CN114479485B - Ultrathin wearing layer asphalt material and preparation and application thereof - Google Patents

Ultrathin wearing layer asphalt material and preparation and application thereof Download PDF

Info

Publication number
CN114479485B
CN114479485B CN202011162922.4A CN202011162922A CN114479485B CN 114479485 B CN114479485 B CN 114479485B CN 202011162922 A CN202011162922 A CN 202011162922A CN 114479485 B CN114479485 B CN 114479485B
Authority
CN
China
Prior art keywords
parts
asphalt
aromatic
oil
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011162922.4A
Other languages
Chinese (zh)
Other versions
CN114479485A (en
Inventor
郭小圣
袁俊
张建峰
傅丽
刘树华
徐青柏
刘成
吴晓颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Dalian Petrochemical Research Institute Co ltd
China Petroleum and Chemical Corp
Original Assignee
China Petroleum and Chemical Corp
Sinopec Dalian Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Dalian Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN202011162922.4A priority Critical patent/CN114479485B/en
Publication of CN114479485A publication Critical patent/CN114479485A/en
Application granted granted Critical
Publication of CN114479485B publication Critical patent/CN114479485B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • E01C7/26Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)

Abstract

The invention discloses an ultrathin wearing layer asphalt material, which comprises the following components in parts by weight: matrix asphalt: 100 parts of (A); rich in aromatic oil: 3-10 parts of thermoplastic block copolymer 2-8 parts; nano diamond powder: 1-7 parts; DOA: 1-5 parts; a stabilizer: 0.1 to 1 portion. The invention greatly enhances the whole tensile toughness of the modified asphalt and improves the high-temperature rutting resistance of the asphalt material, the 60 ℃ viscosity of the obtained asphalt is far higher than the relevant standard requirements, and the asphalt material has strong adhesion to stone materials. The method can be widely applied to paving the ultrathin wearing layer in the maintenance of the asphalt pavement.

Description

Ultrathin wearing layer asphalt material and preparation and application thereof
Technical Field
The invention relates to the technical field of modified asphalt, in particular to a special asphalt material for an ultrathin wearing layer and a preparation method thereof.
Background
With the rapid development of high-grade roads in China, people put higher requirements on the aspects of safety, comfort, environmental protection and the like of the roads. After the asphalt pavement is used for a period of time after being used by a vehicle, the increase of transport vehicles and the increasing of heavy load phenomena cause the gradual attenuation of the structural depth or roughness of the road surface, the rapid decline of the anti-skid performance and the direct influence on the driving safety and comfort of the vehicle.
The ultra-thin wearing layer is an effective measure for prolonging the service life of the road surface, improving the running quality, improving the safety characteristics (including skid resistance and drainage), reducing noise and other road surface functions, and the thickness of the ultra-thin wearing layer is about 20mm generally. When the polyurethane resin is used for restoring the skid resistance of a road surface, preventing and curing a high-grade asphalt road surface or surface treatment of medium diseases, the polyurethane resin can prolong the service life of the road for 8 to 10 years, can improve the friction coefficient of the road surface, reduce noise, ensure the driving safety of the road surface, improve the flatness of the road surface and have better surface texture.
The quality of the asphalt is one of main factors restricting the use quality of the asphalt pavement, and the ultra-thin wearing layer is directly influenced by natural factors and vehicle load action because the ultra-thin wearing layer is positioned on the upper layer of the asphalt concrete pavement, so that the requirement on the performance and the quality of the asphalt is higher. In the prior art, asphalt selected for the ultrathin wearing layer is mainly used for improving the anti-stripping performance of a cementing material by increasing the proportion of polymers such as SBS and the like or doping waste rubber powder, rock asphalt and the like, but the effect is limited, and because the long-term wear resistance of the current additive is limited, the wear resistance of a road surface can be better in a short period, but structural damage such as falling, flying and the like is easy to occur after long-term traffic is opened.
Disclosure of Invention
Aiming at the defects of the prior art, the invention aims to provide a modified asphalt material with ultrahigh abrasion resistance and a preparation method thereof. The modified asphalt material is mainly used for paving the road surface with an ultra-thin wearing layer. The invention aims to improve the strong wrapping property and the adhesiveness of the asphalt material to stone, and further improve the abrasion resistance and the spalling resistance of the pavement.
The invention provides an ultrathin wearing layer asphalt material which comprises the following raw materials in parts by weight:
matrix asphalt: 100 parts of a binder;
rich in aromatic oil: 3 to 10 parts; preferably 5 to 8 parts;
2 to 8 parts of thermoplastic block copolymer, preferably 3 to 7 parts;
nano diamond powder: 1 to 7 parts, preferably 2 to 6 parts;
DOA:1 to 5 parts, preferably 2 to 4 parts;
a stabilizer: 0.1 to 1 part, preferably 0.2 to 0.7 part.
In the technical scheme, the base asphalt is selected from residual oil and/or asphalt obtained by atmospheric or vacuum distillation, wherein the penetration (25 ℃,100g,5s,1/10 mm) is 45-130, and the base asphalt is preferably AH-50, AH-70, AH-90 asphalt or base asphalt meeting the technical requirements of JTG F40-2004 on 50A, 70A and 90A road petroleum asphalt.
In the technical scheme, the aromatic-rich oil is a component rich in aromatic hydrocarbon and is derived from extract oil of lubricating oil base oil in the solvent refining process; the weight content of aromatic hydrocarbon in the aromatic-rich oil is 40% -80%; at least one of furfural refined extract oil and phenol refined extract oil is preferable.
In the above technical solution, the thermoplastic block copolymer is styrene-butadiene block copolymer (SBS); the styrene-butadiene block copolymer (SBS) is a linear structure or star-shaped structure particle, and the block ratio S/B is 20/80 to 40/60.
In the technical scheme, the particle size of the nano diamond powder is 5-15 nm. The nano diamond powder is produced by explosion method, i.e. the explosive containing graphite micropowder is exploded in a closed high-pressure container, and the graphite microparticles can be instantaneously transformed into diamond microparticles of several nanometers to tens of nanometers by the high pressure and high temperature generated during explosion.
In the technical scheme, the DOA is deoiled asphalt, the softening point of the DOA is not lower than 90 ℃, and the PI value is more than 3.0. The DOA can be derived from heavy components which are obtained by solvent deasphalting of residual oil and contain no solvent, namely, the heavy components are recovered by the solvent, and the solvent used in the dissolving and removing process is selected from one or more than one of propane, isobutane, n-butane or n-pentane.
Further, the stabilizer is a simple substance, a compound or a mixture of the simple substance and the compound containing sulfur elements.
The second aspect of the invention provides a preparation method of an ultrathin wearing layer asphalt material, which comprises the following steps:
(1) Shearing and dispersing the thermoplastic block copolymer in aromatic-rich oil for swelling development;
(2) Mixing the nano-diamond powder with the substance obtained in the step (1) and forming;
(3) And (3) uniformly mixing and shearing the hot matrix asphalt, the particles obtained in the step (2) and DOA, adding a stabilizer, uniformly mixing, and continuously performing thermal development to obtain the ultrathin wearing layer asphalt material.
In the above technical scheme, the swelling development conditions in step (1) are as follows: the temperature is 80 to 120 ℃, preferably 90 to 110 ℃; the shearing speed is 3000 to 6000 rpm, preferably 4000 to 5000 rpm; the development time is 1 to 3h, preferably 1.5 to 2.5h.
In the technical scheme, the molding in the step (2) is extrusion granulation by using a screw extruder, the screw extruder is a single-screw extruder or a double-screw extruder, preferably the double-screw extruder, and the length-diameter ratio L/D is 30 to 1; controlling the temperature of the screw extruder to be 120-160 ℃, and controlling the rotation speed of the screw to be 30-150 r/min; preferably, eight temperature stages are used, wherein the operating conditions are as follows: the temperature of one section is 130 to 150 ℃; the second section is 135 to 155 ℃; the three sections are 140 to 160 ℃; the fourth section is 140 to 160 ℃; the fifth section is 150 to 160 ℃; the six sections are 150 to 160 ℃; the seven sections are 145 to 160 ℃; the temperature of the eight sections is 150 to 160 ℃. This process allows the nanoparticles to be sufficiently absorbed or adsorbed by the polymer intermolecular gaps.
In the technical scheme, the temperature of the matrix asphalt in the step (3) is 140 to 170 ℃, DOA is added, the mixture is uniformly stirred, the temperature is increased to 180 to 190 ℃, the mixture is sheared and stirred until a uniform system is formed, and then the stabilizer is added, stirred and developed. The shearing rotating speed is 1000 to 5000rpm, and the rotating speed for adding the stabilizer and stirring the mixture to develop is 500 to 1000 rpm.
The invention provides an application of an ultrathin wearing layer asphalt material in maintenance of an asphalt pavement.
Compared with the prior art, the ultrathin wearing layer asphalt material and the preparation method thereof provided by the invention have the following advantages:
(1) The asphalt material of the invention fully utilizes the high specific surface area and the high strength of the nano diamond powder, effectively enhances the interaction force between the thermoplastic block copolymer and the asphalt molecules, enables the particle density of the additive to be similar to that of the asphalt, effectively prevents the segregation and delamination phenomena in the preparation process and the thermal storage and transportation process, and simultaneously greatly enhances the tensile toughness, the rutting resistance and the stone wrapping force of the whole modified asphalt.
(2) In the preparation method provided by the invention, in order to ensure that the nano diamond powder is fully adsorbed and contacted with the thermoplastic block copolymer molecules, the gaps among the polymer molecules are opened by swelling, and then the heating high-pressure condition of a screw extrusion process is preferably utilized, so that the nano diamond powder particles are fully and tightly attached to the polymer molecular chains, the cohesive force of the modified asphalt molecules is greatly enhanced, and the capacity of resisting the deformation of the external shearing force is enhanced.
(3) The preparation method of the asphalt material provided by the invention is simple and easy to realize, the components in the asphalt material have good dispersibility in an asphalt phase, the DOA material with low cost not only can be used for improving the high-temperature anti-rutting performance of the asphalt material in cooperation with the nano diamond powder, but also can be used for improving the dynamic viscosity of the asphalt in cooperation with the SBS polymer, the viscosity of the obtained asphalt at 60 ℃ is far higher than the relevant specification requirements, and the asphalt material has strong adhesion to stone materials.
Detailed Description
The following examples are provided to further illustrate the technical solutions of the present invention, but the present invention is not limited to the following examples.
Example 1
(1) Mixing 3 parts by weight of thermoplastic block copolymer (linear) and 5 parts by weight of furfural extract oil at 90 ℃ and 3000rpm, shearing and swelling for 1.5h to obtain a component A1; wherein the thermoplastic block copolymer is SBS particle with linear structure, and the block ratio S/B is 20/80.
(2) Mixing component A1 with 2 parts by weight of nano diamond powder (5 nm, specific surface area 400 m) 2 And/g) adding the mixture into a screw extruder (the length-diameter ratio L/D is 35: 1), setting the rotation speed of the screw to be 50 r/min, uniformly mixing, blending, extruding and granulating by using a double-screw extruder to obtain the component B1. The extruder operating conditions were: the first stage is 130 ℃; the second section is 135 ℃; the third section is 140 ℃; the fourth stage is 140 ℃; the fifth section is 150 ℃; the six sections are 150 ℃; the seven sections are 145 ℃; the temperature of the eight sections is 150 ℃.
(3) Adding the component B1 into 100 parts by weight of 150 ℃ petroleum-based asphalt, and mixing and shearing the two at the heating temperature of 180 ℃ for 0.5 h, wherein the shearing speed is 1000 rpm; after shearing, 2 parts by weight of DOA and 0.2 part by weight of sulfur were slowly added, and stirred at 500 rpm for 2 hours to obtain an asphalt material C1, the properties of which are shown in Table 1.
Example 2
(1) Mixing 5 parts by weight of SBS (linear) and 6 parts by weight of furfural extract oil at 100 ℃ and 4000rpm, shearing and swelling for 2 hours to obtain a component A2; wherein the thermoplastic block copolymer is SBS particle with linear structure, and the block ratio S/B is 30/70.
(2) The component A2 and 4 parts by weight of nano diamond powder (10 nm, specific surface area 380 m) 2 And/g) adding the mixture into a screw extruder (the length-diameter ratio L/D is 35. The extruder operating conditions were: the first section is 130 ℃; the second section is 135 ℃; the third section is 140 ℃; the fourth section is 140 ℃; the fifth section is 150 ℃; the six sections are 150 ℃; the seven sections are 145 ℃; the temperature of the eight sections is 150 ℃.
(3) Adding the component B2 into 100 parts by weight of petroleum-based asphalt at 155 ℃, and mixing and shearing the two at the heating temperature of 180 ℃ for 0.5 h, wherein the shearing speed is 3000 rpm; after shearing, 3 parts by weight of DOA and 0.5 part by weight of sodium sulfide are slowly added, and the mixture is stirred for 2 hours at the rotating speed of 800 rpm to obtain an asphalt material C2, wherein the properties of the asphalt material are shown in Table 1.
Example 3
(1) Mixing 7 parts by weight of SBS (linear) and 8 parts by weight of furfural extract oil at 110 ℃ and 5000rpm, shearing and swelling for 2.5h to obtain a component A3; wherein the thermoplastic block copolymer is SBS particle with linear structure, and the block ratio S/B is 40/60.
(2) Mixing component A3 with 6 parts by weight of nano diamond powder (15 nm, specific surface area 360 m) 2 And/g) adding the mixture into a screw extruder (the length-diameter ratio L/D is 35. The extruder operating conditions were: the first section is 135 ℃; the second section is 140 ℃; the third section is 145 ℃; the fourth section is 150 ℃; the fifth section is 155 ℃; the six sections are 155 ℃; the seven sections are 160 ℃; the eight sections are 160 ℃.
(3) Adding the component B3 into 100 parts by weight of petroleum-based asphalt at 160 ℃, and mixing and shearing the two at the heating temperature of 180 ℃ for 0.5 h, wherein the shearing speed is 5000 rpm; after shearing, 4 parts by weight of DOA and 0.7 part by weight of sulfur are slowly added, and the mixture is stirred for 2 hours at the rotating speed of 1000 rpm to obtain an asphalt material C3, wherein the properties of the asphalt material are shown in Table 1.
Comparative example 1
The preparation method and the formula of the material are the same as those in example 2, and the difference is that SBS and furfural extract oil are not subjected to first-step shearing swelling treatment, and the furfural extract oil, nano-diamond powder and SBS are directly mixed and added into an extruder to prepare the petroleum road asphalt material C4, and the properties of the material are shown in Table 1.
Comparative example 2
The preparation method and the formula of the material are the same as those of the example 2, and the only difference is that no nano diamond powder material is added, so that the petroleum road asphalt material C5 is prepared.
Example 4 (test example)
The performance of the samples of the above examples and comparative examples was measured, and the results are shown in tables 2 and 3.
TABLE 1 composition of asphalt material for petroleum road (parts by weight)
Item Furfural extract oil Asphalt with petroleum base Nano diamond powder Stabilizer SBS DOA Bituminous material
Example 1 5 100 2 0.2 3 2 C1
Example 2 6 100 4 0.5 5 3 C2
Example 3 8 100 6 0.7 7 4 C3
Comparative example 1 6 100 4 0.5 5 3 C4
Comparative example 2 6 100 - 0.5 5 3 C5
TABLE 2 Main Properties of Petroleum road asphalt materials
Bituminous material Base asphalt C1 C2 C3 C4 C5
Penetration 25 deg.C/0.1 mm 51 54 56 59 57 65
Penetration index PI -0.8 1.2 1.5 1.4 0.6 -0.4
Softening point/. Degree.C 49.1 84.5 87.8 87.2 80.3 69.5
Viscosity at 60 ℃ Pa.s 291.3 9632.4 9890.1 9543.3 8498.1 3846.3
Viscosity and toughness 6.6 37.3 39.1 38.2 28.2 15.3
Toughness of 4.1 26.4 27.2 26.7 22.1 10.4
Storage for 48h segregation softening point difference/. Degree.C - 1.3 1.0 1.1 6.1 10.4
Penetration ratio after TFOT (25 ℃)/%) 65.8 78.2 83.5 76.1 67.2 61.9
TABLE 3 Rut factor | G |/sin δ (kPa) of asphalt material for petroleum road
Temperature/. Degree.C Base asphalt C1 C2 C3 C4 C5
64 3.82 8.16 8.91 8.88 7.15 3.71
70 2.11 4.52 5.03 4.45 3.13 2.33
76 0.89 1.88 2.86 2.32 1.11 0.89
82 0.75 1.24 1.82 1.60 0.96 0.78
As can be seen from tables 2 and 3, the modified petroleum road asphalt material of the present invention has good comprehensive properties. The results of the property analysis of A1, A2 and A3 show that the petroleum asphalt has a softening point higher than 80 ℃ and a dynamic viscosity at 60 ℃, which indicates that the overall high-temperature performance of the asphalt material is very excellent; the viscosity toughness and toughness of the asphalt are far higher than the index requirements of common modified asphalt and high-viscosity modified asphalt, which shows that the nano diamond powder, SBS and the like endow the asphalt material with super-strong tensile resistance and deformation resistance, and the high viscosity toughness shows that the asphalt material has very good wrapping property and binding power to stone, endows the pavement with good abrasion resistance, and can effectively prevent flying diseases of the pavement; the difference of the 48h segregation softening point of the modified asphalt material meets the requirement of the storage stability of the modified asphalt, because the effective permeation and crosslinking composite action are generated between the nano diamond powder and the SBS through the processes of swelling first and extruding later, the strength and the density of the SBS are increased, the SBS can be more stably existed in the asphalt without the layering phenomenon, and therefore, the two materials can be seen to generate a very good synergistic effect.
Comparing the properties of the C2 and C4 materials, the modified asphalt material has poor stability and limited improvement of high-temperature performance without first swelling treatment, because the nano diamond powder has a nano size effect, is easy to agglomerate and precipitate and the like, and cannot fully interact with substances such as SBS and the like to exert a synergistic effect. Comparing the properties of the C2 and C5 materials, it can be seen that when no nano diamond powder is added, the high-temperature performance of the asphalt material is poor, the high-temperature performance cannot be effectively improved by one grade through single SBS, and the toughness and the tenacity of the asphalt material are low.
As can be seen from table 3, from the characterization result of the rutting factor | G |/sin δ, the nano-diamond powder composite material effectively improves the high-temperature rutting resistance of the material, mainly because the dispersibility and the aging resistance of the nanoparticles are better exerted by the processes of swelling first and extruding second.
The invention has good modification effect, simultaneously utilizes renewable resources, and is an environment-friendly petroleum road asphalt material used for pavements.

Claims (16)

1. The ultrathin wearing layer asphalt material is characterized by comprising the following raw material components in parts by weight:
matrix asphalt: 100 parts of (A);
rich in aromatic oil: 3 to 10 parts;
2-8 parts of a thermoplastic block copolymer;
nano diamond powder: 1 to 7 parts;
DOA:1 to 5 parts;
a stabilizer: 0.1 to 1 part;
wherein the thermoplastic block copolymer is a styrene-butadiene block copolymer;
the ultrathin wearing layer asphalt material is prepared by the following method, and comprises the following steps:
(1) Shearing and dispersing the thermoplastic block copolymer in aromatic-rich oil to perform swelling development;
(2) Mixing the nano-diamond powder with the substance obtained in the step (1) and forming;
(3) And (3) mixing and shearing the hot matrix asphalt, the particles obtained in the step (2) and DOA uniformly, adding a stabilizer, uniformly mixing, and continuously performing thermal development to obtain the ultrathin wearing layer asphalt material.
2. The asphalt material according to claim 1, wherein the ultra-thin wearing layer asphalt material comprises the following raw material components in parts by weight:
matrix asphalt: 100 parts of (A);
rich in aromatic oil: 5 to 8 parts;
3-7 parts of a thermoplastic block copolymer;
nano diamond powder: 2 to 6 parts;
DOA: 2 to 4 parts;
a stabilizer: 0.2 to 0.7 portion.
3. The bituminous material according to claim 1, wherein said aromatic-rich oil is an aromatic-rich component derived from the extraction oil of a lubricant base oil during solvent refining; the weight content of aromatic hydrocarbon in the aromatic-rich oil is 40-80%.
4. The bituminous material according to claim 3, wherein said aromatic-rich oil is at least one of furfural refined extract oil and phenol refined extract oil.
5. The asphalt material according to claim 1, wherein the styrene-butadiene block copolymer has a linear structure or a star-shaped structure, and the S/B ratio is 20/80 to 40/60.
6. The asphalt material according to claim 1, wherein the nano-diamond powder has a particle size of 5 to 15 nm.
7. The bituminous material according to claim 1, wherein said DOA is a deoiled bitumen having a softening point of not less than 90 ℃ and a PI value of > 3.0.
8. The bituminous material according to claim 1, wherein said stabilizer is an element, compound or mixture thereof containing elemental sulphur.
9. A process for the preparation of a bituminous material according to any one of claims 1 to 8, characterized in that it comprises the following steps:
(1) Shearing and dispersing the thermoplastic block copolymer in aromatic-rich oil for swelling development;
(2) Mixing the nano-diamond powder with the substance obtained in the step (1) and forming;
(3) And (3) mixing and shearing the hot matrix asphalt, the particles obtained in the step (2) and DOA uniformly, adding a stabilizer, uniformly mixing, and continuously performing thermal development to obtain the ultrathin wearing layer asphalt material.
10. The method according to claim 9, wherein the conditions for swelling development in step (1) are: the temperature is 80 to 120 ℃; the shearing speed is 3000 to 6000 rpm; the development time is 1 to 3h.
11. The method according to claim 9, wherein the conditions for the swelling development in step (1) are: the temperature is 90 to 110 ℃; the shearing speed is 4000 to 5000 rpm; the development time is 1.5 to 2.5 hours.
12. The preparation method according to claim 9, wherein the forming in the step (2) is extrusion granulation by using a screw extruder, the screw extruder is a single screw extruder or a twin screw extruder, preferably a twin screw extruder, and the length-diameter ratio L/D is 30 to 1; the temperature of the screw extruder is controlled to be 120 to 160 ℃, and the rotating speed of the screw is 30 to 150 r/min.
13. The method according to claim 9, wherein the forming in step (2) is performed in eight temperature stages under the following conditions: the temperature of one section is 130 to 150 ℃; the second section is 135 to 155 ℃; the three sections are 140 to 160 ℃; the fourth section is 140 to 160 ℃; the fifth section is 150 to 160 ℃; the six sections are 150 to 160 ℃; the seven sections are 145 to 160 ℃; the temperature of the eight sections is 150 to 160 ℃.
14. The preparation method according to claim 9, wherein the temperature of the matrix asphalt in the step (3) is 140 to 170 ℃, DOA is added, the mixture is stirred uniformly, then the temperature is increased to 180 to 190 ℃, the mixture is sheared and stirred until a uniform system is formed, and then the stabilizer is added, stirred and developed.
15. The method of claim 14, wherein the shear rate is from 1000 to 5000rpm, and the rate of stirring and development by adding the stabilizer is from 500 to 1000 rpm.
16. Use of a bituminous material according to any one of claims 1 to 8 or prepared according to a method according to any one of claims 9 to 15 for the preparation of a bituminous pavement for the laying of ultra-thin wearing courses in the maintenance of bituminous pavements.
CN202011162922.4A 2020-10-27 2020-10-27 Ultrathin wearing layer asphalt material and preparation and application thereof Active CN114479485B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011162922.4A CN114479485B (en) 2020-10-27 2020-10-27 Ultrathin wearing layer asphalt material and preparation and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011162922.4A CN114479485B (en) 2020-10-27 2020-10-27 Ultrathin wearing layer asphalt material and preparation and application thereof

Publications (2)

Publication Number Publication Date
CN114479485A CN114479485A (en) 2022-05-13
CN114479485B true CN114479485B (en) 2023-01-10

Family

ID=81470133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011162922.4A Active CN114479485B (en) 2020-10-27 2020-10-27 Ultrathin wearing layer asphalt material and preparation and application thereof

Country Status (1)

Country Link
CN (1) CN114479485B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105482475A (en) * 2016-01-13 2016-04-13 河海大学 Composite modified hard asphalt and preparation method thereof
CN106118086A (en) * 2016-06-22 2016-11-16 阮丽丽 A kind of bitumen flame-proof modifier and preparation method thereof
US9944796B1 (en) * 2014-02-21 2018-04-17 Pri Asphalt Technologies, Inc. Recycled oil- and rubber-modified asphalt and method of use
CN108911583A (en) * 2018-08-17 2018-11-30 深圳市诚朗科技有限公司 A kind of high strength epoxy resin concrete material and preparation method thereof
CN110922769A (en) * 2018-09-20 2020-03-27 中国石油化工股份有限公司 Direct-vat-set high-viscosity asphalt modifier and preparation method thereof
CN111378465A (en) * 2018-12-27 2020-07-07 中国石油天然气股份有限公司 Matrix asphalt, modified asphalt and preparation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5767653B2 (en) * 2012-04-24 2015-08-19 住友ゴム工業株式会社 Rubber composition for tread and pneumatic tire using the same for tread
US10808126B2 (en) * 2018-05-02 2020-10-20 Dewitt Products Company Hybrid composition and method for the repair and maintenance of asphalt and concrete surfaceways

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9944796B1 (en) * 2014-02-21 2018-04-17 Pri Asphalt Technologies, Inc. Recycled oil- and rubber-modified asphalt and method of use
CN105482475A (en) * 2016-01-13 2016-04-13 河海大学 Composite modified hard asphalt and preparation method thereof
CN106118086A (en) * 2016-06-22 2016-11-16 阮丽丽 A kind of bitumen flame-proof modifier and preparation method thereof
CN108911583A (en) * 2018-08-17 2018-11-30 深圳市诚朗科技有限公司 A kind of high strength epoxy resin concrete material and preparation method thereof
CN110922769A (en) * 2018-09-20 2020-03-27 中国石油化工股份有限公司 Direct-vat-set high-viscosity asphalt modifier and preparation method thereof
CN111378465A (en) * 2018-12-27 2020-07-07 中国石油天然气股份有限公司 Matrix asphalt, modified asphalt and preparation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Developments of nano materials and technologies on asphalt materials -A review;RuoyuLi等;《Construction and Building Materials》;20170715;第143卷;全文 *
SBS改性脱油沥青宏观性能与微观形态的关系研究;余新江;《广东化工》;20181030(第20期);全文 *
脱油沥青调合道路沥青技术研究;邵子奇等;《石油沥青》;20200425(第02期);全文 *

Also Published As

Publication number Publication date
CN114479485A (en) 2022-05-13

Similar Documents

Publication Publication Date Title
CN101235172B (en) Asphalt pavement rubber plastic composite anti-rut agent and preparation method thereof
CN104194366B (en) A kind of low-temperature type high-modulus asphalt modifying agent and preparation method thereof
CN100567399C (en) A kind of rubber powder modified asphalt and working method thereof
KR101535358B1 (en) Method for producing agglomerates having rubber and wax, agglomerates produced according to said method, and use of said agglomerates in asphalts or bitumen masses
CN103834185B (en) A kind of polyurethane/nano composite modified asphalt and preparation method thereof
WO2014129758A1 (en) Novel highly viscoelastic warm mix modifier composition and preparation method therefor, and new and regenerated warm mix modified asphalt concrete mixture composition and preparation method therefor
CN101125956B (en) High viscosity color asphalt cement for laying noise-reducing drainage road surfaces
CN103436039B (en) A kind of rubber and plastic alloy modifying asphalt and asphalt
CN103408953B (en) A kind of bituminous grouting rubber grain properties-correcting agent and preparation method
CN104693821B (en) A kind of asphalt and preparation method using direct putting type high-adhesiveness modifying agent
CN101775223A (en) Additive for drainage asphalt mixture of high temperature heavy load road and preparation method thereof
CN102174265B (en) Anti-rutting additive with high modulus and high strength as well as preparation method and applications thereof
CN103773009B (en) A kind of preparation method of high-viscosity modified asphalt
CN110922769B (en) Direct-vat-set high-viscosity asphalt modifier and preparation method thereof
CN1923902A (en) Preparation method of rubber powder modified bitumen adapted for industrial production
CN111286207A (en) Modified asphalt composition for warm-mix thin-layer overlay and preparation method thereof
CN107651887B (en) High-modulus rubber asphalt mixture and preparation method thereof
CN104693823A (en) Direct-vat type high-adhesion bituminous mixture modifier and preparation method thereof
CN101077933B (en) Asphalt cement and preparation method thereof
CN114058097B (en) High-performance uncrosslinked rubber asphalt and preparation method thereof
CN109369063B (en) Composite modified anti-rut agent and preparation method thereof
CN111234547A (en) Environment-friendly low-grade hard asphalt modification method
CN114853389A (en) Preparation method of low-temperature recycled asphalt and mixture
CN110475824B (en) Rubber composite material and process for obtaining the same
CN114479485B (en) Ultrathin wearing layer asphalt material and preparation and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231114

Address after: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee after: CHINA PETROLEUM & CHEMICAL Corp.

Patentee after: Sinopec (Dalian) Petrochemical Research Institute Co.,Ltd.

Address before: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee before: CHINA PETROLEUM & CHEMICAL Corp.

Patentee before: DALIAN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC Corp.