CN114493405A - 基于物流机器人运动轨迹的派单方法和系统 - Google Patents
基于物流机器人运动轨迹的派单方法和系统 Download PDFInfo
- Publication number
- CN114493405A CN114493405A CN202111574155.2A CN202111574155A CN114493405A CN 114493405 A CN114493405 A CN 114493405A CN 202111574155 A CN202111574155 A CN 202111574155A CN 114493405 A CN114493405 A CN 114493405A
- Authority
- CN
- China
- Prior art keywords
- probability
- logistics
- module
- coincidence
- new order
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000013598 vector Substances 0.000 claims description 98
- 239000011159 matrix material Substances 0.000 claims description 43
- 238000004364 calculation method Methods 0.000 claims description 18
- 238000012163 sequencing technique Methods 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 2
- 238000013480 data collection Methods 0.000 claims description 2
- 238000005457 optimization Methods 0.000 abstract description 3
- 238000007726 management method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
- G06Q10/083—Shipping
- G06Q10/0833—Tracking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06311—Scheduling, planning or task assignment for a person or group
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
- G06Q10/083—Shipping
- G06Q10/0835—Relationships between shipper or supplier and carriers
- G06Q10/08355—Routing methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
- G06Q10/083—Shipping
- G06Q10/0838—Historical data
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Marketing (AREA)
- Development Economics (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Educational Administration (AREA)
- Game Theory and Decision Science (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明涉及物流技术领域,且公开了基于物流机器人运动轨迹的派单方法和系统,采用本申请的方法能够有效的确定各个物流机器人运行轨迹之间的重合程度,并将相应的新订单根据实际配送目的地分配给对应运行轨迹内最优的物流机器人,从而实现配送轨迹和派单的优化,根据相应的算法提高派单效率;获取历史一段时间内的多个物流机器人的轨迹能够准确有效的确定不同的物流机器人的通常运行轨迹,从而进行配合。
Description
技术领域
本发明涉及物流技术领域,具体为基于物流机器人运动轨迹的派单方法和系统。
背景技术
处于安全、防疫、环境秩序维护等方面的考虑,现在越来越多的社区、园区、写字楼等区域开始封闭管理,不允许快递员、外卖员随意进入取件和送件,但是这样也给用户带来了不便。物流机器人面向不便于外卖员、快递员进入的封闭管理写字楼、园区、社区等区域,实现包裹、信件、餐饮等物品的物流配送,目前已经成为了以上问题的一个有效解决方案。通常平台通过业务接口获得快递员上传的送件订单,确定订单的位置信息,即:送件目的地位置。然后,该平台根据位置信息将订单分配给一个最优的物流机器人,物流机器人从快递交接点,即:一般位于区域的入口处,承载配送物品,然后自主规划路径,前往送件订单的目的地位置。但是,为了实现物流配送在上述派单的过程中,由于轨迹由物流机器人自主规划,平台并不知道其轨迹路线,无法准确的决定将订单分配给哪一个物流机器人,实现最优的派单分配。
发明内容
本发明主要是提供基于物流机器人运动轨迹的派单方法和系统,解决由于轨迹由物流机器人自主规划,平台并不知道其轨迹路线,无法准确的决定将订单分配给哪一个物流机器人,实现最优的派单分配的问题。
为了解决上述技术问题,本发明采用如下技术方案:
基于物流机器人运动轨迹的派单方法,包括:
获取历史一段时间内多个物流机器人的运行轨迹和物流机器人的整个服务区域,将所述物流机器人的整个服务区域分割为一定数量的区域单元,基于多个物流机器人的所述运行轨迹与一定数量的所述区域单元确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组;
获取目的地地址对应的所述空间重合概率矢量组中的相应概率矢量,并将所述概率矢量中的各个所述概率值进行由大到小依次排序,将对应所述目的地地址的新订单分配给所述概率值最大的物流机器人。
进一步,所述获取历史一段时间内多个物流机器人的运行轨迹和物流机器人的整个服务区域,将所述物流机器人的整个服务区域分割为一定数量的区域单元,基于多个物流机器人的所述运行轨迹与一定数量的所述区域单元确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量,包括:
采集多个所述物流机器人的运行轨迹,将对应地址的所有物流机器人的运行轨迹分别编号;
采集物流机器人的整个服务区域,将所述物流机器人的整个服务区域分割为一定数量的区域单元,并将一定数量的所述区域单元分别编号;
对比每个所述物流机器人的运行轨迹对所述区域单元的重合,确定每个所述运行轨迹在一定数量的所述区域单元中占用关系;
定义空间重合度系数矩阵,并基于所述占用关系对所述空间重合度系数矩阵进行赋值,基于赋值后的空间重合度系数矩阵确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组。
进一步,所述定义空间重合度系数矩阵,并基于所述占用关系对所述空间重合度系数矩阵进行赋值,基于赋值后的空间重合度系数矩阵确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组,包括:
设一个预置的重置概率,设一个预设的门限值;
定义概率矢量,基于所述重置概率、门限值和赋值后的空间重合度系数矩阵,利用预设算法对概率矢量进行迭代,生成稳定概率,基于稳定概率构建空间重合概率矢量组。
进一步,所述获取目的地地址对应的所述空间重合概率矢量组中的相应概率矢量,并将所述概率矢量中的各个所述概率值进行由大到小依次排序,将对应所述目的地地址的新订单分配给所述概率值最大的物流机器人,包括:
获取所述新订单的目的地地址,获取对应新订单的目的地地址的所述概率矢量;
基于所述概率矢量中的各个概率值进行对比,选取所述概率值最大的物流机器人,并分配该新订单。
进一步,所述将所述物流机器人的整个服务区域分割为一定数量的区域单元,采用将整个服务区域的地图分割为网格,每一个网格作为一个区域单元。
基于物流机器人运动轨迹的派单系统,包括:
空间重合概率矢量数据采集计算模块,用于获取历史一段时间内多个物流机器人的运行轨迹和物流机器人的整个服务区域,将所述物流机器人的整个服务区域分割为一定数量的区域单元,基于多个物流机器人的所述运行轨迹与一定数量的所述区域单元确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组;
新订单数据获取对比指令模块,用于将所述概率矢量中的各个所述概率值进行由大到小依次排序,以及用于将对应所述目的地地址的新订单分配给所述概率值最大的物流机器人;
物流机器人模块,用于派送订单,同时接受新订单数据获取对比指令模块分配的新订单指令并执行。
进一步,所述空间重合概率矢量数据采集计算模块,包括:
物流机器人轨迹采集模块,用于采用物流机器人的运行轨迹;
服务区域采集分割模块,用于采用物流机器人的整个服务区域,并将所述物流机器人的整个服务区域分割为一定数量的区域单元;
单元占用对比模块,用于对比每个所述物流机器人的运行轨迹对所述区域单元的重合,确定每个所述运行轨迹在一定数量的所述区域单元中占用关系;
空间重合度系数矩阵赋值计算模块,定义空间重合度系数矩阵,并基于所述占用关系对所述空间重合度系数矩阵进行赋值,基于赋值后的空间重合度系数矩阵确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组。
进一步,所述空间重合度系数矩阵赋值计算模块,包括:
阈值预设定义模块,用于设一个预置的重置概率和设一个预设的门限值;
概率矢量定义构建模块,用于配合所述阈值预设定义模块,定义概率矢量,基于所述重置概率、门限值和赋值后的空间重合度系数矩阵,利用预设算法对概率矢量进行迭代,生成稳定概率,基于稳定概率构建空间重合概率矢量组。
进一步,新订单数据获取对比指令模块,包括:
新订单获取对比子模块,用于获取所述新订单的目的地地址,获取对应新订单的目的地地址的所述概率矢量;
新订单分配模块,用于配合所述新订单获取对比子模块,基于所述概率矢量中的各个概率值进行对比,选取所述概率值最大的物流机器人,并分配该新订单。
进一步,所述物流机器人轨迹采集模块,包括:
轨迹采集传感器,用于设置于每个物流机器人上,并采用该机器人的运行轨迹并发送;
轨迹收集储存模块,用于接收所述轨迹采集传感器采集的运行轨迹并储存。
有益效果:采用本申请的方法能够有效的确定各个物流机器人运行轨迹之间的重合程度,并将相应的新订单根据实际配送目的地分配给对应运行轨迹内最优的物流机器人,从而实现配送轨迹和派单的优化,根据相应的算法提高派单效率;获取历史一段时间内的多个物流机器人的轨迹能够准确有效的确定不同的物流机器人的通常运行轨迹,从而进行配合;采用本申请的空间重合度系数矩阵和空间重合概率矢量能够有效的确定各个机器人到达一个确定的目的地的相应概率值,从而进行最优的配分;通过迭代计算,能够提高最终概率值的准确度;采用网格进行区域单元进行分割,能够良好的划分和规划相应的配送区域。
附图说明
图1为本发明的方法的步骤S101流程图;
图2为本发明的方法的步骤S1011流程图;
图3为本发明的方法的步骤S10141流程图;
图4为本发明的方法的步骤S1021流程图;
图5为本发明的系统的框图;
图6为本发明的系统中物流机器人轨迹采集模块框图。
具体实施方式
以下将结合实施例对本发明涉及的基于物流机器人运动轨迹的派单方法和系统技术方案进一步详细说明。
本实施例的基于物流机器人运动轨迹的派单方法,如图1所示包括:步骤S101~S102:
S101,获取历史一段时间内多个物流机器人的运行轨迹和物流机器人的整个服务区域,将所述物流机器人的整个服务区域分割为一定数量的区域单元,基于多个物流机器人的所述运行轨迹与一定数量的所述区域单元确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组;
S102,获取目的地地址对应的所述空间重合概率矢量组中的相应概率矢量,并将所述概率矢量中的各个所述概率值进行由大到小依次排序,将对应所述目的地地址的新订单分配给所述概率值最大的物流机器人。
本实施例中,采用本申请的方法能够有效的确定各个物流机器人运行轨迹之间的重合程度,并将相应的新订单根据实际配送目的地分配给对应运行轨迹内最优的物流机器人,从而实现配送轨迹和派单的优化,根据相应的算法提高派单效率;获取历史一段时间内的多个物流机器人的轨迹能够准确有效的确定不同的物流机器人的通常运行轨迹,从而进行配合;采用本申请的空间重合度系数矩阵和空间重合概率矢量能够有效的确定各个机器人到达一个确定的目的地的相应概率值,从而进行最优的配分。
进一步,如图2所示,上述步骤S101中所述获取历史一段时间内多个物流机器人的运行轨迹和物流机器人的整个服务区域,将所述物流机器人的整个服务区域分割为一定数量的区域单元,基于多个物流机器人的所述运行轨迹与一定数量的所述区域单元确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量,包括:
S1011,采集多个所述物流机器人的运行轨迹,将对应地址的所有物流机器人的运行轨迹分别编号;
并获取运行轨迹集合为:
S={S1,S2,…Si…Sj…Sn} (1)
式(1)中,Si表示物流机器人面向目的地位置i执行配送所形成的轨迹;在历史时期内,如果有多个物流机器人都面向目的地位置i配送并形成多个轨迹,可以按照预定的规则来形成该Si,例如:把其中形成时间最新的轨迹作为Si,或者把数量最多的物流机器人所采用的轨迹作为该Si;例如S1表示物流机器人面向目的地位置1执行配送所形成的轨迹,其他同理。
S1012,采集物流机器人的整个服务区域,将所述物流机器人的整个服务区域分割为一定数量的区域单元,并将一定数量的所述区域单元分别编号;
并获取区域单元集合为:
R={R1,R2,…Rm} (2)
其中,R1表示编号为1的区域单元,其他类似;
S1013,对比每个所述物流机器人的运行轨迹对所述区域单元的重合,确定每个所述运行轨迹在一定数量的所述区域单元中占用关系;
即轨迹集合中的运行轨迹S={S1,S2,…Si…Sj…Sn}与各个区域单元R={R1,R2,…Rm}的占用关系,即如果轨迹途经区域单元,则认为该轨迹占用该区域单元;
S1014,定义空间重合度系数矩阵,并基于所述占用关系对所述空间重合度系数矩阵进行赋值,基于赋值后的空间重合度系数矩阵确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组。
其中,空间重合度系数矩阵为:
式(3)中,矩阵的元素wij(i,j∈[1,2…n])表示轨迹Si和Sj之间重合于相同的区域单元的程度的系数;
该系数为:
式(4)中,ci为在空间单元R={R1,R2,…Rm}中被轨迹Si占用的空间单元的集合,cj为在空间单元R={R1,R2,…Rm}中被轨迹Sj占用的空间单元的集合,ci∩cj为二者的交集,ci∪cj为二者的并集,NUM(*)表示集合中空间单元的总数量。
本实施例,通过迭代计算,能够提高最终概率值的准确度。
进一步,如图3所示,上述步骤S1014中所述定义空间重合度系数矩阵,并基于所述占用关系对所述空间重合度系数矩阵进行赋值,基于赋值后的空间重合度系数矩阵确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组,包括:
S10141,设一个预置的重置概率,设一个预设的门限值;
S10142,定义概率矢量,基于所述重置概率、门限值和赋值后的空间重合度系数矩阵,利用预设算法对概率矢量进行迭代,生成稳定概率,基于稳定概率构建空间重合概率矢量组。
空间重合概率矢量组为:
P={P1、P2...Pi…Pj…Pn} (5)
式(5)中,矢量Pi是一个n*1维的概率矢量;
式(6)中,pij表示轨迹Si与轨迹Sj空间重合的概率;
概率矢量Pi式(6)中,pi1…pin为各个概率值。
对概率矢量Pi的迭代采用如下方式:
式(7)中,为矢量Pi的初始赋值,该矢量的每个元素初始赋值为1/n,为一个预置的重置概率;和分别表示矢量Pi在第l轮迭代和第l+1轮迭代的取值;经过一定轮次的迭代,能够进入一个稳定状态,即和的取值差小于预设的门限值;对于稳定后的矢量Pi,即可以表示目的地位置为i轨迹Si与其它轨迹的重合概率。
进一步,如图4所示,上述步骤S102中所述获取目的地地址对应的所述空间重合概率矢量组中的相应概率矢量,并将所述概率矢量中的各个所述概率值进行由大到小依次排序,将对应所述目的地地址的新订单分配给所述概率值最大的物流机器人,包括:
S1021,获取所述新订单的目的地地址,获取对应新订单的目的地地址的所述概率矢量;
S1022,基于所述概率矢量中的各个概率值进行对比,选取所述概率值最大的物流机器人,并分配该新订单。
例如,待分配的新订单的目的地地址为i,则获取对应该目的地地址i的矢量Pi,该矢量表示目的地位置为i轨迹Si与其它目的地地址对应轨迹的重合概率,对于该矢量中的pi1、pi2…直至pin,按照各个概率值的大小进行排序;进而,对于所有目前已经分配了配送订单的物流机器人,按照其已分配订单的目的地地址所对应的轨迹,确定新订单目的地位置i对应的轨迹Si与其已分配订单的目的地地址所对应的轨迹之间的概率值在上述pi1、pi2…pin排序中的序位,从而确定该排序中概率值最大的物流机器人,并将新订单分配给该物流机器人。
进一步,所述将所述物流机器人的整个服务区域分割为一定数量的区域单元,采用将整个服务区域的地图分割为网格,每一个网格作为一个区域单元。
本实施例,采用网格进行区域单元进行分割,能够良好的划分和规划相应的配送区域。
如图5所示,基于物流机器人运动轨迹的派单系统,包括:
空间重合概率矢量数据采集计算模块51,用于获取历史一段时间内多个物流机器人的运行轨迹和物流机器人的整个服务区域,将所述物流机器人的整个服务区域分割为一定数量的区域单元,基于多个物流机器人的所述运行轨迹与一定数量的所述区域单元确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组;
新订单数据获取对比指令模块52,用于将所述概率矢量中的各个所述概率值进行由大到小依次排序,以及用于将对应所述目的地地址的新订单分配给所述概率值最大的物流机器人;
物流机器人模块53,用于派送订单,同时接受新订单数据获取对比指令模块分配的新订单指令并执行。
进一步,所述空间重合概率矢量数据采集计算模块51,包括:
物流机器人轨迹采集模块511,用于采用物流机器人的运行轨迹;
服务区域采集分割模块512,用于采用物流机器人的整个服务区域,并将所述物流机器人的整个服务区域分割为一定数量的区域单元;
单元占用对比模块513,用于对比每个所述物流机器人的运行轨迹对所述区域单元的重合,确定每个所述运行轨迹在一定数量的所述区域单元中占用关系;
空间重合度系数矩阵赋值计算模块514,定义空间重合度系数矩阵,并基于所述占用关系对所述空间重合度系数矩阵进行赋值,基于赋值后的空间重合度系数矩阵确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组。
进一步,所述空间重合度系数矩阵赋值计算模块514,包括:
阈值预设定义模块5141,用于设一个预置的重置概率和设一个预设的门限值;
概率矢量定义构建模块5142,用于配合所述阈值预设定义模块,定义概率矢量,基于所述重置概率、门限值和赋值后的空间重合度系数矩阵,利用预设算法对概率矢量进行迭代,生成稳定概率,基于稳定概率构建空间重合概率矢量组。
进一步,新订单数据获取对比指令模块52,包括:
新订单获取对比子模块521,用于获取所述新订单的目的地地址,获取对应新订单的目的地地址的所述概率矢量;
新订单分配模块522,用于配合所述新订单获取对比子模块,基于所述概率矢量中的各个概率值进行对比,选取所述概率值最大的物流机器人,并分配该新订单。
进一步,如图6所示,所述物流机器人轨迹采集模块511,包括:
轨迹采集传感器5111,用于设置于每个物流机器人上,并采用该机器人的运行轨迹并发送;
轨迹收集储存模块5112,用于接收所述轨迹采集传感器采集的运行轨迹并储存。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (10)
1.基于物流机器人运动轨迹的派单方法,其特征在于,包括:
获取历史一段时间内多个物流机器人的运行轨迹和物流机器人的整个服务区域,将所述物流机器人的整个服务区域分割为一定数量的区域单元,基于多个物流机器人的所述运行轨迹与一定数量的所述区域单元确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组;
获取目的地地址对应的所述空间重合概率矢量组中的相应概率矢量,并将所述概率矢量中的各个所述概率值进行由大到小依次排序,将对应所述目的地地址的新订单分配给所述概率值最大的物流机器人。
2.根据权利要求1所述的派单方法,其特征在于,所述获取历史一段时间内多个物流机器人的运行轨迹和物流机器人的整个服务区域,将所述物流机器人的整个服务区域分割为一定数量的区域单元,基于多个物流机器人的所述运行轨迹与一定数量的所述区域单元确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量,包括:
采集多个所述物流机器人的运行轨迹,将对应地址的所有物流机器人的运行轨迹分别编号;
采集物流机器人的整个服务区域,将所述物流机器人的整个服务区域分割为一定数量的区域单元,并将一定数量的所述区域单元分别编号;
对比每个所述物流机器人的运行轨迹对所述区域单元的重合,确定每个所述运行轨迹在一定数量的所述区域单元中占用关系;
定义空间重合度系数矩阵,并基于所述占用关系对所述空间重合度系数矩阵进行赋值,基于赋值后的空间重合度系数矩阵确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组。
3.根据权利要求2所述的派单方法,其特征在于,所述定义空间重合度系数矩阵,并基于所述占用关系对所述空间重合度系数矩阵进行赋值,基于赋值后的空间重合度系数矩阵确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组,包括:
设一个预置的重置概率,设一个预设的门限值;
定义概率矢量,基于所述重置概率、门限值和赋值后的空间重合度系数矩阵,利用预设算法对概率矢量进行迭代,生成稳定概率,基于稳定概率构建空间重合概率矢量组。
4.根据权利要求2所述的派单方法,其特征在于,所述获取目的地地址对应的所述空间重合概率矢量组中的相应概率矢量,并将所述概率矢量中的各个所述概率值进行由大到小依次排序,将对应所述目的地地址的新订单分配给所述概率值最大的物流机器人,包括:
获取所述新订单的目的地地址,获取对应新订单的目的地地址的所述概率矢量;
基于所述概率矢量中的各个概率值进行对比,选取所述概率值最大的物流机器人,并分配该新订单。
5.根据权利要求1所述的派单方法,其特征在于:所述将所述物流机器人的整个服务区域分割为一定数量的区域单元,采用将整个服务区域的地图分割为网格,每一个网格作为一个区域单元。
6.基于物流机器人运动轨迹的派单系统,其特征在于,包括:
空间重合概率矢量数据采集计算模块,用于获取历史一段时间内多个物流机器人的运行轨迹和物流机器人的整个服务区域,将所述物流机器人的整个服务区域分割为一定数量的区域单元,基于多个物流机器人的所述运行轨迹与一定数量的所述区域单元确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组;
新订单数据获取对比指令模块,用于将所述概率矢量中的各个所述概率值进行由大到小依次排序,以及用于将对应所述目的地地址的新订单分配给所述概率值最大的物流机器人;
物流机器人模块,用于派送订单,同时接受新订单数据获取对比指令模块分配的新订单指令并执行。
7.根据权利要求6所述的派单系统,其特征在于,所述空间重合概率矢量数据采集计算模块,包括:
物流机器人轨迹采集模块,用于采用物流机器人的运行轨迹;
服务区域采集分割模块,用于采用物流机器人的整个服务区域,并将所述物流机器人的整个服务区域分割为一定数量的区域单元;
单元占用对比模块,用于对比每个所述物流机器人的运行轨迹对所述区域单元的重合,确定每个所述运行轨迹在一定数量的所述区域单元中占用关系;
空间重合度系数矩阵赋值计算模块,定义空间重合度系数矩阵,并基于所述占用关系对所述空间重合度系数矩阵进行赋值,基于赋值后的空间重合度系数矩阵确定运行轨迹与运行轨迹之间的重合程度,并根据所述重合程度获取空间重合概率矢量组。
8.根据权利要求7所述的派单系统,其特征在于,所述空间重合度系数矩阵赋值计算模块,包括:
阈值预设定义模块,用于设一个预置的重置概率和设一个预设的门限值;
概率矢量定义构建模块,用于配合所述阈值预设定义模块,定义概率矢量,基于所述重置概率、门限值和赋值后的空间重合度系数矩阵,利用预设算法对概率矢量进行迭代,生成稳定概率,基于稳定概率构建空间重合概率矢量组。
9.根据权利要求6所述的派单系统,其特征在于,新订单数据获取对比指令模块,包括:
新订单获取对比子模块,用于获取所述新订单的目的地地址,获取对应新订单的目的地地址的所述概率矢量;
新订单分配模块,用于配合所述新订单获取对比子模块,基于所述概率矢量中的各个概率值进行对比,选取所述概率值最大的物流机器人,并分配该新订单。
10.根据权利要求7所述的派单系统,其特征在于,所述物流机器人轨迹采集模块,包括:
轨迹采集传感器,用于设置于每个物流机器人上,并采用该机器人的运行轨迹并发送;
轨迹收集储存模块,用于接收所述轨迹采集传感器采集的运行轨迹并储存。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111574155.2A CN114493405B (zh) | 2021-12-21 | 2021-12-21 | 基于物流机器人运动轨迹的派单方法和系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111574155.2A CN114493405B (zh) | 2021-12-21 | 2021-12-21 | 基于物流机器人运动轨迹的派单方法和系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114493405A true CN114493405A (zh) | 2022-05-13 |
CN114493405B CN114493405B (zh) | 2024-04-09 |
Family
ID=81493847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111574155.2A Active CN114493405B (zh) | 2021-12-21 | 2021-12-21 | 基于物流机器人运动轨迹的派单方法和系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114493405B (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105677780A (zh) * | 2014-12-31 | 2016-06-15 | Tcl集团股份有限公司 | 可拓展的用户意图挖掘方法及其系统 |
US20170061368A1 (en) * | 2015-09-02 | 2017-03-02 | Alibaba Group Holding Limited | Method and apparatus for processing logistics path information |
CN108681845A (zh) * | 2018-08-13 | 2018-10-19 | 叶苑庭 | 一种基于大数据的智慧物流派单管理系统 |
CN109920535A (zh) * | 2019-02-28 | 2019-06-21 | 彭明德 | 一种移动中医辨证分析方法及装置 |
US20200302382A1 (en) * | 2017-09-30 | 2020-09-24 | Beijing Jingdong Shangke Information Technology Co., Ltd. | Logistics method and system, aircraft, delivery robot, dispatch platform, and handover method |
CN111861620A (zh) * | 2019-12-18 | 2020-10-30 | 北京嘀嘀无限科技发展有限公司 | 一种订单处理方法和系统 |
CN112904842A (zh) * | 2021-01-13 | 2021-06-04 | 中南大学 | 一种基于代价势场的移动机器人路径规划与优化方法 |
CN113554387A (zh) * | 2021-06-28 | 2021-10-26 | 杭州拼便宜网络科技有限公司 | 基于司机偏好的电商物流订单分配方法、装置、设备及存储介质 |
-
2021
- 2021-12-21 CN CN202111574155.2A patent/CN114493405B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105677780A (zh) * | 2014-12-31 | 2016-06-15 | Tcl集团股份有限公司 | 可拓展的用户意图挖掘方法及其系统 |
US20170061368A1 (en) * | 2015-09-02 | 2017-03-02 | Alibaba Group Holding Limited | Method and apparatus for processing logistics path information |
US20200302382A1 (en) * | 2017-09-30 | 2020-09-24 | Beijing Jingdong Shangke Information Technology Co., Ltd. | Logistics method and system, aircraft, delivery robot, dispatch platform, and handover method |
CN108681845A (zh) * | 2018-08-13 | 2018-10-19 | 叶苑庭 | 一种基于大数据的智慧物流派单管理系统 |
CN109920535A (zh) * | 2019-02-28 | 2019-06-21 | 彭明德 | 一种移动中医辨证分析方法及装置 |
CN111861620A (zh) * | 2019-12-18 | 2020-10-30 | 北京嘀嘀无限科技发展有限公司 | 一种订单处理方法和系统 |
CN112904842A (zh) * | 2021-01-13 | 2021-06-04 | 中南大学 | 一种基于代价势场的移动机器人路径规划与优化方法 |
CN113554387A (zh) * | 2021-06-28 | 2021-10-26 | 杭州拼便宜网络科技有限公司 | 基于司机偏好的电商物流订单分配方法、装置、设备及存储介质 |
Non-Patent Citations (5)
Title |
---|
WEI ZHU 等: "A Path-Integral-Based Reinforcement Learning Algorithm for Path Following of an Autoassembly Mobile Robot", 《IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS》, vol. 31, no. 11, 24 December 2019 (2019-12-24), pages 4487 - 4499, XP011818378, DOI: 10.1109/TNNLS.2019.2955699 * |
XIN DENG 等: "Multi-obstacle path planning and optimization for mobile robot", 《EXPERT SYSTEMS WITH APPLICATIONS》, vol. 183, 23 June 2021 (2021-06-23), pages 1 - 16, XP086757296, DOI: 10.1016/j.eswa.2021.115445 * |
张伟 等: "基于仿生算法的灾后救援路径选择", 《辽宁工程技术大学学报(自然科学版)》, vol. 36, no. 6, 30 June 2017 (2017-06-30), pages 651 - 656 * |
朱淑芳: "有限线性时态逻辑程序综合的理论与算法研究", 《中国博士学位论文全文数据库 信息科技辑》, no. 6, 15 June 2020 (2020-06-15), pages 138 - 2 * |
高梦妮: "电商物流智能搬运机器人路径规划研究", 《商讯》, no. 27, 25 September 2019 (2019-09-25), pages 107 - 109 * |
Also Published As
Publication number | Publication date |
---|---|
CN114493405B (zh) | 2024-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108469786B (zh) | 大规模智能仓储分布式拣选系统 | |
CN110084545B (zh) | 基于混合整数规划模型的多巷道自动化立体仓库的集成调度方法 | |
CN111862579A (zh) | 一种基于深度强化学习的出租车调度方法及系统 | |
Lee | A storage assignment policy in a man-on-board automated storage/retrieval system | |
Kim et al. | Item assignment problem in a robotic mobile fulfillment system | |
Chien et al. | A novel route selection and resource allocation approach to improve the efficiency of manual material handling system in 200-mm wafer fabs for industry 3.5 | |
CN107036618A (zh) | 一种基于最短路径深度优化算法的agv路径规划方法 | |
CN110288232B (zh) | 订单调度方法及装置 | |
CN104464344B (zh) | 一种车辆行驶路径预测方法及系统 | |
Zhou et al. | Information-based allocation strategy for grid-based transshipment automated container terminal | |
CN110674978A (zh) | 一种车间无人运输系统任务分配与路径规划方法 | |
CN116523221A (zh) | 一种智能仓储拣选任务的优化调度方法及系统 | |
Daganzo et al. | On planning and design of logistics systems for uncertain environments | |
Hani et al. | Simulation based optimization of a train maintenance facility | |
Zhen et al. | How to deploy robotic mobile fulfillment systems | |
Li et al. | Optimal online dispatch for high-capacity shared autonomous mobility-on-demand systems | |
CN112819394B (zh) | 运单处理方法、装置、计算机可读存储介质及电子设备 | |
CN114493405A (zh) | 基于物流机器人运动轨迹的派单方法和系统 | |
Jawahar et al. | Optimal random storage allocation for an AS/RS in an FMS | |
Manda et al. | Recent advances in the design and analysis of material handling systems | |
CN116680588A (zh) | 基于改进Agent的终端区扇区划设方法、装置、设备和介质 | |
CN116679636A (zh) | 一种物流搬运机器人任务调度系统及方法 | |
CN115330038A (zh) | 一种集装箱码头装卸设备协同优化调度方法 | |
Elsaid et al. | Optimal placement of drone delivery stations and demand allocation using bio-inspired algorithms | |
Sabattini et al. | Hierarchical coordination strategy for multi-AGV systems based on dynamic geodesic environment partitioning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |