CN114484556A - 一种基于目标能耗管控的供水温度调控方法 - Google Patents

一种基于目标能耗管控的供水温度调控方法 Download PDF

Info

Publication number
CN114484556A
CN114484556A CN202210075255.9A CN202210075255A CN114484556A CN 114484556 A CN114484556 A CN 114484556A CN 202210075255 A CN202210075255 A CN 202210075255A CN 114484556 A CN114484556 A CN 114484556A
Authority
CN
China
Prior art keywords
water supply
supply temperature
temperature
target
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210075255.9A
Other languages
English (en)
Other versions
CN114484556B (zh
Inventor
杨俊红
王泽宇
刘德朝
马睿杰
崔棉善
崔旭阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gewu Intelligent Control Tianjin Energy Technology Co ltd
Tianjin University
Original Assignee
Gewu Intelligent Control Tianjin Energy Technology Co ltd
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gewu Intelligent Control Tianjin Energy Technology Co ltd, Tianjin University filed Critical Gewu Intelligent Control Tianjin Energy Technology Co ltd
Priority to CN202210075255.9A priority Critical patent/CN114484556B/zh
Publication of CN114484556A publication Critical patent/CN114484556A/zh
Application granted granted Critical
Publication of CN114484556B publication Critical patent/CN114484556B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/02Hot-water central heating systems with forced circulation, e.g. by pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1048Counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/1058Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system disposition of pipes and pipe connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2462Approximate or statistical queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computing Systems (AREA)
  • Development Economics (AREA)
  • Medical Informatics (AREA)
  • Game Theory and Decision Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Artificial Intelligence (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Computational Linguistics (AREA)
  • Fuzzy Systems (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Temperature (AREA)

Abstract

本发明涉及一种基于目标能耗管控的供水温度调控方法,结合具体场景,根据热网历史数据对模型参数进行标定,并在运行过程中进行周期性校准和动态修正。本发明提出的基于目标能耗管控的供水温度调控方法,基于目标负荷和实际系统的流量约束,确定供水温度,且具有自学习、自适应、自趋优能力,有利于实现双碳目标背景下“按需供热”的目标能耗精准管控。

Description

一种基于目标能耗管控的供水温度调控方法
技术领域
本发明属于集中供热技术领域,涉及集中供热系统的运行调节,特别涉及一种基于目标能耗管控的供水温度调控方法。
背景技术
在我国的北方地区,集中供热是最常见的供热形式。“按需供热”是保证用户热需求,同时实现显著节能减排的基本路径。集中供热由于存在较大的系统热惯性、建筑热惰性,以及用户用热模式的时变性,导致系统瞬态调节响应能力有限,实际的供热过程均存在不同程度的供需不匹配及能源浪费。
近年来,随着物联网技术的应用、自控技术的发展,集中供热系统的自动化、信息化、智能化水平得到普遍提升。集中供热系统负荷预测的精度越来越高,能够根据气象因素和用户实际需要及其时变性,给出足够小偏差范围内的需求负荷预报,为实现“按需供热”的精细管控提供了可能。
集中供热运行调节的主要目的是使供热系统在满足用户热需求的前提下,避免过度供热引起的能源浪费。很多学者对集中供热系统的运行调节做了相应的研究工作。具体运行调节方式基本可以分为以下三类,即只改变系统流量的量调节、只改变供水温度的质调节、分阶段流量调节基础上的质调节。
集中供热系统能源站热源侧的运行调节对于保证能源站主要设备如锅炉、水泵的安全和高效运行,满足用户热需求同时,双碳背景下最大程度的避免过度供热和节能减排,实现按需供热的目标能耗精细管控,具有重要的意义。
能源站热源侧的负荷相对比较大,供暖用户数量多,且整个供暖期间负荷波动较大,其运行调节通常采用分阶段流量调节基础上的质调节。实际供热过程中,为了保证所有用户的水力循环,通常有最低的流量约束。因此,基于目标负荷与流量约束条件下,通过供水温度的精准控制达成按需供热的目标能耗管控,对于实现双碳目标背景下建筑领域的清洁高效供热具有重要的意义。
关于集中供热系统的运行调节,很多研究表明,集中供热系统的运行调节策略与建筑的设计热负荷指标没有直接关系,集中供热实际参数与设计参数之间存在很大差异。因此,集中供热系统的实际运行调节方案与理论运行调节方案不同,需要依据实际参数来制定集中供热系统的运行调节方案。
集中供热系统的实际运行中,传统的实际操作大都是依据历史运行经验主要根据未来室外气温的变化来确定,如普遍采用的气候补偿器。这种调节的假设前提是,热网历史经验能够很好地满足用户热需求,且不存在过度供热。实际上,由于存在系统惯性、建筑热惰性、用户实际需求的时变性,以及建筑内部人员行为、室外气温外其他气象因素等的各种不确性热扰,未来的负荷需求及系统的响应均与历史经验存在较大偏差。
关于供水温度的设定方法,很多学者做了相应的研究工作。目前,现有技术中采用的方法归为两类,一是,联合热负荷预测模型确定供水温度;二是,依赖系统短期样本得出的系统供水温度预报。前者不同环节模型的准确性及泛化性相互关联,前序模块的参数设定与实际过程的微小偏差,都会传递到后续模块。后者依赖短期样本得出的系统供水温度预报,受系统临时参数变的影响大,无法做出对其长期趋势的控制。
且很多研究表明,“小流量、大温差”是集中供热的经济运行模式,一定程度上说明供回水温差代表了系统的运行水平。这种模式更多适用于规模相对较小,且可以不考虑最低流量约束的管控单元,如末端。集中供热的实际运行调节中,为了保证所有用户的水力循环,通常有最低的流量约束。
综上,本发明针对集中供热系统运行调节,直接从目标负荷及可控参数的角度出发,基于模型控制的思想与热工学的基本原理,提出一种简易可行的供水温度模型与调控方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于目标能耗管控的供水温度调控方法,通过供水温度调节,达成对目标能耗的精细管控,可有效避免能源中心热源侧超供的情况,结合不同控制单元的调节,尽可能时间尺度、空间尺度足够小的实现分时分温分区“按需供热”,并能减少排放和输送管网热能损失,提升热源侧对能源的利用效率。
本发明解决其技术问题是通过以下技术方案实现的:
一种基于目标能耗管控的供水温度调控方法,其特征在于:所述调控方法应用的供热系统包括锅炉及锅炉上连接的供水管、回水管,所述供水管上依次连接有温度传感器及流量计,所述回水管上依次连接有温度传感器及水泵,所述温度传感器及流量计均连接至热量表,所述热量表连接至控制器,所述控制器连接至通讯模块,所述通讯模块无线连接至外部监控平台;
所述调控方法的步骤为:
1)读取数据库,根据实际热网运行历史数据筛选信息完整的有效样本,获得时间尺度一致的参数信息,包括供水温度t、流量G及热负荷Q;
2)根据实际热网运行历史数据,采用多元回归或机器语言确定供水温度函数,并对供水温度函数的具体形式及参数进行标定,供水温度函数如下:
Figure BDA0003483671140000031
其中:t为供水温度(℃);
Q为负荷(MW·h);
G为流量(m3);
Q/G为负荷与流量的比值,表示供回水温差;
3)将供热系统实际的流量G及热负荷Q输入步骤2)标定的供水温度函数中,得到供水温度计算值,并与实际值比较进行校验;
4)在运行过程中,设置允许的最大偏差,从供热第二周开始,考虑样本更新加入后的周期性校准及动态修正,对供水温度计算值进行动态修正,得到供水温度目标值。
本发明的优点和有益效果为:
1、本发明基于目标能耗管控的供水温度调控方法,将供水温度仅作为符合与流量的函数,并考虑了表征系统运行水平的供回水温差,结合具体场景,根据热网历史数据对模型参数进行标定,并在运行过程中进行周期性校准和动态修正,基于目标负荷与流量约束条件下,通过供水温度的精准控制达成按需供热的目标能耗管控,对于实现双碳目标背景下建筑领域的清洁高效供热具有重要的意义。
2、本发明基于目标能耗管控的供水温度调控方法,基于目标负荷和实际系统的流量约束,确定供水温度,且具有自学习、自适应、自趋优能力,有利于实现“按需供热”的目标能耗精准管控。
3、本发明基于目标能耗管控的供水温度调控方法,特别适用于能源中心热源侧,供热系统实际运行流量约束条件下,通过供水温度调节,达成对目标能耗的精细管控,可有效避免能源中心热源侧超供的情况,结合不同控制单元的调节,可实现时间尺度空间尺度足够小的分时分温分区“按需供热”,并能减少排放和输送管网热能损失,提升热源侧对能源的利用效率,有利于系统的高效运行,满足用户热需求同时,显著节能减排,对于实现双碳目标背景下建筑领域清洁高效供热具有重要意义。
4、本发明基于目标能耗管控的供水温度调控方法,直接从目标负荷及可控参数的角度出发,尽可能简化,将供水温度作为负荷与流量的函数,并引入表征系统运行水平的重要参数供回水温差,供回水温差可以表述为负荷与流量的比值,仅涉及管控单元的负荷、流量、供水温度三个物理量,很容易实行。
5、本发明基于目标能耗管控的供水温度调控方法,从目标负荷及可控参数的角度出发,有利于系统的高效运行,实现双碳目标背景下建筑领域清洁高效供热的目标能耗管控。
6、本发明基于目标能耗管控的供水温度调控方法,基于模型控制的思想与基本的传热方程,并根据具体场景实际热网历史数据进行校准,具有很好的外推性和系统适用性,可以忽略临时参数变化并建立其对长期趋势的控制,以利安排主要设备如锅炉、水泵的运行。
7、本发明基于目标能耗管控的供水温度调控方法,在实际运行调节过程中,考虑了系统临时参数变化、人员行为等不确定性热扰,对模型进行周期性校准,并对预测水温进行动态修正,具有主动抗扰、自学习、自适应、自趋优的能力,有利于实现双碳目标背景下“按需供热”的目标能耗精准管控。
8、本发明基于目标能耗管控的供水温度调控方法,特别适用于能源中心热源侧,基于目标负荷和供热系统实际运行的流量约束,预测供水温度。通过供水温度的主动调节,达成对目标能耗的精细管控,可有效避免能源中心热源侧超供的情况,并减少排放和输送管网热能损失,节能效果显著。
9、本发明基于目标能耗管控的供水温度调控方法,同样适用于不同层级控制单元的目标能耗管控调节,基于供水温度的主动调节,实现时间尺度空间尺度足够小的分时分温分区“按需供热”,满足用户热需求同时,显著节能减排。
10、本发明基于目标能耗管控的供水温度调控方法,易于实施,使用范围广泛,可操作性强,成本可控。所需要的参数(负荷、流量和历史供水温度)在供热系统中容易获得,供热管网不需大规模改动,不涉及土木等改造。
附图说明
图1为本发明供热系统管网示意图;
图2为本发明供热系统能源中心示意图;
图3为本发明基于供水温度调节的目标能耗精准管控技术路线图;
图4为本发明供水温度模型框图;
图5为本发明供水温度目标值的动态修订流程示意图;
图6a为本发明实施例2021年11月22日至12月5日负荷偏差与供水温度偏差的相关性示意图,图6b为本发明实施例2021年12月6日至12月12日的供水温度曲线图;
图7为本发明实施例供热系统示意图;
图8为本发明实施例2020-2021供暖季(135天)供水温度模拟值与实际值曲线图;
图9为本发明实施例2020-2021供暖季(135天)供水温度模拟值与实际值的偏差曲线图;
图10为本发明实施例2021-2022供暖季(45天)供水温度计算值与实际值的曲线图;
图11为本发明实施例2021-2022供暖季(45天)供水温度计算值与实际值的偏差曲线图;
图12为本发明实施例2021-2022供暖季(45天)目标日负荷曲线图;
图13为本发明实施例实际瞬时流量曲线图(45天);
图14为本发明实施例2020-2021供暖季(139天)实际瞬时流量曲线图;
图15为本发明实施例实施前的传统供水温度调节曲线图;
图16为本发明实施例供水温度目标值与实际值(45天)的曲线图;
图17为本发明实施例供水温度实际值与目标值1的差值曲线图;
图18为本发明实施例两个供暖季同期的实际负荷与目标负荷曲线图;
图19为本发明实施例供水温度实际值与模型值(目标值)的曲线图;
图20为本发明实施例2021-2022能耗与上年度同期比较的示意图;
图21为本发明实施例2021-2022能耗与上年度同期比较节约率的示意图;
图22为本发明实施例实际能耗与目标值比较的示意图。
附图标记说明
1-锅炉,2-水泵,3-热量表,4-电控调节阀、5-温度传感器、6-流量计、7-控制器、8-通讯模块。
具体实施方式
下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
本发明提供一种基于目标能耗管控的供水温度调控方法,将该方法应用于图7 所示的天津某高校某能源站的集中供热系统。
该能源中心供热面积240538m2,4台燃气锅炉直供19栋独立建筑,包括科研办公楼、学生宿舍、教学楼、食堂等多种类型的众多用户。
该供热系统包括锅炉1及锅炉上连接的供水管、回水管,所述供水管上依次连接有温度传感器5及流量计6,所述回水管上依次连接有温度传感器及水泵2,所述温度传感器及流量计均连接至热量表3,所述热量表连接至控制器7,所述控制器连接至通讯模块8,所述通讯模块无线连接至外部监控平台,如图2所示。
如图1所示为供热系统管网示意图,锅炉的供水管上连接热量表并与供热对象连接,所述供热对象通过电控调节阀与回水管连接,锅炉的回水管上连接水泵并与供热对象连接,所述供热对象通过电控调节阀与供水管连接,所述供热对象内均设置有热量表3,热量表的数据由管控平台监测。
结合图3、图4,将本发明提出的一种基于目标能耗管控的供水温度调控方法,应用于图5所示的天津某高校某能源站的集中供热系统,具体包括以下步骤:
1)从数据库获取热网运行的历史信息,包括2020-2021供暖季和2021-2022供暖季的实际运行参数,包括流量G、供热负荷Q和供水温度t,采集频率6min,筛选参数信息完整的有效样本,数据处理,获得时间尺度一致的参数信息,包括日平均供水温度t(℃)、逐日流量G(m3)、逐日负荷Q(MW·h);
2)根据2020-2021供暖季的历史运行数据,采用回归分析,确定供水温度模型的的具体函数形式,并对模型参数进行标定,供水温度模型的函数为:
Figure BDA0003483671140000071
3)根据2021-2022供暖季的历史运行数据,将实际流量与实际负荷输入上述标定好的供水温度模型,得到供水温度计算值,并与实际值比较,进行模型校验,需要说明下,设置允许的最大偏差,从供暖第二周开始,考虑样本更新加入后模型的周期性校准及动态修正;
4)针对2021-2022供暖季,基于外围模块确定满足用户需求的目标负荷和系统的流量约束,输入动态校准的供水温度模型,得到未来一周相应目标负荷的供水温度计算值,并加入动态修正,得出供水温度目标值。
图5为供水温度目标值的动态修订流程示意图。供水温度模块获取未来时刻的目标水温值,充分考虑系统惯性、建筑热惰性、人员行为及临时参数变化等不确性,基于热网实际历史数据挖掘滚动预测确定扰动时长及待预测时刻的模型水温偏差的估算值,并对未来时刻模型水温进行修订,得到待预测时刻的目标水温输出给控制对象。
目标供水温度的动态修订具体实施步骤为:
1、供水温度模块获取时间序列待预测未来时刻的模型水温及待预测时刻前7-14个时刻的目标负荷和目标供水温度,进入目标水温动态修订模块;
2、从数据采集模块(温度传感器、流量计、热量表)获取待预测时刻前7-21个时刻的实际负荷、实际供水温度,计算与上述目标负荷与目标供水温度的偏差;
3、分析上述待预测时刻时间前7-21个时刻的负荷偏差与供水温偏差相关性分析:基于输入序列的时间顺序对整个(所有统计样本)输入进行滚动预测,采用回归分析和神经网络等机器语言迭代寻优,设定负荷偏差控制值,确定扰动时长及待预测时刻模型水温偏差的估算值,并进行模型校验,本实施例中,采用统计样本时间序列的前 70%训练,依次10%验证、20%测试;
设置一个滑动窗口,根据指定的单位长度(7-21)来框住时间序列,选取不同时间步长的输入样本作为相应时间序列输入到数据驱动算法,输入样本在时间轴上逐步向前滑动预测得到下一个时间步长的模型水温偏差估算值,计算输入样本与预测的值的相关系数r,最大相关系数对应的时间步长即为该系统供水温度的周期性扰动时长,即预测未来时刻模型水温偏差需要输入滚动数据的长度;
4、针对待预测时刻利用上述确定的待预测时刻模型水温偏差的估算值,将上述未来时刻模型水温进行修正,得到待预测时刻的目标水温,进入控制对象。
图6为实施例目标水温修订示例,其中图6a为2021年11月22日至12月5日负荷偏差(实际负荷与目标负荷的差值)与供水温度偏差(实际水温与目标水温的差值)的相关性,图6b为2021年12月6日至12月12日的供水温度。可见,示例中利用待预测时刻前两周的历史数据预估模型水温的偏差修正值,修订未来一周的模型值,修订后的模型计算水温与实际值的最大偏差仅为0.1℃。
实施例利用2020-2021供暖季(135天)历史运行数据标定供水温度模型,结果如图8和图9所示。可见,模拟值与实际值基本一致,最大偏差为1.1℃,平均偏差为0.36℃,方差为0.104。2020年11月16日偏差最大,实际水温为36.4℃,相对误差为3.1%。
实施例利用2021-2022供暖季(45天)历史运行数据校验供水温度模型,结果如图10和图11所示。可见,模型计算值与实际值基本一致,最大偏差为0.85℃,平均偏差为0.31℃,方差为0.05。2021年11月12日偏差最大,实际水温为35.6℃,相对误差为2.4%。
针对2021-2022供暖季,基于外围模块确定满足用户需求的目标负荷和系统的流量约束,输入动态校准的供水温度模型,得到未来一周相应目标负荷的供水温度计算值,并加入动态修正,得出供水温度目标值。
图12为实施例2021-2022供暖季的目标负荷,其中,目标负荷1:模型室温22℃;目标负荷2:模型室温20℃。图13、图14为实施例的实际瞬时流量,图15为实施例本发明技术方案实施前的传统供水温度调节曲线。需要说明下,图14给出了实际系统为保证所有末端用户水循环的流量约束。
针对实施例采用本发明确定的供水温度目标值,并与传统方式计算的供水温度及上个供暖季供水温度相比较,如图16、图17所示。图16中,目标值1:模型室温 22℃;目标值2:模型室温20℃。图17中,目标值1:模型室温22℃。
可见,除供暖初期外,2021-2022供暖季的实际水温基本跟随目标值,且明显低于上个供暖季的实际水温;实际水温值与传统方式预报值在发展趋势和数值上,均存在很大不同。
表1实施例两个供暖季同期运行结果表
Figure BDA0003483671140000081
Figure BDA0003483671140000091
本实施例应用本技术方案的效果,见图18-图22、表1。图18中,目标负荷1:模型室温22℃;目标负荷2:模型室温20℃。图19中,目标值1:模型室温22℃;目标值2:模型室温20℃。图22中,目标值1:模型室温22℃;目标值2:模型室温20℃。可见,本实施例与去年同期比较,气温略高于去年,报修次数大幅减少,室温满足热需求。
Figure BDA0003483671140000092
对2021-2022供暖季与2020-2021供暖季供暖季不同时间尺度能耗降低率比较,考虑到2020-2021年供暖季与2021-2022年供暖季室外温度的影响,依照《民用建筑能耗标准》(GB/T51161-2016)使用度日法进行气象修正,取18℃为标准参考温度,则采暖度日数按下式计算:
Figure BDA0003483671140000093
上式中,n为采暖天数,Ti为某温度(℃)。
实施例2021-2022运行43天(11.3-12.15),与去年同期相比较,能耗降低了17%,考虑气温因素修正后的节能率为10.16%,单周最高达41.35%(11.6-11.11)。
实施例2021-2022运行43天(11.3-12.15),负荷模型的模拟值与实际值的偏差为2%(表1)。如参照目标值运行(图17、图18),相比去年同期,能耗可降低26-35%,节能空间很大。
上述实施例呈现的本技术方案的具体实施过程及效果,说明了本发明技术方案的特别有益效果:满足用户热需求同时,显著节能减排,且简易可行,易于实施。实施例涉及的建筑群控制单元供热面积为240538㎡,包括科研办公楼、实验厂房、学生宿舍、教学楼、食堂等多种类型的众多用户。
综上,针对集中供热领域运行调节领域,本发明提出的一种基于目标能耗管控的供水温度调控方法,有利于系统的高校运行,满足用户热需求同时,显著节能减排。本发明的技术方案,基于人工智能与热力系统的融合,集成实用性、适用性、先进性与示范性,对于实现双碳目标背景下建筑领域的低碳高效清洁供热具有重要的意义。
尽管为说明目的公开了本发明的实施例和附图,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换、变化和修改都是可能的,因此,本发明的范围不局限于实施例和附图所公开的内容。

Claims (1)

1.一种基于目标能耗管控的供水温度调控方法,其特征在于:所述调控方法应用的供热系统包括锅炉及锅炉上连接的供水管、回水管,所述供水管上依次连接有温度传感器及流量计,所述回水管上依次连接有温度传感器及水泵,所述温度传感器及流量计均连接至热量表,所述热量表连接至控制器,所述控制器连接至通讯模块,所述通讯模块无线连接至外部监控平台;
所述调控方法的步骤为:
1)读取数据库,根据实际热网运行历史数据筛选信息完整的有效样本,获得时间尺度一致的参数信息,包括供水温度t、流量G及热负荷Q;
2)根据实际热网运行历史数据,采用多元回归或机器语言确定供水温度函数,并对供水温度函数的具体形式及参数进行标定,供水温度函数如下:
Figure FDA0003483671130000011
其中:t为供水温度(℃);
Q为负荷(MW·h);
G为流量(m3);
Q/G为负荷与流量的比值,表示供回水温差;
3)将供热系统实际的流量G及热负荷Q输入步骤2)标定的供水温度函数中,得到供水温度计算值,并与实际值比较进行校验;
4)在运行过程中,设置允许的最大偏差,从供热第二周开始,考虑样本更新加入后的周期性校准及动态修正,对供水温度计算值进行动态修正,得到供水温度目标值。
CN202210075255.9A 2022-01-22 2022-01-22 一种基于目标能耗管控的供水温度调控方法 Active CN114484556B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210075255.9A CN114484556B (zh) 2022-01-22 2022-01-22 一种基于目标能耗管控的供水温度调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210075255.9A CN114484556B (zh) 2022-01-22 2022-01-22 一种基于目标能耗管控的供水温度调控方法

Publications (2)

Publication Number Publication Date
CN114484556A true CN114484556A (zh) 2022-05-13
CN114484556B CN114484556B (zh) 2022-10-11

Family

ID=81472039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210075255.9A Active CN114484556B (zh) 2022-01-22 2022-01-22 一种基于目标能耗管控的供水温度调控方法

Country Status (1)

Country Link
CN (1) CN114484556B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115585501A (zh) * 2022-10-18 2023-01-10 天津大学 基于网联智控的集中供暖用户侧自主调节系统及方法
CN117420350A (zh) * 2023-11-08 2024-01-19 广州市德珑电子器件有限公司 一种电源滤波器的损耗测试方法、系统、设备及介质

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090108889A (ko) * 2008-04-14 2009-10-19 케이피에치이 주식회사 유량 온도 자동 조절 시스템 및 유량 온도 자동 조절방법
US20110272117A1 (en) * 2010-05-05 2011-11-10 Greensleeves, LLC Energy Chassis and Energy Exchange Device
US20120029707A1 (en) * 2009-03-31 2012-02-02 Yamatake Corporation Supply water temperature control apparatus and method thereof
CN102483247A (zh) * 2010-07-26 2012-05-30 松下电器产业株式会社 供暖系统及供暖系统控制方法
CN203147907U (zh) * 2013-04-01 2013-08-21 青岛科技大学 城市集中供热联动优化控制系统
EP2636960A2 (en) * 2012-03-09 2013-09-11 Mitsubishi Heavy Industries, Ltd. Heat pump hot water supply system, and control method and program thereof
EP2770398A2 (en) * 2013-02-26 2014-08-27 Mitsubishi Electric Corporation Flow rate control device and fluid circuit system
CN104515194A (zh) * 2013-09-26 2015-04-15 珠海格力电器股份有限公司 供暖系统的控制方法及装置
CN104534556A (zh) * 2014-12-08 2015-04-22 北京华电方胜技术发展有限公司 一种基于能耗监测的供热控制方法
CN106766222A (zh) * 2016-12-26 2017-05-31 珠海格力电器股份有限公司 热泵热水机的供水温度调节方法及装置
US20170219219A1 (en) * 2016-02-01 2017-08-03 Keith A. Miller Demand based hvac (heating, ventilation, air conditioning) control
CN107461801A (zh) * 2017-08-08 2017-12-12 广州大学 一种集中供热系统的节能控制方法
KR101827270B1 (ko) * 2016-09-19 2018-02-09 린나이코리아 주식회사 실내 난방공급 제어온도 설정에 따른 보일러의 난방온도 제어방법
US20180210474A1 (en) * 2011-09-05 2018-07-26 Belimo Holding Ag Method for operating and/or monitoring an hvac system
CN108548213A (zh) * 2018-04-25 2018-09-18 国网上海市电力公司 一种带有监测系统的供热系统
CN108548283A (zh) * 2018-03-02 2018-09-18 深圳达实智能股份有限公司 一种医院空调机房冷冻水供水温度调节方法及装置
CN108800303A (zh) * 2018-06-28 2018-11-13 长安大学 一种基于模式识别的精细化节能供热方法
WO2020065417A1 (en) * 2018-09-28 2020-04-02 Alperia Bartucci S.P.A. System and method for controlling a fluid vector temperature in order to heat a building
CN112097315A (zh) * 2020-09-22 2020-12-18 天津大学 适用于学校区域供热系统的分时分区互补间歇供暖方法
CN112128841A (zh) * 2020-09-29 2020-12-25 河北工业大学 一种基于负荷预测和室温反馈修正的全网平衡调节方法
CN112541213A (zh) * 2020-12-02 2021-03-23 北京工业大学 供暖系统水温度预测模型的建模方法及水温控制策略
CN113028491A (zh) * 2021-03-16 2021-06-25 西安交通大学 建筑物按需供热调控装置、工作方法与布局方式
CN113587207A (zh) * 2021-07-26 2021-11-02 深圳前海中碳综合能源科技有限公司 供暖控制方法、装置和计算机设备

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090108889A (ko) * 2008-04-14 2009-10-19 케이피에치이 주식회사 유량 온도 자동 조절 시스템 및 유량 온도 자동 조절방법
US20120029707A1 (en) * 2009-03-31 2012-02-02 Yamatake Corporation Supply water temperature control apparatus and method thereof
CN102365503A (zh) * 2009-03-31 2012-02-29 株式会社山武 送水温度控制装置及其方法
US20110272117A1 (en) * 2010-05-05 2011-11-10 Greensleeves, LLC Energy Chassis and Energy Exchange Device
CN102483247A (zh) * 2010-07-26 2012-05-30 松下电器产业株式会社 供暖系统及供暖系统控制方法
US20180210474A1 (en) * 2011-09-05 2018-07-26 Belimo Holding Ag Method for operating and/or monitoring an hvac system
EP2636960A2 (en) * 2012-03-09 2013-09-11 Mitsubishi Heavy Industries, Ltd. Heat pump hot water supply system, and control method and program thereof
EP2770398A2 (en) * 2013-02-26 2014-08-27 Mitsubishi Electric Corporation Flow rate control device and fluid circuit system
CN203147907U (zh) * 2013-04-01 2013-08-21 青岛科技大学 城市集中供热联动优化控制系统
CN104515194A (zh) * 2013-09-26 2015-04-15 珠海格力电器股份有限公司 供暖系统的控制方法及装置
CN104534556A (zh) * 2014-12-08 2015-04-22 北京华电方胜技术发展有限公司 一种基于能耗监测的供热控制方法
US20170219219A1 (en) * 2016-02-01 2017-08-03 Keith A. Miller Demand based hvac (heating, ventilation, air conditioning) control
KR101827270B1 (ko) * 2016-09-19 2018-02-09 린나이코리아 주식회사 실내 난방공급 제어온도 설정에 따른 보일러의 난방온도 제어방법
CN106766222A (zh) * 2016-12-26 2017-05-31 珠海格力电器股份有限公司 热泵热水机的供水温度调节方法及装置
CN107461801A (zh) * 2017-08-08 2017-12-12 广州大学 一种集中供热系统的节能控制方法
CN108548283A (zh) * 2018-03-02 2018-09-18 深圳达实智能股份有限公司 一种医院空调机房冷冻水供水温度调节方法及装置
CN108548213A (zh) * 2018-04-25 2018-09-18 国网上海市电力公司 一种带有监测系统的供热系统
CN108800303A (zh) * 2018-06-28 2018-11-13 长安大学 一种基于模式识别的精细化节能供热方法
WO2020065417A1 (en) * 2018-09-28 2020-04-02 Alperia Bartucci S.P.A. System and method for controlling a fluid vector temperature in order to heat a building
CN112097315A (zh) * 2020-09-22 2020-12-18 天津大学 适用于学校区域供热系统的分时分区互补间歇供暖方法
CN112128841A (zh) * 2020-09-29 2020-12-25 河北工业大学 一种基于负荷预测和室温反馈修正的全网平衡调节方法
CN112541213A (zh) * 2020-12-02 2021-03-23 北京工业大学 供暖系统水温度预测模型的建模方法及水温控制策略
CN113028491A (zh) * 2021-03-16 2021-06-25 西安交通大学 建筑物按需供热调控装置、工作方法与布局方式
CN113587207A (zh) * 2021-07-26 2021-11-02 深圳前海中碳综合能源科技有限公司 供暖控制方法、装置和计算机设备

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
卢亚开: "基于供热运行数据的换热站供水温度调节模式识别诊断", 《2018供热工程建设与高效运行研讨会论文集》 *
季翔: "基于实际数据的集中供热系统运行策略的识别与评价", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅱ辑》 *
李琦: "基于DHP算法的热力站一次网热量分配控制", 《信息与控制》 *
李瑛: "基于张量距离算法预测空调系统的室内温度及供水温度", 《计算机应用》 *
李静: "集中供热系统运行能效评价及节能潜力分析", 《区域供热》 *
胡雪: "基于人工智能与热力系统融合的综合节能技术研究", 《华电技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115585501A (zh) * 2022-10-18 2023-01-10 天津大学 基于网联智控的集中供暖用户侧自主调节系统及方法
CN115585501B (zh) * 2022-10-18 2023-08-04 天津大学 基于网联智控的集中供暖用户侧自主调节系统及方法
CN117420350A (zh) * 2023-11-08 2024-01-19 广州市德珑电子器件有限公司 一种电源滤波器的损耗测试方法、系统、设备及介质

Also Published As

Publication number Publication date
CN114484556B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN109270842B (zh) 一种基于贝叶斯网络的区域供热模型预测控制系统及方法
CN112128841B (zh) 一种基于负荷预测和室温反馈修正的全网平衡调节方法
CN108240679B (zh) 一种基于建筑供暖负荷预测的供热方法、装置和系统
CN114484557B (zh) 一种基于目标能耗管控的建筑群供热负荷调控方法
CN108916986B (zh) 信息物理融合的二级管网变流量水力平衡调控方法及系统
CN114484556B (zh) 一种基于目标能耗管控的供水温度调控方法
WO2021232734A1 (zh) 一种热泵与电蓄热设备自适应优化控制方法、系统及装置
CN109948824B (zh) 一种利用模式识别技术对热力站热负荷进行预测的方法
CN101949559A (zh) 智能节能混水供热方法
EP3082010A1 (en) A system for dynamically balancing a heat load and a method thereof
CN115013861B (zh) 一种基于供热系统的室内温度控制方法及装置
CN114576698B (zh) 基于多目标监控主动抗扰源网末端协同自趋优供热调控方法
CN103363585A (zh) 一种城镇区域集中供热系统调节方法
CN103471171A (zh) 一种集中供热质量调节智能控制系统及方法
CN114565167B (zh) 一种热力入口负荷动态预测及调控方法
CN110909904A (zh) 基于无线互联与数据挖掘技术的终端用户负荷预测系统
CN114396646A (zh) 一种基于用户有效室温的换热站智能控制方法
CN113375220B (zh) 一种基于负荷预测的换热站多模式调控方法
CN107247407B (zh) 一种基于云架构的大数据自我学习修正控制系统及方法
CN114165825A (zh) 一种换热站供热调控系统及方法
CN114608065B (zh) 一种新型热力入口阀位调控方法
Sun et al. Research on control strategy integrated with characteristics of user's energy-saving behavior of district heating system
CN114674026A (zh) 一种管网供水流量优化控制方法及系统
Zhao et al. Online reset strategy based on linear correlation for variable static pressure control of VAV system
CN111156586A (zh) 一种基于户内温度的供热系统调控方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant