CN114496399A - 一种透气除汗柔性电极的制备方法 - Google Patents

一种透气除汗柔性电极的制备方法 Download PDF

Info

Publication number
CN114496399A
CN114496399A CN202210064166.4A CN202210064166A CN114496399A CN 114496399 A CN114496399 A CN 114496399A CN 202210064166 A CN202210064166 A CN 202210064166A CN 114496399 A CN114496399 A CN 114496399A
Authority
CN
China
Prior art keywords
flexible electrode
preparing
hydrophobic layer
sweat
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210064166.4A
Other languages
English (en)
Inventor
李卓
许艳婷
赵俊
陶元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202210064166.4A priority Critical patent/CN114496399A/zh
Publication of CN114496399A publication Critical patent/CN114496399A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/268Bioelectric electrodes therefor characterised by the electrode materials containing conductive polymers, e.g. PEDOT:PSS polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Manufacturing & Machinery (AREA)
  • Cardiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明涉及一种透气除汗的柔性电极。(1)采用亲水层材料通过静电纺丝法、呼吸图法、相转变法或等离子体处理法中任一种制备小孔径亲水层;(2)采用疏水层材料通过静电纺丝法、静电喷雾法或热压法中任一种制备大孔的疏水层;(3)在步骤(2)得到的复合膜的疏水层一侧通过磁控溅射法、真空蒸镀法、静电喷雾法或浸渍法中任一种制备导电层,即得到所需的柔性电极。本发明的柔性电极可将汗液从传感器/皮肤界面传递到传感器外表面并快速蒸发,避免了汗液的堆积,提高了电极在出汗和长期监测情况下的精度和穿戴舒适性。

Description

一种透气除汗柔性电极的制备方法
技术领域
本发明涉及一种透气除汗柔性电极的制备方法,尤其涉及一种基于孔梯度和表面能梯度具有定向排汗功能柔性电极的制备方法。
背景技术
电子皮肤因其无创、不易察觉的特点,已广泛应用于健康监测、医疗诊断和人机交互。电子皮肤具有良好的导电性、延展性和生物相容性,可以获取各种生理参数,包括电生理(EP)信号、皮肤温度、皮肤水合程度、血压、血氧、汗液成分等。大多数电子皮肤都是基于有机硅弹性体(如聚二甲基硅氧烷(PDMS)和Ecoflex)、聚合物材料(如聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)和聚酰亚胺)以及低模量、高柔韧性的水凝胶等。汗液在这些电子皮肤界面上的堆积可能会导致信号恶化、传感器故障,最终导致设备从皮肤上脱落,严重影响其长期监测的可靠性和佩戴舒适度。此外,积累的汗液还可能会阻塞皮肤呼吸,导致皮肤防护功能障碍(如红斑)或内部疾病(如过敏)等。 因此,设计透气、排汗、穿着舒适的传感器具有重要意义。
发明内容
为解决上述技术问题,本发明的目的在于一种透气除汗柔性电极的制备方法,本发明提供的电极,既可以在干燥皮肤上监测生理信号,也可以在出汗皮肤上获取较好的生理信号。
该电极基于一种具有孔梯度和表面能梯度的定向排汗功能材料,主要由含有的较大孔径的疏水层和较小孔径的亲水层组成,实际应用时,疏水层朝向皮肤。根据拉普拉斯方程(
Figure DEST_PATH_IMAGE001
,其中θ是在膜的表面接触角, γ是水在空气中的表面张力, D是孔的直径),毛细力随着孔径的增大而减小,亲水层较大的毛细力促进汗液从传感器/皮肤界面传递到外侧的亲水层,阻止汗液从亲水层渗透到传感器/皮肤界面,保证了传感器/皮肤界面的干燥,提高了穿戴舒适性。
本发明提出的一种透气除汗柔性电极的制备方法,包括以下步骤:
(1)采用亲水层材料通过静电纺丝法、呼吸图法、相转变法或等离子体处理法中任一种制备小孔径亲水层;
(2)采用疏水层材料通过静电纺丝法、静电喷雾法或热压法中任一种在步骤(1)得到的亲水层上制备大孔的疏水层;
(3)在步骤(2)得到的复合膜的疏水层一侧通过磁控溅射法、真空蒸镀法、静电喷雾法或浸渍法中任一种制备导电层,即得到所需的柔性电极。
本发明中,步骤(1)中所述的亲水层材料采用纤维素、棉、聚乙烯吡咯烷酮、聚丙烯腈或蚕丝中任一种。
本发明中,步骤(2)中,所述的疏水层材料采用聚氨酯、氟化聚氨酯、聚偏氟乙烯、聚苯乙烯或聚甲基丙烯酸甲酯中任一种。
本发明中,步骤(3)中,所述的导电层材料采用金属(金属纳米颗粒、金属纳米线、金属纳米片)、碳材料(碳纳米管、炭黑、石墨烯、Mxene)或导电聚合物(聚吡咯、聚苯胺、PEDOT:PSS)中任一种。
利用本发明制备方法得到的一种透气除汗柔性电极,其性能测试具体步骤为:测试柔性电极的水蒸汽透过率、水蒸发速率和定向输水性能,采集柔性电极在干燥和出汗状态下的心电信号,观察信号是否受出汗影响。
本发明的有益效果在于:本发明制备了一种透气除汗的柔性电极,促进汗液从传感器/皮肤界面传递到传感器表面并快速蒸发,避免了汗液的堆积,提高了电极在出汗和长期监测情况下的精度和穿戴舒适性。
附图说明
图1是本发明电极的SEM照片,(a)亲水层,(b)疏水层,(c)导电层,(d)截面图。
图2是本发明电极的水蒸汽透过性曲线。
图3是本发明电极的水蒸发性能曲线。
图4是本发明电极的定向输水性能。
图5是本发明电极的电阻变化率随应变变化曲线。
图6是由本发明电极测得的心电信号,(a)干燥皮肤,(b)出汗皮肤。
具体实施方式
以下结合具体实施例对上述方案做进一步说明。应理解,此处所描述的举例仅仅用以解释本发明而不限于限制本发明的范围。
实施例1
实施例提供了一种透气除汗的柔性电极的制备方法,具体步骤如下:
亲水层采用具有超亲水性的纤维素,但由于纤维素溶解性较差,选用溶解性较好的醋酸纤维素作为前驱体。将醋酸纤维素粉末溶解在丙酮和二甲基亚砜的混合溶剂中,然后将醋酸纤维素溶液进行静电纺丝得到多孔醋酸纤维素膜,最后将醋酸纤维素膜在氢氧化钾的乙醇溶液中醇解3个小时,得到亲水的纤维素膜。通过调控静电纺丝参数使醋酸纤维直径较小,进而得到孔径较小的纤维素膜。
疏水层采用生物相容性较好的聚氨酯。将聚氨酯粉末溶解在四氢呋喃和二甲基甲酰胺混合溶剂中,通过静电纺丝将聚氨酯纺到纤维素膜上,得到聚氨酯/纤维素膜。通过调控静电纺丝参数使聚氨酯纤维直径较大,从而得到孔径较大的聚氨酯纤维膜。
利用磁控溅射的方法在聚氨酯/纤维素膜的聚氨酯一侧溅射一层银,得到本发明的电极。
水蒸汽透过率按照ASTM E96M-2016 过程 D正杯法标准测量,测得电极的水蒸气透过率为154 g m-2 h-1。水蒸发速率根据GB/T 21655.1-2008进行测试,测试时,在10 cm×10 cm膜上加入0.2 g去离子水,每5分钟记录重量,测得水蒸发率为0.85 g h-1。通过滴水实验,证明电极具有定向输水能力。对电极进行拉伸测试,发现电阻随应变变化较小。采集电极在干燥和出汗状态下的心电信号,发现信号未受出汗影响。
图1(a)显示电极的亲水层为表面光滑的纤维,(b)显示电极的疏水层具有良好的纤维形貌,(c)显示疏水层表面覆盖了一层银颗粒,表明导电层制备过程未改变疏水层形貌,(d)显示疏水层成功覆盖到亲水层表面。
图2显示电极的水蒸汽透过量随时间的增加而增加,并且可以计算得到水蒸汽透过率为154 g m-2h-1
图3显示电极表面的水蒸发量随时间的增加而增加,并且可以计算得到水蒸发率为0.85 g h-1
图4(a)显示水从疏水层滴加时,快速渗透到亲水层并在亲水层扩散,(b)显示水从亲水层滴加时,水在亲水层快速扩散,不会渗透到疏水水层,表明电极具有定向输水性能。
图5显示电极被拉伸时,应变在2.5%以下时,电阻的变化量不超过3%,然后逐渐增大,在19%的伸长率下,电阻的变化量为初始电阻的2倍。
图6显示电极在(a)干燥皮肤和(b)出汗皮肤上都可以测得良好的心电信号。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种透气除汗柔性电极的制备方法,其特征在于包括以下步骤:
(1)采用亲水层材料通过静电纺丝法、呼吸图法、相转变法或等离子体处理法中任一种制备小孔径亲水层;
(2)采用疏水层材料通过静电纺丝法、静电喷雾法或热压法中任一种制备大孔的疏水层;
(3)在步骤(2)得到的复合膜的疏水层一侧通过磁控溅射法、真空蒸镀法、静电喷雾法或浸渍法中任一种制备导电层,即得到所需的柔性电极。
2.根据权利要求1所述的制备方法,其特征在于步骤(1)中所述的亲水层材料采用纤维素、棉、聚乙烯吡咯烷酮、聚丙烯腈或蚕丝中任一种。
3.根据权利要求1所述的制备方法,其特征在于步骤(2)中,所述的疏水层材料采用聚氨酯、氟化聚氨酯、聚偏氟乙烯、聚苯乙烯或聚甲基丙烯酸甲酯中任一种。
4.根据权利要求1所述的制备方法,其特征在于步骤(3)中,所述的导电层材料采用金属、碳材料或导电聚合物中任一种。
5.根据权利要求4所述的制备方法,其特征在于所述金属采用金属纳米颗粒、金属纳米线或金属纳米片中任一种,所述碳材料采用碳纳米管、炭黑、石墨烯或Mxene中任一种,所述导电聚合物采用聚吡咯、聚苯胺或PEDOT:PSS中任一种。
CN202210064166.4A 2022-01-20 2022-01-20 一种透气除汗柔性电极的制备方法 Pending CN114496399A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210064166.4A CN114496399A (zh) 2022-01-20 2022-01-20 一种透气除汗柔性电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210064166.4A CN114496399A (zh) 2022-01-20 2022-01-20 一种透气除汗柔性电极的制备方法

Publications (1)

Publication Number Publication Date
CN114496399A true CN114496399A (zh) 2022-05-13

Family

ID=81473398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210064166.4A Pending CN114496399A (zh) 2022-01-20 2022-01-20 一种透气除汗柔性电极的制备方法

Country Status (1)

Country Link
CN (1) CN114496399A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312332A (zh) * 2022-07-27 2022-11-08 浙江理工大学 一种MXene基纤维电容器电极及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397451A (en) * 1993-01-29 1995-03-14 Kyoto Daiichi Kagaku Co., Ltd. Current-detecting type dry-operative ion-selective electrode
CN102691175A (zh) * 2012-05-07 2012-09-26 北京航空航天大学 一种具有单向透水性能的复合纤维膜及其制备方法
CN103290615A (zh) * 2012-02-23 2013-09-11 合肥杰事杰新材料股份有限公司 一种防水透气膜及其制备方法
CN110269749A (zh) * 2019-05-22 2019-09-24 东华大学 一种维持伤口适度湿润的定向导液敷料及其制备方法
CN112667101A (zh) * 2020-12-18 2021-04-16 广东省科学院半导体研究所 自驱动排汗的电子皮肤及其制备方法
CN112680967A (zh) * 2020-12-15 2021-04-20 武汉纺织大学 具有单向导湿作用的压阻传感织物及其制备方法
CN112964764A (zh) * 2021-02-05 2021-06-15 深圳市刷新智能电子有限公司 汗液标志物检测的电极以及汗液传感器
CN113293508A (zh) * 2021-04-14 2021-08-24 内蒙古工业大学 一种复合纤维膜及其制备方法和应用
CN113520379A (zh) * 2021-06-04 2021-10-22 苏州大学 一种单向导流织物基可穿戴汗液传感器及其制备方法
CN113640357A (zh) * 2021-09-01 2021-11-12 中国科学院苏州纳米技术与纳米仿生研究所 一种实时连续检测电解质浓度的可穿戴汗液传感器装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397451A (en) * 1993-01-29 1995-03-14 Kyoto Daiichi Kagaku Co., Ltd. Current-detecting type dry-operative ion-selective electrode
CN103290615A (zh) * 2012-02-23 2013-09-11 合肥杰事杰新材料股份有限公司 一种防水透气膜及其制备方法
CN102691175A (zh) * 2012-05-07 2012-09-26 北京航空航天大学 一种具有单向透水性能的复合纤维膜及其制备方法
CN110269749A (zh) * 2019-05-22 2019-09-24 东华大学 一种维持伤口适度湿润的定向导液敷料及其制备方法
CN112680967A (zh) * 2020-12-15 2021-04-20 武汉纺织大学 具有单向导湿作用的压阻传感织物及其制备方法
CN112667101A (zh) * 2020-12-18 2021-04-16 广东省科学院半导体研究所 自驱动排汗的电子皮肤及其制备方法
CN112964764A (zh) * 2021-02-05 2021-06-15 深圳市刷新智能电子有限公司 汗液标志物检测的电极以及汗液传感器
CN113293508A (zh) * 2021-04-14 2021-08-24 内蒙古工业大学 一种复合纤维膜及其制备方法和应用
CN113520379A (zh) * 2021-06-04 2021-10-22 苏州大学 一种单向导流织物基可穿戴汗液传感器及其制备方法
CN113640357A (zh) * 2021-09-01 2021-11-12 中国科学院苏州纳米技术与纳米仿生研究所 一种实时连续检测电解质浓度的可穿戴汗液传感器装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIJIE ZHENG等: "Moisture‐Wicking Breathable and Intrinsically Antibacterial Electronic Skin Based on Dual-Gradient Poly(ionic liquid) Nanofiber Membranes", 《ADVANCED MATERIALS》, vol. 34, 9 November 2021 (2021-11-09), pages 1 - 12 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312332A (zh) * 2022-07-27 2022-11-08 浙江理工大学 一种MXene基纤维电容器电极及其制备方法
CN115312332B (zh) * 2022-07-27 2023-12-22 浙江理工大学 一种MXene基纤维电容器电极及其制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Advanced carbon for flexible and wearable electronics
Wu et al. Materials, devices, and systems of on‐skin electrodes for electrophysiological monitoring and human–machine interfaces
Xu et al. Bioinspired perspiration‐wicking electronic skins for comfortable and reliable multimodal health monitoring
Xu et al. An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring
Ma et al. Advanced electronic skin devices for healthcare applications
Cao et al. Ultra‐robust stretchable electrode for e‐skin: in situ assembly using a nanofiber scaffold and liquid metal to mimic water‐to‐net interaction
CN108822548A (zh) 一种高度可拉伸高灵敏度的3d打印石墨烯基柔性传感器及其制备方法
You et al. Flexible porous Gelatin/Polypyrrole/Reduction graphene oxide organohydrogel for wearable electronics
Yang et al. Toward a new generation of permeable skin electronics
CN114496399A (zh) 一种透气除汗柔性电极的制备方法
US11343910B2 (en) Elastic printed conductors
Peng et al. Multimodal health monitoring via a hierarchical and ultrastretchable all-in-one electronic textile
Shi et al. A bionic skin for health management: Excellent breathability, in situ sensing, and big data analysis
Chen et al. Gas-permeable and stretchable on-skin electronics based on a gradient porous elastomer and self-assembled silver nanowires
Huang et al. Directional sweat transport and breathable sandwiched electrodes for electrocardiogram monitoring system
JP6829524B2 (ja) 布帛電極
CN114875523A (zh) 一种生物相容柔性杂化碳基生理电极及其制备方法
Ma et al. Stretchable porous conductive hydrogel films prepared by emulsion template method as flexible sensors
Yang et al. Electronic Skin for Health Monitoring Systems: Properties, Functions and Applications
CN112575404A (zh) 一种高灵敏湿度响应纤维及其制备方法与应用
CN113425864A (zh) 一种柔性透气的MXene基生物质表皮电极及其制备方法和应用
US20180192906A1 (en) Polymer composition and electrode for a device for the non-invasive measurement of biological electrical signals
WO2023166296A1 (en) Capsules comprising a crosslinked polymer and 1d or 2d materials
Liu et al. Flexible electrode materials for emerging electronics: Materials, fabrication and applications
Liu et al. A simple method of fabricating graphene-polymer conductive films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination