CN114493810A - 物联网数据处理方法、装置及介质 - Google Patents
物联网数据处理方法、装置及介质 Download PDFInfo
- Publication number
- CN114493810A CN114493810A CN202210387402.6A CN202210387402A CN114493810A CN 114493810 A CN114493810 A CN 114493810A CN 202210387402 A CN202210387402 A CN 202210387402A CN 114493810 A CN114493810 A CN 114493810A
- Authority
- CN
- China
- Prior art keywords
- data
- task
- perception
- value
- demander
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003672 processing method Methods 0.000 title claims description 10
- 230000008447 perception Effects 0.000 claims abstract description 97
- 238000000034 method Methods 0.000 claims abstract description 37
- 239000011159 matrix material Substances 0.000 claims abstract description 22
- 238000012549 training Methods 0.000 claims abstract description 8
- 238000000638 solvent extraction Methods 0.000 claims abstract 2
- 239000013598 vector Substances 0.000 claims description 23
- 238000004364 calculation method Methods 0.000 claims description 20
- 230000006870 function Effects 0.000 claims description 10
- 238000011478 gradient descent method Methods 0.000 claims description 2
- 230000017105 transposition Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 9
- 230000001953 sensory effect Effects 0.000 abstract description 7
- 238000012216 screening Methods 0.000 abstract description 3
- 230000007246 mechanism Effects 0.000 description 12
- 238000011160 research Methods 0.000 description 6
- 238000012795 verification Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000013496 data integrity verification Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000013524 data verification Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000012358 sourcing Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/08—Auctions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/64—Protecting data integrity, e.g. using checksums, certificates or signatures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06395—Quality analysis or management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0283—Price estimation or determination
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Development Economics (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Finance (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- Accounting & Taxation (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Computer Security & Cryptography (AREA)
- Data Mining & Analysis (AREA)
- Educational Administration (AREA)
- General Engineering & Computer Science (AREA)
- Game Theory and Decision Science (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Bioethics (AREA)
- General Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种物联网数据处理方法、装置及介质,通过获取感知数据的分类标签;将感知数据分为l个工作矩阵;利用回归模型对所述l个工作矩阵进行训练,计算得到感知数据的质量等级;本发明考虑数据需求者对每次共享任务的价格和数据质量等级有不同的需求,在筛选参与共享任务的数据拥有者时,根据赢标候选者的报价和其所提供感知数据的质量等级,计算出感知数据的价值。最终由感知数据的价值选出赢得此次拍卖的数据拥有者参与共享任务。最后,数据需求者根据不同的感知数据价值进行报酬分配,激励数据拥有者参与共享任务的同时,保证感知数据的质量。
Description
技术领域
本发明涉及一种物联网数据处理技术,具体的说,涉及一种物联网数据处理方法、装置及介质。
背景技术
近年来,物联网迎来了爆炸式发展,联网设备数量呈现指数级增长。众多的物联网设备也将产生海量的数据,如何对如此庞大的数据量进行价值挖掘,实现物联网系统之间的数据共享逐渐成为物联网领域的研究热点之一。然而,当前的物联网数据共享机制存在着信任缺失、隐私泄露和缺乏激励机制等原因导致用户不愿意参与。因此,设计一个合理的激励机制来激励足够多的数据拥有者参与共享任务,并提供高质可靠的感知数据是物联网数据共享中的一个重要的问题。
而群智感知是结合众包思想和移动设备感知能力的一种物联网数据共享新的数据获取模式。群智感知是指通过普通用户已有的移动智能设备形成交互式的、参与式的感知网络,执行特定的感知任务并上传给数据需求群体,从而帮助专业人员收集数据、分析信息和共享知识。在群智感知中同样面临用户出于安全顾虑和缺乏激励机制等原因不愿意参与共享数据的问题。
现有技术中,鲜有对感知数据质量的研究。少量对数据质量的研究大多采用无监督学习里的聚类算法,此类方法计算复杂,操作效率低。
并且,现有的物联网数据共享激励机制存在许多问题。首先,现有方案通常依赖于集中式服务器,面临管控不透明、单点故障等问题,无法确保用户数据的安全共享。区块链具有去中心化、开放性、不可篡改、匿名性等特征,可作为物联网数据共享激励机制中信任缺失问题的解决方案。本发明采用区块链安全的分布式架构,数据需求者和数据拥有者作为区块链中的节点参与共享任务,交易信息由区块链中的矿工验证并打包记录在区块链中,交易信息公开化、透明化,有效防止第三方篡改信息或参与共享任务的节点抵赖。
其次,据调查可知,区块链固有的性能瓶颈导致现有区块链系统的吞吐量远低于现有数据库。当前基于区块链技术的物联网数据共享激励机制的研究通常仅限于利用区块链技术解决第三方带来的安全性问题,对激励模型性能、效率的研究尚有不足。逆向拍卖是一种存在一位买方和许多潜在卖方的拍卖形式,可采用逆向拍卖模型解决激励模型的性能问题。本发明采用逆向拍卖模型,矿工通过拍卖排除不理性报价的数据拥有者,减少后续数据验证的工作量,提高了执行一次共享任务的效率。
发明内容
本发明的目的在于克服背景技术所提出的技术问题,提出了一种物联网数据处理方法、装置及介质。具体为单个数据需求者产生感知数据需求,多个数据拥有者竞争参与共享任务资格的情形。在该方法中,采用区块链技术,解决可信第三方带来的信任问题。基于逆向拍卖模型设计激励机制,帮助矿工筛选出不理性报价的数据拥有者,减少后续验证数据质量等级的工作量,提升了激励模型的性能。采用softmax回归算法计算感知数据的质量等级。最后通过数据拥有者报价和数据的质量等级计算数据的价值,根据不同的数据价值进行报酬分配,鼓励数据拥有者上传价格合理、高质可靠的数据。
本发明的具体技术方案如下:
所述感知数据的质量等级表示为:
其中,h表示感知数据的质量等级计算函数,是所述回归模型的参数矩阵,
代表一个多维度工作量向量,所述多维度工作量向量的维度根据感知数据的属性值确定,代表第个工作量向量对应的等级, 代表感知数
据的等级,是当回归模型参数为时工作向量属于j等级的概率,
表示为:
根据本发明的第三方面,提供了一种基于区块链和逆向拍卖模型的物联网数据处
理方法,所述方法包括:接收数据需求者在区块链网络中发布的共享任务,所述共享任务至
少包括任务类型、任务要求、人数门限、任务截止日期、质量公告、价值公告中的一种及其组
合;将数据拥有者的报价从低到高排列,其中,
n为参与此次共享任务的数据拥有者总数,为数据需求者给出的当前共享任务的人数门
限,选择前个数据拥有者作为当前共享任务的候选者;通过各个候选者
的私钥计算对应感知数据的签名作为兑换报酬的凭证;根据如本发明各个实施例所述的方
法计算得到各个候选者对应的感知数据的价值;将各个候选者对应的的感知数据的价值从高到低排序,选择在前的个候选者作为
赢标者参与当前共享任务;利用发布当前共享任务的数据需求者的公钥给感知数据和数据
拥有者的签名加密后形成第一数据集,并将所述第一数据集发送至数据需求者。
根据本发明的第四方面,提供了一种基于区块链和逆向拍卖模型的物联网数据共
享激励装置,所述装置包括处理器,所述处理器被配置为:接收数据需求者在区块链网络中
发布的共享任务,所述共享任务至少包括任务类型、任务要求、人数门限、任务截止日期、质
量公告、价值公告中的一种及其组合;将数据拥有者的报价从低到高排列,其中,n为参与此次共享任务的数据拥
有者总数,为数据需求者给出的当前共享任务的人数门限,选择前个数据拥有者作
为当前共享任务的候选者;通过各个候选者的私钥计算对应感知数据的签名作为兑换报酬
的凭证;根据如本发明各个实施例所述的方法计算得到各个候选者对应的感知数据的价
值;将各个候选者对应的的感知数据的价值从高到低排序,选择在前的个候选者作为赢
标者参与当前共享任务;利用发布当前共享任务的数据需求者的公钥给感知数据和数据拥
有者的签名加密后形成第一数据集,并将所述第一数据集发送至数据需求者。
根据本发明的第五方面,提供了一种计算机可读存储介质,其上存储有计算机可读指令,当所述计算机可读指令被计算机的处理器执行时,使计算机执行如本发明各个实施例中所述的基于区块链和逆向拍卖模型的物联网数据处理方法。
根据本发明各个实施例提供的物联网数据处理方法、装置及介质,利用区块链技术去中心化、分布式、不可篡改、匿名性的特点,解决传统激励机制中因可信第三方管控不透明、易受攻击带来的安全问题。
本发明考虑数据需求者对每次共享任务的价格和数据质量等级有不同的需求,在筛选参与共享任务的数据拥有者时,根据赢标候选者的报价和其所提供感知数据的质量等级,计算出感知数据的价值。最终由感知数据的价值选出赢得此次拍卖的数据拥有者参与共享任务。最后,数据需求者根据不同的感知数据价值进行报酬分配,激励数据拥有者参与共享任务的同时,保证感知数据的质量。
本发明采用逆向拍卖模型设计激励机制。数据拥有者参与拍卖报价,通过第一阶段报价筛选出不理性报价的数据拥有者,选出赢标候选者进入第二阶段,由矿工进行感知数据质量等级验证。通过第一阶段的筛选,减少了第二阶段矿工验证数据质量等级的工作量。矿工的工作量越少,需要支付给矿工的报酬就越少,感知数据拥有者分到的报酬就越多,从而增大了模型的激励效果。同时,逆向拍卖模型在第一轮能使数据拥有者根据自己成本理性出价,保证公平交易的同时,最大化买卖双方的利益。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1为本发明基于区块链和逆拍卖模型激励机制流程图;
图2为本发明中逆向拍卖框架图;
图3为群智感知应用场景下激励机制框架图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定发明。
现在结合说明书附图对本发明做进一步的说明。
本发明实施例提供一种感知数据的质量等级计算方法,所述方法开始于步骤
S100,获取感知数据的分类标签,其中可以取k个不同的取值,k代表将感
知数据分为k个等级。本文中所述的感知数据的分类标签通常在获取感知数据后即可获得
其分类标签。具体来说,通常感知数据应当至少包括物品的名称,因此通过物品的名称基本
可以对物品进行分类,根据分类的不同进而可以确定感知数据的分类标签。本文中所述的
感知数据可以包括多种不同的数据类型,包括文本数据、音频数据、影像数据等等,本发明
实施对此不作具体的限制。
所述感知数据的质量等级表示为:
所述感知数据的质量等级表示为:
需要注意的是,回归模型可以是现有技术中普遍适用的回归模型,例如其可以是Soft max回归模型。
在接收感知数据后,可以根据数据需求者发布的价值公告里的感知数据质量等级的评定指标对感知数据进行质量等级验证。
仅作为实施例,本发明实施例假设的数据需求者为Google、Amazon、Uber 等大型
互联网公司,在发布感知任务阶段数据需求者会给出判断感知数据质量等级的标准,即能
给出给感知数据分类的标签,可以取k个不同的取值,k代表将感
知数据分为k个等级。
下面将具体介绍本发明实施例如何判断感知数据的质量等级。
所述感知数据的质量等级表示为:
通过交叉熵法来确定回归模型的损失函数,所述损失函数表示为:
通过不断的更新参数并将更新的参数重新代入回归模型中开始新一轮的训练,最
终求得损失函数的最小值,此时求得的参数是通过Softmax回归模型求得的最
优参数。自此,将参数代入感知数据的质量等级的公式中得出这段感知数据的质量等级。
本发明实施例还提供一种感知数据的价值计算方法,所述方法包括:
在具体实施时,可以通过矿工对感知数据的质量等级进行验证之后,根据数据需
求者发布的价值公告里的价格系数和感知数据质量系数,计算每条数据的价值。价值
的评估结果作为发放报酬的标准,通过对感知数据划分不同价值等级匹配不同酬金来激励
用户提供价格合理、质量更高的数据。
本发明实施例还提供一种基于区块链和逆向拍卖模型的物联网数据处理方法,所述方法开始于步骤S1,接收数据需求者在区块链网络中发布的共享任务,所述共享任务至少包括任务类型、任务要求、人数门限、任务截止日期、质量公告、价值公告中的一种及其组合。本文中所述的“数据需求者”具体可以是在进入区块链网络时需要完成注册,并缴纳保证金的感知用户中,对数据有需求的感知用户。数据需求者可以通过区块链网络发布共享任务。
仅作为示例,在步骤S1这一阶段,数据需求者发布感知任务。首先,
数据需求者用自己的私钥对此次感知任务签名,然后把
签名附于感知任务公告之后一起发布在区块链网络上。感知任务包括任务类型、任务要求、
人数门限、任务截止日期、价值公告等信息。在价值公告里数据需求者给出具体的感知数
据质量等级的评定指标,价格系数,感知数据质量系数,
具体的感知数据价值的评定指标,并给出对应感知数据价
值的报酬标准。感知数据的价值越高报酬越高,价值越低报酬越低。另
外,数据需求者还可以根据预计的报酬总数给予押金,押金包括矿工的报酬和感知用
户的报酬。
当时,感知用户作为竞标者参与这次感知任务并进行报价,即成为了
当前感知任务(共享任务)的数据拥有者。本发明实施例采用逆向拍卖模型,即一个买方多
个卖方。多个感知用户参与同一感知任务,因此感知用户参与感知任务存在竞争者,所以感
知用户会尽可能理性报价。矿工将参与感知任务用户的报价从低到高排列,其中,n为参与此次拍卖的感知用户数
量,为数据需求者给出的此次感知任务的人数门限。为了保证整体社会福利,要求参与
竞标的人数大于数据需求者对此次感知任务人数的要求,否则不执行此次感知任务。自此,
开始第一轮选拔。为了避免竞标者上传不符合数据需求者要求的感知数据等情况,矿工选
取价格由低到高排列的前个竞标者作为赢标侯选者。
步骤S4,根据如本发明任一实施例所述的方法计算得到各个候选者对应的感知数据的价值。具体的计算方法、原理及相应的技术效果在前文已经阐述,在此不再累述。
步骤S6,利用发布当前共享任务的数据需求者的公钥给感知数据和数据拥有者的
签名加密后形成第一数据集,并将所述第一数据集发送至数据需求者。仅作为示例,矿工利
用发布此次感知任务的数据需求者的公钥给感知数据和感知用户的签名加密,之后,将数据转发给数据需求者。如果数据需求者能用自己的私
钥解密成功,则成功获得数据,并成功认证了自己的身份。
在一些实施例中,一种基于区块链和逆向拍卖模型的物联网数据处理方法还包括
身份认证和数据完整性验证、验证矿工计算结果以及报酬分配等步骤。具体说来,身份认证
和数据完整性验证通过如下方法实现:假设数据需求者是专业的、理性的。获取感知数据之
后,数据需求者利用感知用户的公钥解签名,如果数据需求者解签名成功则成功认证
用户的身份,然后给予用户报酬,否则不给予报酬,这样就完成了用户身份认证和报
酬分配的工作。另外数据需求者收到矿工转发的数据之后计算感知数据明文的摘
要,并将计算的摘要与用户的公钥解密后的摘要比较,如果一致则说明数据没有被篡
改。这样就完成了感知数据完整性的认证,能够有效防止数据篡改。
验证矿工计算结果通过如下方法实现:数据需求者完成对感知用户的身份认证和数据完整性验证之后,验证矿工计算感知数据质量等级和数据价值的正确性,并检验感知数据的有效性。数据需求者验证完成后,向感知用户发放相应的报酬。
报酬分配通过如下方法实现:数据需求者完成一系列验证之后,根据感知数据的价值向相应的感知用户发放报酬。最后矿工将执行一次感知任务看作一次交易打包记录在区块链上,防止不诚信节点篡改交易信息或者抵赖。
本发明实施例还提供一种基于区块链和逆向拍卖模型的物联网数据共享激励装
置,所述装置包括处理器,所述处理器被配置为:接收数据需求者在区块链网络中发布的共
享任务,所述共享任务至少包括任务类型、任务要求、人数门限、任务截止日期、质量公告、
价值公告中的一种及其组合;将数据拥有者的报价从低到高排列,其中,n为参与此次共享任务的数
据拥有者总数,为数据需求者给出的当前共享任务的人数门限,选择前个数据拥有
者作为当前共享任务的候选者;通过各个候选者的私钥计算对应感知数据的签名作为兑换
报酬的凭证;根据如上所述的方法计算得到各个候选者对应的感知数据的价值;将各个候
选者对应的的感知数据的价值从高到低排序,选择
在前的N个候选者作为赢标者参与当前共享任务;利用发布当前共享任务的数据需求者的
公钥给感知数据和数据拥有者的签名加密后形成第一数据集,并将所述第一数据集发送至
数据需求者。
需要注意的是本发明实施例中所述的处理器可以是包括一个以上通用处理设备的处理设备,诸如微处理器、中央处理单元(CPU)、图形处理单元(GPU)等。更具体地,处理器可以是复杂指令集计算(CISC)微处理器、精简指令集计算(RISC)微处理器、超长指令字(VLIW)微处理器、运行其他指令集的处理器或运行指令集的组合的处理器。处理器还可以是一个以上专用处理设备,诸如专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、片上系统(SoC)等。
在一些实施例中,所述处理器被进一步配置为:根据数据需求者的公钥对所述第一数据集进行解密,以认证数据需求者的身份;根据解密后的第一数据集的摘要与预设的摘要进行比对;在解密后的第一数据集的摘要与预设的摘要比对一致的情况下,依据发布的共享任务中的价值公告向对应数据拥有者发放报酬。
在一些实施例中,所述处理器被进一步配置为:在解密后的第一数据集的摘要与预设的摘要比对一致的情况下,对计算的感知数据质量等级和数据价值进行验证,在验证无误的情况下,依据发布的共享任务中的价值公告向对应数据拥有者发放报酬。
本发明实施例还提供一种计算机可读存储介质,其上存储有计算机可读指令,当所述计算机可读指令被计算机的处理器执行时,使计算机执行如本发明各个实施例中所述的基于区块链和逆向拍卖模型的物联网数据处理方法。
下面将详细介绍根据本发明实施例提供的基于区块链和逆向拍卖模型的物联网
数据处理方法具体实现方法。请参考图1所示,该方法主要包括三个参与者,三个参与者在
区块链上各自进行相应的操作,三个参与者是数据需求者,数据拥有者以及矿工。首先,通
过数据需求者在区块链上发布共享任务公告,数据拥有者在看到相应公告后,参与拍卖报
价。矿工根据数据拥有者给出的拍卖报价,将数据拥有者的报价从低到高排列,其中,n为参与此次共享任务
的数据拥有者总数,为数据需求者给出的当前共享任务的人数门限,选择前个数据
拥有者作为当前共享任务的候选者,选出参与拍卖的赢标候选者。并在赢标候选者中,计算
数据质量等级。具体说来,计算数据质量等级是将赢标候选者给出的拍卖报价和/或数据需
求者的共享任务公告作为感知数据,该感知数据至少包括拍卖物名称、报价等等,并按照本
发明实施例在前阐述的感知数据的质量等级计算方法来计算数据质量等级。随后,矿工根
据本发明实施例在前阐述的感知数据的价值计算方法来计算数据价值,并根据计算数据价
值选出参与拍卖的赢标者参与共享任务。矿工将感知数据转发并反馈计算结构至数据需求
者,数据需求者进行身份验证以及数据完整性验证,数据需求者验证矿工计算结果。数据需
求者在确认计算结果满意后,根据矿工计算数据价值发放报酬,最后数据拥有者获得报酬。
如图2所示,本发明实施例可以适用于逆向拍卖模式。多个卖家(数据拥有者或感知用户)面向一个买家(数据需求者)。并结合图3所示。逆向拍卖模式包括两个阶段,分别为第一阶段和第二阶段。在第一阶段,数据拥有者参与拍卖,对其所有数据进行出价,矿工数据拥有者拍卖报价排除不理性报价的数据拥有者,选出赢得此次拍卖的候选者进入第二阶段。具体来说,基于区块链,数据需求者首先发布感知任务,感知用户(参与逆向拍卖的数据拥有者)参与逆向拍卖并给出报价后成为候选者,矿工基于候选者上传的感知数据,选出赢得此次拍卖的候选者进入第二阶段。在第二阶段,候选者者将数据上传给矿工,矿工计算数据的质量等级,并根据第一阶段报价和数据质量等级计算数据价值,最后,根据数据价值选出此次拍卖的赢标者参与共享任务。具体来说,基于区块链,矿工计算感知数据的质量和价值,并反馈计算结果给数据需求者,数据需求者在确认后,发放报酬至对应的感知用户,完成一次逆向拍卖。
最后,需要说明的是,本发明实施例所述的三个参与者即数据需求者,数据拥有者和矿工,其属于物联网中的一个组成单元,具体可以是物联网的终端设备,可以是任意的可以接入物联网的设备,例如,云服务器、边缘服务器、智能手机、计算机等等。
以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。
Claims (10)
1.一种感知数据的质量等级计算方法,其特征在于,所述方法包括:
所述感知数据的质量等级表示为:
其中,h表示感知数据的质量等级计算函数,是所述回归模型的参数矩阵,代表一
个多维度工作量向量,所述多维度工作量向量的维度根据感知数据的属性值确定,代表第个工作量向量对应的等级,, j代表感知数据
的等级,是当回归模型参数为时工作向量属于j等级的概率,表示为:
4.一种基于区块链和逆向拍卖模型的物联网数据处理方法,其特征在于,所述方法包括:
接收数据需求者在区块链网络中发布的共享任务,所述共享任务至少包括任务类型、任务要求、人数门限、任务截止日期、质量公告、价值公告中的一种及其组合;
通过各个候选者的私钥计算对应感知数据的签名作为兑换报酬的凭证;
根据如权利要求3所述的方法计算得到各个候选者对应的感知数据的价值;
利用发布当前共享任务的数据需求者的公钥给感知数据和数据拥有者的签名加密后形成第一数据集,并将所述第一数据集发送至数据需求者。
5.根据权利要求1所述的方法,其特征在于,所述方法还包括:
根据数据需求者的公钥对所述第一数据集进行解密,以认证数据需求者的身份;
根据解密后的第一数据集的摘要与预设的摘要进行比对;
在解密后的第一数据集的摘要与预设的摘要比对一致的情况下,向所述数据需求者发送感知数据质量等级和数据价值。
6.根据权利要求5所述的方法,其特征在于,在解密后的第一数据集的摘要与预设的摘要比对一致的情况下之后,还包括:
在接收到感知数据质量等级和数据价值验证无误的信号的情况下,依据发布的共享任务中的价值公告向对应数据拥有者发放报酬。
7.一种基于区块链和逆向拍卖模型的物联网数据共享激励装置,其特征在于,所述装置包括处理器,所述处理器被配置为:
接收数据需求者在区块链网络中发布的共享任务,所述共享任务至少包括任务类型、任务要求、人数门限、任务截止日期、质量公告、价值公告中的一种及其组合;
通过各个候选者的私钥计算对应感知数据的签名作为兑换报酬的凭证;
根据如权利要求3所述的方法计算得到各个候选者对应的感知数据的价值;
将各个候选者对应的的感知数据的价值从高到低排序,选择在前的至少一个候选者作为赢标者参与当前共享任务;
利用发布当前共享任务的数据需求者的公钥给感知数据和数据拥有者的签名加密后形成第一数据集,并将所述第一数据集发送至数据需求者。
8.根据权利要求7所述的装置,其特征在于,所述处理器被进一步配置为:
根据数据需求者的公钥对所述第一数据集进行解密,以认证数据需求者的身份;
根据解密后的第一数据集的摘要与预设的摘要进行比对;
在解密后的第一数据集的摘要与预设的摘要比对一致的情况下,向所述数据需求者发送感知数据质量等级和数据价值。
9.根据权利要求7所述的装置,其特征在于,所述处理器被进一步配置为:
在接收到感知数据质量等级和数据价值验证无误的信号的情况下,依据发布的共享任务中的价值公告向对应数据拥有者发放报酬。
10.一种计算机可读存储介质,其特征在于,其上存储有计算机可读指令,当所述计算机可读指令被计算机的处理器执行时,使计算机执行权利要求4-6中的任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210387402.6A CN114493810B (zh) | 2022-04-14 | 2022-04-14 | 物联网数据处理方法、装置及介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210387402.6A CN114493810B (zh) | 2022-04-14 | 2022-04-14 | 物联网数据处理方法、装置及介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114493810A true CN114493810A (zh) | 2022-05-13 |
CN114493810B CN114493810B (zh) | 2022-07-05 |
Family
ID=81488513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210387402.6A Active CN114493810B (zh) | 2022-04-14 | 2022-04-14 | 物联网数据处理方法、装置及介质 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114493810B (zh) |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105184062A (zh) * | 2015-08-25 | 2015-12-23 | 中国人民解放军后勤工程学院 | 在群智感知网络中基于置信区间的用户感知质量评估方法 |
CN105426839A (zh) * | 2015-11-18 | 2016-03-23 | 清华大学 | 基于稀疏自动编码器的电力系统过电压分类方法 |
CN106161508A (zh) * | 2015-03-30 | 2016-11-23 | 赵蕴龙 | 一种参与感知系统中信息质量的动态价格激励方法 |
CN107464571A (zh) * | 2016-06-06 | 2017-12-12 | 南京邮电大学 | 一种数据质量评估的方法、设备及系统 |
WO2018099725A1 (en) * | 2016-12-02 | 2018-06-07 | Realeyes Oü | Data processing methods for predictions of media content performance |
CN108846410A (zh) * | 2018-05-02 | 2018-11-20 | 湘潭大学 | 基于稀疏自动编码深度神经网络的电能质量扰动分类方法 |
CN109993640A (zh) * | 2019-03-26 | 2019-07-09 | 清华大学深圳研究生院 | 一种基于数据质量的移动群智感知在线定价方法和系统 |
US20190236478A1 (en) * | 2018-01-29 | 2019-08-01 | Slice Technologies, Inc. | Quality of labeled training data |
US20190349254A1 (en) * | 2016-12-30 | 2019-11-14 | Intel Corporation | Service Provision To IoT Devices |
WO2019216941A1 (en) * | 2018-05-08 | 2019-11-14 | Siemens Corporation | Quality inference from living digital twins in iot-enabled manufacturing systems |
CN110677395A (zh) * | 2019-09-13 | 2020-01-10 | 西安邮电大学 | 基于安全且具备隐私保护的激励方法及实时地图更新系统 |
CN111651981A (zh) * | 2019-02-19 | 2020-09-11 | 阿里巴巴集团控股有限公司 | 数据的审核方法、装置及设备 |
CN111800477A (zh) * | 2020-06-15 | 2020-10-20 | 浙江理工大学 | 一种面向边缘计算数据质量感知的区别化激励方法 |
CN112950251A (zh) * | 2021-05-11 | 2021-06-11 | 北京航空航天大学 | 一种基于信誉的车辆群智感知节点反向组合拍卖激励优化方法 |
CN113079486A (zh) * | 2021-04-08 | 2021-07-06 | 青岛科技大学 | 基于区块链具有隐私保护特性的车联网群智感知激励方法 |
CN113360643A (zh) * | 2021-05-27 | 2021-09-07 | 重庆南鹏人工智能科技研究院有限公司 | 一种基于短文本分类的电子病历数据质量评价方法 |
WO2021216655A1 (en) * | 2020-04-22 | 2021-10-28 | Opti-Harvest, Inc. | Agricultural data integration and analysis platform |
CN114139203A (zh) * | 2021-12-03 | 2022-03-04 | 成都信息工程大学 | 基于区块链的异构身份联盟风险评估系统、方法及终端 |
US20220084095A1 (en) * | 2020-09-11 | 2022-03-17 | Beijing Wodong Tianjun Information Technology Co., Ltd. | System and method for quality assessment of product description |
-
2022
- 2022-04-14 CN CN202210387402.6A patent/CN114493810B/zh active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106161508A (zh) * | 2015-03-30 | 2016-11-23 | 赵蕴龙 | 一种参与感知系统中信息质量的动态价格激励方法 |
CN105184062A (zh) * | 2015-08-25 | 2015-12-23 | 中国人民解放军后勤工程学院 | 在群智感知网络中基于置信区间的用户感知质量评估方法 |
CN105426839A (zh) * | 2015-11-18 | 2016-03-23 | 清华大学 | 基于稀疏自动编码器的电力系统过电压分类方法 |
CN107464571A (zh) * | 2016-06-06 | 2017-12-12 | 南京邮电大学 | 一种数据质量评估的方法、设备及系统 |
WO2018099725A1 (en) * | 2016-12-02 | 2018-06-07 | Realeyes Oü | Data processing methods for predictions of media content performance |
US20190349254A1 (en) * | 2016-12-30 | 2019-11-14 | Intel Corporation | Service Provision To IoT Devices |
US20190236478A1 (en) * | 2018-01-29 | 2019-08-01 | Slice Technologies, Inc. | Quality of labeled training data |
CN108846410A (zh) * | 2018-05-02 | 2018-11-20 | 湘潭大学 | 基于稀疏自动编码深度神经网络的电能质量扰动分类方法 |
WO2019216941A1 (en) * | 2018-05-08 | 2019-11-14 | Siemens Corporation | Quality inference from living digital twins in iot-enabled manufacturing systems |
CN111651981A (zh) * | 2019-02-19 | 2020-09-11 | 阿里巴巴集团控股有限公司 | 数据的审核方法、装置及设备 |
CN109993640A (zh) * | 2019-03-26 | 2019-07-09 | 清华大学深圳研究生院 | 一种基于数据质量的移动群智感知在线定价方法和系统 |
CN110677395A (zh) * | 2019-09-13 | 2020-01-10 | 西安邮电大学 | 基于安全且具备隐私保护的激励方法及实时地图更新系统 |
WO2021216655A1 (en) * | 2020-04-22 | 2021-10-28 | Opti-Harvest, Inc. | Agricultural data integration and analysis platform |
CN111800477A (zh) * | 2020-06-15 | 2020-10-20 | 浙江理工大学 | 一种面向边缘计算数据质量感知的区别化激励方法 |
US20220084095A1 (en) * | 2020-09-11 | 2022-03-17 | Beijing Wodong Tianjun Information Technology Co., Ltd. | System and method for quality assessment of product description |
CN113079486A (zh) * | 2021-04-08 | 2021-07-06 | 青岛科技大学 | 基于区块链具有隐私保护特性的车联网群智感知激励方法 |
CN112950251A (zh) * | 2021-05-11 | 2021-06-11 | 北京航空航天大学 | 一种基于信誉的车辆群智感知节点反向组合拍卖激励优化方法 |
CN113360643A (zh) * | 2021-05-27 | 2021-09-07 | 重庆南鹏人工智能科技研究院有限公司 | 一种基于短文本分类的电子病历数据质量评价方法 |
CN114139203A (zh) * | 2021-12-03 | 2022-03-04 | 成都信息工程大学 | 基于区块链的异构身份联盟风险评估系统、方法及终端 |
Non-Patent Citations (1)
Title |
---|
D. PENG, F. WU AND G. CHEN: "《Data Quality Guided Incentive Mechanism Design for Crowdsensing》", 《IEEE TRANSACTIONS ON MOBILE COMPUTING》 * |
Also Published As
Publication number | Publication date |
---|---|
CN114493810B (zh) | 2022-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Beniiche | A study of blockchain oracles | |
US11257070B2 (en) | Computer-implemented system and method for generating and extracting user related data stored on a blockchain | |
US11551212B2 (en) | Methods and systems for management of a blockchain-based computer-enabled networked ecosystem | |
Pasdar et al. | Connect API with blockchain: A survey on blockchain oracle implementation | |
CN110192216B (zh) | 计算机实现的方法和系统 | |
Baek et al. | A technology valuation model to support technology transfer negotiations | |
Fantazzini et al. | Everything you always wanted to know about bitcoin modelling but were afraid to ask | |
CN113268760B (zh) | 一种基于区块链的分布式数据融合平台 | |
KR102533525B1 (ko) | 경쟁자 예측 기반 전자 입찰 컨설팅 시스템 | |
Zhang et al. | A framework for trust modeling in multiagent electronic marketplaces with buying advisors to consider varying seller behavior and the limiting of seller bids | |
Glebova et al. | New currencies and new values in professional sports: blockchain, NFT, and fintech through the stakeholder approach | |
CN114493810B (zh) | 物联网数据处理方法、装置及介质 | |
CN111861684B (zh) | 招标数据及流程的线上管理平台 | |
CN115358894A (zh) | 一种知识产权生命周期托管管理方法、装置、设备及介质 | |
Kamaleshwaran et al. | Digital Certification–Certification Credential as Non Fungible Token (NFT) | |
Liu et al. | Trust in ESG Reporting: The Intelligent Veri-Green Solution for Incentivized Verification | |
KR102535698B1 (ko) | 블록체인 기반 대체 불가능 토큰을 이용한 자산 관리 서비스 제공 방법 및 상기 방법을 수행하는 자산 관리 서비스 제공 시스템 | |
KR102451291B1 (ko) | 경쟁자 예측 기반 전자 입찰 컨설팅 시스템 | |
Nikitha et al. | E-auction using Blockchain Mechanism | |
Aljohani | Leveraging Blockchain for Trust Enhancement in Decentralized Marketplaces: A Reputation System Perspective | |
Kumar | TRUSTWORTHY AND EFFICIENT BLOCKCHAIN-BASED E-COMMERCE MODEL | |
Gupta et al. | Cryptocurrency Trend Analyser and Recommendation System using Deep Learning | |
KR20230121271A (ko) | 디지털 창작물 가치평가 시스템 | |
Chaudhary | Fairness in NIL-based NFT marketplace (NNM) | |
KR20230062485A (ko) | 블록체인 기반 대체 불가능 토큰을 이용한 자산 관리 서비스 제공 방법 및 상기 방법을 수행하는 자산 관리 서비스 제공 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230529 Address after: Room 12403, Unit 1, Building 1, San Diego, No. 36 Fangxin Road, Weiyang District, Xi'an City, Shaanxi Province, 710016 Patentee after: Shaanxi Bona Zhichuang Technology Co.,Ltd. Address before: 610225 24 section 1 Xuefu Road, Southwest Airport Economic Development Zone, Chengdu, Sichuan Patentee before: CHENGDU University OF INFORMATION TECHNOLOGY |