plated on the first
其次,将所述第一晶体石英振子通过导电胶粘接于所述第一晶体陶瓷底座200。第一晶体陶瓷底座为SMD3225表贴晶体陶瓷底座,用于放置第一晶体石英振子和第一晶体金属盖板,并对各个部分进行电气连接和提供最终输入输出端口。Next, the first crystal quartz oscillator is bonded to the first crystal
最后,将所述第一晶体金属盖板206通过平行焊封装技术焊接于所述第一晶体陶瓷底座200以形成第一晶体谐振器组件20。Finally, the first crystalline
在一个可选示例中,如图3所示,所述第二晶体谐振器组件30包括:第二晶体陶瓷底座300、第二晶体石英晶片302、第二晶体金电极304及第二晶体金属盖板306,其中,在具体的制作工艺中,In an optional example, as shown in FIG. 3 , the second
首先,将第二晶体金电极304通过镀膜工艺设置于所述第二晶体石英晶片302上以形成第二晶体石英振子;First, a second
也就是说,在第二晶体石英晶片上镀上第二晶体金电极,用于配合温补芯片产生振荡回路;第二晶体金电极304用于作为第二晶体石英晶片302的电极,制作成第二晶体石英振子。That is to say, a second crystal gold electrode is plated on the second crystal quartz wafer, which is used to cooperate with the temperature compensation chip to generate an oscillation circuit; Two crystal quartz oscillator.
其次,将所述第二晶体石英振子通过导电胶粘接于所述第二晶体陶瓷底座;第二晶体陶瓷底座为SMD3225表贴晶体陶瓷底座,用于放置第二晶体石英振子和第二晶体金属盖板,并对各个部分进行电气连接和提供最终输入输出端口。Next, the second crystal quartz oscillator is bonded to the second crystal ceramic base through conductive glue; the second crystal ceramic base is an SMD3225 surface mount crystal ceramic base, which is used to place the second crystal quartz oscillator and the second crystal metal cover, and make electrical connections to various parts and provide final input and output ports.
需要说明的是,由于低加速度灵敏度双晶体谐振器是整个晶体振荡器的核心元件,因此,必须选取两个加速度灵敏度性能相近的第一晶体谐振器组件20和第二晶体谐振器组件30进行对称组合,以便其加速度灵敏度进行相互抵消,换句话说,第一晶体谐振器组件20与第二晶体谐振器组件30互补,具体的,参见图2和图3,第一晶体石英镜片202于第二晶体石英晶片302在装配时方向相反,从而对振荡进行抵消,优化在剧烈振动条件下其相噪恶化程度,以满足电子设备对温补晶体振荡器小型化、高精度和抗振性方面的需求。It should be noted that since the low acceleration sensitivity dual crystal resonator is the core component of the entire crystal oscillator, two first
最后,将所述第二晶体金属盖板通过平行焊封装技术焊接于所述第二晶体陶瓷底座以形成第二晶体谐振器组件。Finally, the second crystal metal cover plate is welded to the second crystal ceramic base by parallel soldering packaging technology to form a second crystal resonator assembly.
在一个可选示例中,所述温补芯片40用于对所述第一晶体谐振器组件20和第二晶体谐振器组件30进行温度补偿。换句话说,温补芯片40用于配合第一晶体石英振子和第二晶体石英振子产生振荡回路,并对两个晶体石英振子进行温度补偿计算,最终输出高精度的频率信号。In an optional example, the
本实施例中,为了实现晶体石英振子的微小型化,电路各部分采用集成化设计,其中主振电路、滤波电路和补偿网络集成在一个温补芯片上,通过设计高次项的补偿算法曲线,大大提高了温度补偿的精度,使得晶体振荡器能够实现在-55℃~+85℃宽温度范围频率稳定度≤±1ppm的指标。In this embodiment, in order to realize the miniaturization of the crystal quartz oscillator, each part of the circuit adopts an integrated design, in which the main oscillator circuit, the filter circuit and the compensation network are integrated on a temperature compensation chip. By designing the compensation algorithm curve of the higher order term , greatly improves the accuracy of temperature compensation, so that the crystal oscillator can achieve the frequency stability of ≤±1ppm in the wide temperature range of -55℃~+85℃.
还需要说明的是,所述温补芯片通过导电胶粘接于所述基座内的凹槽;所述温补芯片的引脚和所述基座的焊盘通过金丝键合的方式进行电气连接。为了保护温补芯片,通过灌胶工艺将环氧树脂灌装到温补晶振陶瓷底座内的凹槽内,将温补芯片行密封保护。It should also be noted that the temperature compensation chip is bonded to the groove in the base through conductive glue; the pins of the temperature compensation chip and the pads of the base are bonded by gold wire. Electrical connections. In order to protect the temperature compensation chip, epoxy resin is filled into the groove in the ceramic base of the temperature compensation crystal oscillator through the glue filling process, and the temperature compensation chip is sealed and protected.
在一个可选示例中,所述滤波电容组件50用于对所述温补芯片40进行滤波。如图1所示,其包括:第一滤波电容500、第二滤波电容502以及第三滤波电容503,其中,所述滤波电容组件通过导电胶粘接于所述基座的电容焊盘以实现对所述温补芯片进行滤波。In an optional example, the
需要说明的是,本申请对滤波电容的数量不做限定,只要能实现滤波电容组件50对温补芯片40进行滤波的功能即可。It should be noted that the present application does not limit the number of filter capacitors, as long as the
本实施例将所述第一晶体谐振器组件、第二晶体谐振器组件、滤波电容组件通过导电胶粘接于所述基座的焊盘,通过芯片贴装、芯片键合、封装等工艺将温补芯片装配在基座中,以完成小型化温补晶振的装配,形成如图4所示的实物形态的小型化低加速度灵敏度温补晶振产品,其外形尺寸为SMD7050,长×宽×高:7mm×5mm×2mm(max),产品采用陶瓷金属封装,是一种分体式的TCXO结构。分体式的TCXO结构谐振器和振荡电路芯片是分别封装的,其上半部分为双晶体谐振器和电容,下半部分为封装有温补芯片的陶瓷基座,两部分通过导电胶粘接来组装。In this embodiment, the first crystal resonator component, the second crystal resonator component, and the filter capacitor component are bonded to the pads of the base through conductive adhesive, and the The temperature compensation chip is assembled in the base to complete the assembly of the miniaturized temperature compensation crystal oscillator, forming a miniaturized low acceleration sensitivity temperature compensation crystal oscillator product in physical form as shown in Figure 4. Its external dimensions are SMD7050, length × width × height : 7mm×5mm×2mm(max), the product adopts ceramic metal package, which is a split TCXO structure. The split TCXO structure resonator and oscillation circuit chip are packaged separately. The upper part is the dual crystal resonator and the capacitor, and the lower part is the ceramic base packaged with the temperature compensation chip. The two parts are bonded by conductive glue. assembled.
装配完成后,对温补晶振进行调试测试,例如宽温度补偿调试。调试后在常温电性能指标和频率温度稳定性进行测试,淘汰电性能指标和频率温度稳定性指标不合格的产品,使晶振的常温电性能、频率温度稳定性达到目标要求,以使得产品稳定度在-55℃~+85℃范围优于±1ppm,并优化了在剧烈振动条件下其相噪恶化程度。After the assembly is completed, debug and test the temperature compensated crystal oscillator, such as wide temperature compensation. After debugging, test the electrical performance index and frequency temperature stability at room temperature, and eliminate the products with unqualified electrical performance index and frequency temperature stability index, so that the normal temperature electrical performance and frequency temperature stability of the crystal oscillator meet the target requirements, so as to make the product stability It is better than ±1ppm in the range of -55℃~+85℃, and its phase noise deterioration degree is optimized under severe vibration conditions.
本申请通过设置两个互补的晶体谐振器,优化了在剧烈振动条件下其相噪恶化程度,满足了电子设备对温补晶体振荡器小型化、高精度和抗振性方面的需求,具有广泛的应用前景。By setting two complementary crystal resonators, the present application optimizes the degree of phase noise deterioration under severe vibration conditions, and meets the requirements of electronic equipment for miniaturization, high precision and vibration resistance of temperature-compensated crystal oscillators, and has a wide range of applications. application prospects.
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。Obviously, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, and are not intended to limit the embodiments of the present invention. Changes or changes in other different forms cannot be exhausted here, and all obvious changes or changes derived from the technical solutions of the present invention are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111550124.3A CN114499452A (en) | 2021-12-17 | 2021-12-17 | Miniaturized temperature compensation crystal oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111550124.3A CN114499452A (en) | 2021-12-17 | 2021-12-17 | Miniaturized temperature compensation crystal oscillator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114499452A true CN114499452A (en) | 2022-05-13 |
Family
ID=81493719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111550124.3A Pending CN114499452A (en) | 2021-12-17 | 2021-12-17 | Miniaturized temperature compensation crystal oscillator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114499452A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115276565A (en) * | 2022-09-29 | 2022-11-01 | 成都世源频控技术股份有限公司 | High-stability meter-attached quartz crystal oscillator |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090201096A1 (en) * | 2006-06-29 | 2009-08-13 | Rakon Uk Limited | Oscillator |
US20100117750A1 (en) * | 2008-11-07 | 2010-05-13 | Greenray Industries, Inc. | Crystal oscillator with reduced acceleration sensitivity |
JP2015173310A (en) * | 2014-03-11 | 2015-10-01 | 日本電波工業株式会社 | crystal oscillator |
US9431955B1 (en) * | 2014-12-30 | 2016-08-30 | Integrated Device Technology, Inc. | Monolithic composite resonator devices with reduced sensitivity to acceleration and vibration |
CN107852134A (en) * | 2015-05-11 | 2018-03-27 | Kvg石英晶体科技有限公司 | With the oscillator for lowering acceleration sensitivity |
-
2021
- 2021-12-17 CN CN202111550124.3A patent/CN114499452A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090201096A1 (en) * | 2006-06-29 | 2009-08-13 | Rakon Uk Limited | Oscillator |
US20100117750A1 (en) * | 2008-11-07 | 2010-05-13 | Greenray Industries, Inc. | Crystal oscillator with reduced acceleration sensitivity |
JP2015173310A (en) * | 2014-03-11 | 2015-10-01 | 日本電波工業株式会社 | crystal oscillator |
US9431955B1 (en) * | 2014-12-30 | 2016-08-30 | Integrated Device Technology, Inc. | Monolithic composite resonator devices with reduced sensitivity to acceleration and vibration |
CN107852134A (en) * | 2015-05-11 | 2018-03-27 | Kvg石英晶体科技有限公司 | With the oscillator for lowering acceleration sensitivity |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115276565A (en) * | 2022-09-29 | 2022-11-01 | 成都世源频控技术股份有限公司 | High-stability meter-attached quartz crystal oscillator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7067966B2 (en) | Piezoelectric device, cellular phone system using the piezoelectric device, and electronic equipment using the piezoelectric device | |
US6531807B2 (en) | Piezoelectric device | |
US20080238557A1 (en) | Tuning fork flexural crystal vibration device, crystal vibrator, and crystal oscillator | |
JP2013102315A (en) | Piezoelectric device and electronic apparatus | |
US5900790A (en) | Piezoelectric resonator, manufacturing method therefor, and electronic component using the piezoelectric resonator | |
CN115913169B (en) | Circuit packaging structure and method for improving temperature drift of acoustic surface filter device | |
JP2000077941A (en) | Temperature compensated crystal oscillator and method of manufacturing the same | |
CN114499452A (en) | Miniaturized temperature compensation crystal oscillator | |
JP4784055B2 (en) | Piezoelectric oscillator | |
JP2012090202A (en) | Piezoelectric device and piezoelectric oscillator | |
JP2008148219A (en) | Piezoelectric vibration device and manufacturing method thereof | |
JP2010220152A (en) | Surface-mounted crystal device | |
TW202137698A (en) | Electrode structure of crystal resonator, crystal resonator, and crystal oscillator | |
CN109672407A (en) | A kind of temperature compensating crystal oscillator | |
JP2004328553A (en) | Electronic component package and piezoelectric vibration device using the package | |
JP3403159B2 (en) | Piezoelectric oscillator | |
JP2002100932A (en) | Piezoelectric oscillator | |
JP6131798B2 (en) | Surface mount type piezoelectric oscillator | |
JP3250366B2 (en) | Piezoelectric oscillator | |
JP6098255B2 (en) | Surface mount type piezoelectric oscillator | |
JP3433728B2 (en) | Piezo device | |
JP2012119853A (en) | Piezoelectric device | |
JP7312060B2 (en) | Circuit board with surface mount crystal oscillator | |
US20240297636A1 (en) | Resonator Element And Resonator Device | |
JP6024514B2 (en) | Surface mount type piezoelectric oscillator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |