CN114478648B - 一种类吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化催化剂的应用 - Google Patents

一种类吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化催化剂的应用 Download PDF

Info

Publication number
CN114478648B
CN114478648B CN202111584527.XA CN202111584527A CN114478648B CN 114478648 B CN114478648 B CN 114478648B CN 202111584527 A CN202111584527 A CN 202111584527A CN 114478648 B CN114478648 B CN 114478648B
Authority
CN
China
Prior art keywords
complex
pyrrole
pyridine
ruthenium
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111584527.XA
Other languages
English (en)
Other versions
CN114478648A (zh
Inventor
易小艺
陈果
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202111584527.XA priority Critical patent/CN114478648B/zh
Publication of CN114478648A publication Critical patent/CN114478648A/zh
Priority to EP22909854.6A priority patent/EP4261216A1/en
Priority to KR1020237024287A priority patent/KR20230119704A/ko
Priority to PCT/CN2022/139184 priority patent/WO2023116540A1/zh
Priority to JP2023524432A priority patent/JP2024504897A/ja
Priority to US18/272,369 priority patent/US20240101586A1/en
Application granted granted Critical
Publication of CN114478648B publication Critical patent/CN114478648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/085Organic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/09Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Pyridine Compounds (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明公开了一种类吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化催化剂的应用。类吡啶吡咯钌配合物以高活性金属钌为中心金属离子,并以具有较高的给电子能力的类吡啶吡咯化合物作为配体,从而赋予了整个类吡啶吡咯钌配合物较高的氨氧化催化活性,将其用于氨的电催化氧化,可以实现氨的高转化率,并获得氢、氮及肼等为主的产物,具有较高选择性。

Description

一种类吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化 催化剂的应用
技术领域
本发明涉及一种催化材料,具体涉及一种类吡啶吡咯钌配合物催化材料,还涉及其合成方法和作为电催化氨氧化催化剂的应用,属于催化技术领域。
背景技术
氢气(H2)是公认的化石燃料最理想替代品之一,然而,氢气体积能量密度极低、极易燃易爆、储运成本高、安全性差等不利因素限制了氢能的大规模直接使用,因此,储氢技术和储氢材料的发展势在必行。在众多储氢材料中,液态小分子作为氢能载体备受关注。相对于甲醇、甲酸、水等小分子,氨分子(NH3)作为氢能源载体优势明显,但其开发利用一直进展缓慢,主要受制于氨氧化半反应。小分子金属配合物作为均相催化剂为氨分子在温和条件下催化氧化提供了解决方案。
与传统化石燃料将化学能存储于C-C,C-H键中不同,面向氢能源的小分子NH3将化学能存储于O-H和N-H键中(Dunn P L,Cool B J,Johnson S I,et al.Oxidation ofAmmonia with Molecular Complexes[J].Journal of the American Chemical Society,2020,142(42):17845-17858.)。利用其中的氢能,需NH3全分解制备氢气,该分解反应包括NH3氧化半反应和质子还原半反应。很明显,氧化半反应是制约NH3全分解制氢的瓶颈,因为该半反应不仅是一个吸热反应,而且反应过程涉及6e-/6H+转移、不稳定高价态M-NHx(x=0,1or 2)生成、和N-N键的形成,是一个复杂体系反应。
联氨(NH2NH2)作为生产生活中另一个最重要的化学物质,被广泛的应用于有机合成和新能源中。同时,联氨作为氨氧化过程中的重要中间产物已经被广泛的证实。然而在氨氧化过程中直接将NH3转化为NH2NH2是非常困难的,这主要是因为在氧化的过程中NH2NH2中N-N键比NH3中的N-H更容易被氧化从而生成N2。考虑到将NH3为原料直接生产H2和NH2NH2是一种非常经济有效的方法用以解决目前的能源和环境问题。那么在氨氧化过程中要同时具备脱氢和N-N偶联的均相催化剂是有可能会实现这一过程的。而开发一种同时具有较强脱氢能力并且具有较低过电位的均相催化剂成为了目前研究的热点。
发明内容
为了解决现有技术存在的问题,本发明的第一个目的是在于提供一种对电催化氨氧化具有较高活性的类吡啶吡咯金属钌配合物。
本发明的第二个目的是在于提供一种操作和步骤简单、低成本的制备类吡啶吡咯金属钌配合物的方法。
本发明的第三个目的是在于提供了一种类吡啶吡咯钌配合物作为电催化氨氧化催化剂应用,类吡啶吡咯钌配合物对氨的电催化氧化具有较高的活性,能将氨高效转化成氮气和氢气及肼。
为了实现上述技术目的,本发明提供了一种类吡啶吡咯钌配合物,其具有式1~式5结构中任意一种:
本发明的类吡啶吡咯钌配合物是以金属钌为中心金属离子,类吡啶吡咯化合物作为配体,金属钌是属于高周期过渡金属,其具有多种氧化态(其价态范围为-2到+8),表现出较高的反应活性,而类吡啶吡咯配体具有较高的给电子能力,能有效降低氨氧化过电位,同时类吡啶吡咯基团分子内的氢键作用也能够加速氨氧化中脱氢的过程,从而赋予了整个类吡啶吡咯钌配合物较高的氨氧化活性。
本发明还提供了一种类吡啶吡咯钌配合物的合成方法,其包括以下步骤:
1)2,5-二吡啶基吡咯、2,5-二吡啶基-3-甲基-4-乙酰基吡咯或2,5-二吡啶基-3-羧甲基-4-甲基吡咯与顺-二氯四(二甲基亚砜)钌和二联吡啶以及碱性化合物溶于溶剂中,加热回流反应,即得式1、式4或式5结构类吡啶吡咯钌配合物;
2)将式1结构类吡啶吡咯钌配合物溶于溶剂中,先加热回流反应,再加入饱和六氟磷酸铵进行离子交换反应,得到式2结构类吡啶吡咯钌配合物;
3)将式2结构类吡啶吡咯钌配合物溶于溶剂中,再通入含氨气体反应,即得式3结构类吡啶吡咯钌配合物。
作为一个优选的方案,2,5-二吡啶基吡咯、2,5-二吡啶基-3-甲基-4-乙酰基吡咯或2,5-二吡啶基-3-羧甲基-4-甲基吡咯与顺-二氯四(二甲基亚砜)钌或二联吡啶的摩尔比为1:2~2:1。
作为一个优选的方案,所述碱性化合物为三乙胺、氢化钙、氢化钠中至少一种。这些碱性化合物主要是用于促进2,5-二吡啶基吡咯、2,5-二吡啶基-3-甲基-4-乙酰基吡咯或2,5-二吡啶基-3-羧甲基-4-甲基吡咯的脱氢反应。碱性化合物用量相对于类吡啶吡咯配体为1~8:1。
作为一个优选的方案,步骤1)中,回流反应的温度为50~115℃,时间为8~12h。
作为一个优选的方案,步骤2)中,回流反应的温度为50~115℃,时间为2~6d。
作为一个优选的方案,所述含氨气体中氨气浓度大于1%。所述含氨气体可以为纯氨气也可以为氨气与氮气或惰性气体的组合。
本发明还提供了一种类吡啶吡咯钌配合物的应用,其作为电催化氨氧化催化剂应用。
本发明提供的类吡啶吡咯钌配合物具体制备方法如下:
(1)在氮气氛围下,将2,5-二吡啶基吡咯、2,5-二吡啶基-3-甲基-4-乙酰基吡咯或2,5-二吡啶基-3-羧甲基-4-甲基吡咯配体的脱氢反应任意一种,和顺-二氯四(二甲基亚砜)钌,以及二联吡啶和碱性化合物溶解于甲苯、甲醇或四氢呋喃等溶剂中磁力搅拌加热回流8~12h,一般来说,在甲苯中回流温度在100~115℃,在四氢呋喃或甲醇中回流反应温度为50~65℃。
(2)反应完成后,在氮气氛围中分别加入甲苯、乙醚或水等溶剂进行清洗三次,随后,将所得固体溶于二氯甲烷中,并加入无水硫酸钠去除溶液中水,2小时后通过旋转蒸发仪器去除溶剂得到红色的固体,即式1、式4或式5结构钌配合物。
(3)在氮气氛围下,将式1结构类吡啶吡咯钌配合物溶于甲苯、甲醇或四氢呋喃等溶剂中,磁力搅拌加热回流反应2~6天,随后将溶液旋蒸至3mL。
(4)将饱和六氟磷酸铵水溶液滴入上述溶液中,搅拌2h后,将反应液过滤旋干得到黄色固体,即得式2结构类吡啶吡咯钌配合物。
(7)将式2结构类吡啶吡咯钌配合物溶于三氯甲烷、二氯甲烷或四氢呋喃等溶剂中,随后通入浓度为1.99%~99.99%的氨气半小时以上,静置1h,重复操作3次,放置至少两天,得到红色片状固体,即得式3结构类吡啶吡咯钌配合物。
本发明的式1~式5结构类吡啶吡咯钌配合物均具有电催化氨氧化性质,能够产生氢气、氮气和肼。如在氩气氛围中,1.0V vs.NHE过电位下电解23.5h,有375.4mmol~1458.35mmol的氢气,7.4mmol~10.55mmol的氮气,和341.2mmol~1380.04mmol的肼产生。
相对现有技术,本发明技术方案带来的有益技术效果:
本发明的类吡啶吡咯钌配合物以高活性的金属钌为中心金属离子,具有较高的给电子能力的类吡啶吡咯化合物作为配体,从而赋予了整个类吡啶吡咯钌配合物较高的氨氧化活性,将其用于氨的电催化氧化,可以实现氨的高转化率,并获得氢、氮及肼等为主的产物,具有较高选择性。
本发明的钌配合物制备方法操作和步骤简单、低成本有利于大规模生产。
附图说明
图1为配合物1[Ru(K2-N,N'-dpp)(bpy)(S-dmso)(Cl)]的单晶衍射图。
图2为配合物2[Ru(K3-N,N'N″-dpp)(bpy)(S-dmso)]·PF6的单晶衍射图。
图3为配合物3[Ru(K2-N,N'-dpp)(bpy)(S-dmso)(NH3)]·PF6的单晶衍射图。
图4为配合物4[Ru(K2-N,N'-mdpc)(bpy)(S-dmso)(Cl)]的单晶衍射图。
图5为配合物5[Ru(K3-N,N'N″-mdpe)(bpy)(Cl)]的单晶衍射图。
图6为氢气和氮气气相色谱标准曲线图。
图7 0.01mM配合物1、2和3的电催化氨氧化反应过程中气体组分图。
图8为不同反应时间,0.01mM配合物3的电催化氨氧化反应过程中气体组分图。
图9为不同反应时间,0.01mM配合物5的电催化氨氧化反应过程中气体组分图。
图10为紫外可见光谱吸收强度与肼的浓度标准曲线图。
图11为配合物1,2,3电解液与p-C9H11NO反应1h后的紫外可见吸收光谱图。
具体实施方式
为了便于理解本发明,下文将结合较佳得实施例对本发明更全面、细致地描述,但本发明得保护范围并不限于以下具体得实施例。
以下实施例中涉及的底物原料,以及溶剂等均为市售商业产品(分析纯试剂),所用试剂均经过纯化、干燥及除氧预处理,涉及的合成及处理过程使用标准无水无氧技术。其中,顺-二氯四(二甲基亚砜)钌(Nagy E M,Pettenuzzo A,Boscutti G,et al.Ruthenium(II/III)-based Compounds with Encouraging Antiproliferative Activity AgainstNon-small-cell Lung Cancer.Chemistry-A European Journal,2012,18(45):14464-14472.),2,5-二吡啶基吡咯(Imler G H,Lu Z,Kistler K A,et al.Complexes of 2,5-Bis(α-pyridyl)pyrrolate with Pd(II)and Pt(II):A Monoanionic Iso-π-ElectronLigand Analog of Terpyridine[J].Inorganic Chemistry,2012,51(19):10122-10128.)以及2,5-二吡啶基-3-甲基-4-乙酰基吡咯和2,5-二吡啶基-3-羧甲基-4-甲基吡咯(Mcsjimming A,Diachenko V,London R,et al.An Easy One-Pot Synthesis of Diverse2,5-Di(2-pyridyl)pyrroles:A Versatile Entry Point to Metal Complexes ofFunctionalised,Meridial and Tridentate 2,5-Di(2-pyridyl)pyrrolato Ligands[J].Chemistry-A European Journal,2014,20(36):11445-11456.)已有报道方法合成。
1H NMR(400MHz),31P NMR(162MHz),19F NMR(380MHz),以CDCl3为溶剂,以TMS为内标。
多重性定义如下:s(单峰);d(二重峰);t(三重峰);q(四重峰)和m(多重峰)。吸收强度定义如下:s(强吸收);m(中等程度吸收);w(弱吸收)。
除非另有定于,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文所使用的专业术语只是问了描述具体实施例的目的,并不是皆在本发明的保护范围。
实施例1
1、配合物1[Ru(K2-N,N'-dpp)(bpy)(S-dmso)(Cl)]的制备目标产物
(1)在氮气氛围下,顺-二氯四(二甲基亚砜)钌(1.088g,2.248mmol),2,5-二吡啶基吡咯(0.566g,2.248mmol),二联吡啶(0.351g,2.247mmol)和三乙胺(2.4mL)溶解于甲苯溶剂(50mL)中磁力搅拌加热至105℃反应10h。
(2)反应完成后在氮气氛围中分别加入甲苯,乙醚和水清洗三次。随后,将所得固体溶于二氯甲烷中,并加入无水硫酸钠去除溶液中水,2h后通过旋转蒸发仪器去除溶剂,得到红色的固体。
(3)采用液相扩散的方法将所得红色固体溶于二氯甲烷中,依此加入乙醚和正己烷,静置2周后,得到红色的针状晶体(配合物1)。
收率:32.33%
1H NMR(400MHz,CDCl3):δ10.171-10.186(d,1H),δ9.399-9.413(d,1H),δ8.125-8.137(d,1H),δ7.914-7.934(d,1H),δ7.644-7.731(m,3H),δ7.573-7.607(t,2H),δ7.472-7.510(m,1H),δ7.099-7.169(m,4H),δ6.963-6.995(m,1H),δ6.829-6.838(d,1H),δ6.676-6.710(m,1H),δ6.299-6.309(d,1H),δ3.165(s,3H),δ2.401(s,3H)ppm.
IR(KBr,cm-1):1589(s),1522(s),1433(s),1323(s),1279(w),1152(w),1074(s),1014(s),961(w),919(w),789(m),766(s),724(m),686(m),435(m).
2、配合物2[Ru(K3-N,N'N″-dpp)(bpy)(S-dmso)]·PF6的制备
目标产物
(4)在氮气氛围下,将配合物1溶于甲醇中磁力搅拌加热60℃反应4天,随后将溶液旋蒸至3mL。
(5)将饱和六氟磷酸铵水溶液滴入上述溶液中,搅拌2h后,将反应液过滤旋干,得到黄色固体。
(6)采用液相扩散的方法将所得红色固体溶于二氯甲烷中,依此加入乙醚和正己烷,静置2周后,得到红色的针状晶体(配合物2)。
收率:93.36%。
1H NMR(400MHz,CDCl3):δ10.315-10.301(d,1H),δ8.583-8.563(d,1H),δ8.442-8.422(d,1H),δ8.177-8.138(t,1H),δ7.924-7.884(t,1H),δ7.763-7.730(t,1H),δ7.550-7.511(m,2H),δ7.418-7.399(d,2H),δ7.328-7.315(d,2H),δ7.231-7.197(t,1H),δ6.909(s,2H),δ6.823-6.809(d,1H),δ6.748-6.715(m,2H),δ2.582(s,6H)ppm.
31P NMR(162MHz,CDCl3):δ-135.60,δ-140.01,δ-144.40,δ-148.80,δ-153.20ppm.
19F NMR(380MHz,CDCl3):δ-72.36,δ-74.25ppm.
IR(KBr,cm-1):1598(s),1486(s),1396(m),1298(s),1263(w),1156(w),1087(m),1042(w),1008(m),840(s),760(s),557(s),431(m).
3、配合物3[Ru(K2-N,N'-dpp)(bpy)(S-dmso)(NH3)]·PF6的制备
目标产物
(1)将配合物2(35mg,0.050mmol)溶于三氯甲烷中,随后通入1.99%的氨气(载气为氮气)半小时,静置1h,重复3次,放置2周,最后在室温下将溶液浓缩,依次加入乙醚和正己烷,通过液相扩散法得到红色片状晶体(配合物3)。
收率:98.01%。
1H NMR(400MHz,CDCl3):δ9.871-9.858(d,1H),δ8.412-8.401(d,1H),δ8.313-8.293(d,1H),δ8.251-8.231(d,1H),δ7.714-7.675(t,1H),δ7.646-7.612(t,1H),δ7.517-7.503(d,1H),δ7.463-7.402(m,2H),δ7.328-7.315(d,2H),δ7.189-7.175(d,1H),δ7.095-7.175(d,1H),δ7.095-7.064(m,1H),δ7.029-7.019(d,1H),δ6.981-6.952(t,1H),δ6.617-6.586(t,1H),δ3.160(s,3H),δ3.110(s,3H),δ2.534(s,3H)ppm.
31P NMR(162MHz,CDCl3):δ-135.92,δ-140.28,δ-144.64,δ-149.00,δ-153.36ppm.
19F NMR(380MHz,CDCl3):δ-72.02,δ-73.89ppm.
IR(KBr,cm-1):3371(w),1604(m),1529(m),1454(w),1421(m),1325(m),1161(w),1080(m),1018(m),843(s),764(m),685(w),557(m),430(m).
表5配合物3的晶体数据
aGooF=[Σw(|Fo|-|Fc|)2/(Nobs-Nparam)]1/2.
bR1=Σ||Fo|-|Fc||/Σ|Fo|.cwR2[(Σw|Fo|-|Fc|)2/Σw2|Fo|2]1/2.
表6配合物3的部分键长键角数据.
4、配合物4[Ru(K2-N,N'-mdpc)(bpy)(S-dmso)(Cl)]制备目标产物
(1)在氮气氛围下,顺-二氯四(二甲基亚砜)钌(1.088g,2.248mmol),2,5-二吡啶基-3-羧甲基-4-甲基吡咯配体(0.659g,2.248mmol),二联吡啶(0.351g,2.247mmol)和三乙胺(2.4mL)溶解于甲苯(50mL)中磁力搅拌加热至105℃反应9h。
(2)反应完成后在氮气氛围中分别加入甲苯,乙醚和水清洗三次,随后,将所得固体溶于二氯甲烷中,并加入无水硫酸钠去除溶液中水,2h后通过旋转蒸发仪器去除溶剂,得到红色的固体。
(3)将红色固体溶于二氯甲烷中,以二氯甲烷、乙酸乙酯(v/v=2:1)为洗脱剂,使用层析硅胶柱进行柱色谱分离,收集第四个产物,得到红色固体产物。
(4)采用液相扩散的方法将所得红色固体溶于二氯甲烷中,依此加入乙醚和正己烷,静置2周后,得到红色的针状晶体(配合物[Ru(K2-N,N'-mdpc)(bpy)(S-dmso)(Cl)])。
收率:24.61%。
1H NMR(400MHz,CDCl3):δ9.677-9.689(d,1H),δ9.552-9.565(d,1H),δ8.045-8.091(t,2H),δ7.847-7.868(d,2H),δ7.738-7.796(m,2H),δ7.485-7.528(m,1H),δ7.430-7.442(d,1H),δ7.132-7.178(m,2H),δ7.026-7.062(m,1H),δ6.892-6.928(m,1H),δ6.779-6.813(m,1H),δ6.724(s,1H),δ3.290(s,3H),δ3.019(s,3H)ppm,δ2.744(s,3H)ppm,δ2.460(s,3H)ppm.
IR(KBr,cm-1):3603(m),2916(s),2497(m),1682(s),1589(m),1521(w),1444(s),1414(w),1323(w),1261(w),1198(w),1153(w),1078(s),1012(w),766(s),729(w),679(w),430(m).
5、配合物5[Ru(K3-N,N'N″-mdpe)(bpy)(Cl)]的制备目标产物
(1)在氮气氛围下,cis-[Ru(dmso)4(Cl)2](1.088g,2.248mmol),2,5-二吡啶基-3-甲基-4-乙酰基吡咯(0.623g,2.248mmol),二联吡啶(0.351g,2.247mmol)和三乙胺(2.4mL)溶解于甲苯(50mL)中磁力搅拌加热至100℃反应12h。
(2)反应完成后在氮气氛围中分别加入甲苯,乙醚和水清洗三次,随后,将所得固体溶于二氯甲烷中,并加入无水硫酸钠去除溶液中水,2h后通过旋转蒸发仪器去除溶剂,得到红色的固体。
(3)采用液相扩散的方法将所得红色固体溶于二氯甲烷中,依此加入乙醚和正己烷,静置2周后,得到红色的针状晶体(配合物5)。
收率:29.41%。
1H NMR(400MHz,CDCl3):δ10.443-10.457(d,1H),δ8.906-8.927(d,1H),δ8.159-8.179(d,1H),δ7.913-7.932(d,1H),δ7.787-7.826(t,1H),δ7.709-7.722(d,1H),δ7.612-7.645(t,1H),δ7.454-7.505(t,1H),δ7.249-7.351(m,2H),δ7.087-7.110(t,2H),δ6.847-6.886(m,2H),δ6.406-6.475(m,2H),δ2.794(s,3H),δ2.603(s,3H).
IR(KBr,cm-1):3095(w),3059(m),1631(m),1589(s),1460(s),1417(m),1354(w),1340(w),1242(w),1136(s),1020(w),982(w),945(w),754(m),619(w).
6、气相色谱实验:
(1)气相色谱测定反应过程中气体的组成,电位为1.0V(vs.NHE)电解质为包含0.01mM配合物1,2,3或5,0.1M[NBu4][PF6],和1.99M NH3的超干乙腈溶液。
(2)在电解的不同时间阶段,使用气密针取100μL上层气体注入气相色谱中,得到电解池中气体组成和含量。直到23.5h后,电解池中各气体含量改变变得缓慢,即可停止实验。
测试结果为:电解23.5h后,配合物1有375.4μmol(938.4当量)的氢气和7.4μmol(18.5当量)的氮气产生,配合物2有459.5μmol(1148.7当量)的氢气和6.32μmol(15.8当量)的氮气产生,配合物3有1458.35μmol(3645.9当量)的氢气和10.55μmol(26.4当量)的氮气产生。电解49.5h后,配合物5有86.08μmol(215.2当量)的氢气和5.85μmol(14.6当量)的氮气产生。通过气相色谱实验发现,配合物3和5电催化氨氧化过程中,氢气和系统内氮气的比例分别稳定在110:1和10:1这远远高于氨分子中氢元素与氮元素的比例(3:1),于是我们认为在电解的过程中有NH2NH2的物质产生。
7、紫外可见光谱实验:
(1)在10mL的比色皿中,加入0.4mL电解液,0.5mL HCl(0.6mol/L)溶液和0.5mL p-C9H11NO的乙醇溶液,加水稀释至10mL反应1h。
(2)取0.5mL反应液于10mL比色皿中稀释至10ml,通过紫外可见光谱仪收集455nm处的吸收强度,并带入通过标准方法制的NH2NH2浓度和吸光度标准曲(Watt G W,Chrisp JD,Spectrophotometric Method for Determination of Hydrazine.AnalyticalChemistry,1952,24(12):2006-2008.),得到电解液中NH2NH2的含量。
测试结果为:电解23.5h后,配合物1,2和3分别产生了341.2μmol(853.0当量),423.0μmol(1057.6当量)和1380.04μmol(3450.1当量)的NH2NH2。这与氢气的含量相一致,说明NH2NH2为主要产物。
以上显示和描述了本发明制备配合物1,2,3,4,5的主要方法和电催化氨氧化特性。
本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理和方法过程,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

1.一种类吡啶吡咯钌配合物,其特征在于:具有式1~式5结构中任意一种:
2.权利要求1所述的一种类吡啶吡咯钌配合物的合成方法,其特征在于:包括以下步骤:
1)2,5-二吡啶基吡咯、2,5-二吡啶基-3-甲基-4-乙酰基吡咯或2,5-二吡啶基-3-羧甲基-4-甲基吡咯与顺-二氯四(二甲基亚砜)钌和二联吡啶以及碱性化合物溶于甲苯中,加热回流反应,回流反应的温度为100~115℃,时间为8~12h,即得式1、式4或式5结构类吡啶吡咯钌配合物;
2)将式1结构类吡啶吡咯钌配合物溶于甲苯中,先加热回流反应,回流反应的温度为100~115℃,时间为2~6d,再加入饱和六氟磷酸铵溶液进行离子交换反应,得到式2结构类吡啶吡咯钌配合物;
3)将式2结构类吡啶吡咯钌配合物溶于甲苯中,再通入含氨气体反应,即得式3结构类吡啶吡咯钌配合物。
3.根据权利要求2所述的一种类吡啶吡咯钌配合物的合成方法,其特征在于:2,5-二吡啶基吡咯、2,5-二吡啶基-3-甲基-4-乙酰基吡咯或2,5-二吡啶基-3-羧甲基-4-甲基吡咯与顺-二氯四(二甲基亚砜)钌或二联吡啶的摩尔比为1:2~2:1。
4.根据权利要求2所述的一种类吡啶吡咯钌配合物的合成方法,其特征在于:所述碱性化合物为三乙胺、氢化钙、氢化钠中至少一种。
5.根据权利要求2所述的一种类吡啶吡咯钌配合物的合成方法,其特征在于:所述含氨气体中氨气浓度大于1%。
6.权利要求1所述的一种类吡啶吡咯钌配合物的应用,其特征在于:作为电催化氨氧化催化剂。
CN202111584527.XA 2021-12-22 2021-12-22 一种类吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化催化剂的应用 Active CN114478648B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202111584527.XA CN114478648B (zh) 2021-12-22 2021-12-22 一种类吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化催化剂的应用
EP22909854.6A EP4261216A1 (en) 2021-12-22 2022-12-15 Pyridine pyrrole ruthenium complex, preparation method therefor and application thereof as catalyst for preparing hydrazine by electrocatalytic ammonia oxidation
KR1020237024287A KR20230119704A (ko) 2021-12-22 2022-12-15 피리딘피롤루테늄 배위결합복합체, 이의 제조방법 및암모니아의 전기 촉매 산화에 의한 하이드라진 제조를 위한 촉매제로서의 응용
PCT/CN2022/139184 WO2023116540A1 (zh) 2021-12-22 2022-12-15 一种吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化制备肼的催化剂的应用
JP2023524432A JP2024504897A (ja) 2021-12-22 2022-12-15 ピリジン-ピロール-ルテニウム錯体とその生成方法、及びアンモニア酸化に対し電極触媒作用を発揮してヒドラジンを生成する触媒としての応用
US18/272,369 US20240101586A1 (en) 2021-12-22 2022-12-15 Pyridine pyrrole ruthenium coordination complex, preparation method therefor and use thereof as catalyst for electrocatalyzing ammonia oxidation to prepare hydrazine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111584527.XA CN114478648B (zh) 2021-12-22 2021-12-22 一种类吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化催化剂的应用

Publications (2)

Publication Number Publication Date
CN114478648A CN114478648A (zh) 2022-05-13
CN114478648B true CN114478648B (zh) 2024-01-30

Family

ID=81493812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111584527.XA Active CN114478648B (zh) 2021-12-22 2021-12-22 一种类吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化催化剂的应用

Country Status (6)

Country Link
US (1) US20240101586A1 (zh)
EP (1) EP4261216A1 (zh)
JP (1) JP2024504897A (zh)
KR (1) KR20230119704A (zh)
CN (1) CN114478648B (zh)
WO (1) WO2023116540A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478648B (zh) * 2021-12-22 2024-01-30 中南大学 一种类吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化催化剂的应用
CN114853798A (zh) * 2022-06-07 2022-08-05 山东京博石油化工有限公司 一种吡咯环三齿金属配合物及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1785501A (zh) * 2004-12-06 2006-06-14 罗门哈斯公司 改进的(氨)氧化催化剂和用来转化低级烷烃的催化(氨)氧化法
WO2014050528A1 (ja) * 2012-09-28 2014-04-03 富士フイルム株式会社 光電変換素子および色素増感太陽電池
CN108997435A (zh) * 2018-05-29 2018-12-14 中南大学 一种二吡啶基吡咯-钌(i)配合物及其制备方法和作为电化学还原催化剂的应用
WO2023116540A1 (zh) * 2021-12-22 2023-06-29 中南大学 一种吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化制备肼的催化剂的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465136B2 (en) * 2019-10-23 2022-10-11 Wisconsin Alumni Research Foundation Metal-metal bonded ammonia oxidation catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1785501A (zh) * 2004-12-06 2006-06-14 罗门哈斯公司 改进的(氨)氧化催化剂和用来转化低级烷烃的催化(氨)氧化法
WO2014050528A1 (ja) * 2012-09-28 2014-04-03 富士フイルム株式会社 光電変換素子および色素増感太陽電池
CN108997435A (zh) * 2018-05-29 2018-12-14 中南大学 一种二吡啶基吡咯-钌(i)配合物及其制备方法和作为电化学还原催化剂的应用
WO2023116540A1 (zh) * 2021-12-22 2023-06-29 中南大学 一种吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化制备肼的催化剂的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Chemistry – A European Journal.An Easy One-Pot Synthesis of Diverse 2,5-Di(2-pyridyl)pyrroles: A Versatile Entry Point to Metal Complexes of Functionalised, Meridial and Tridentate 2,5-Di(2-pyridyl)pyrrolato Ligands.Chemistry – A European Journal.2014,第20卷(第36期),第11445-11456页. *
Direct synthesis of hydrazine by efficient electrochemical ruthenium-catalysed ammonia oxidation;Guo Chen,等;06;第06卷(第10期);第949-958页 *
双吡啶单吡咯钌配合物与DNA的相互作用;甘志良,等;华中师范大学学报(自然科学版);第53卷(第03期);第365-372页 *

Also Published As

Publication number Publication date
JP2024504897A (ja) 2024-02-02
EP4261216A1 (en) 2023-10-18
WO2023116540A1 (zh) 2023-06-29
US20240101586A1 (en) 2024-03-28
CN114478648A (zh) 2022-05-13
KR20230119704A (ko) 2023-08-16

Similar Documents

Publication Publication Date Title
CN114478648B (zh) 一种类吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化催化剂的应用
Boghaei et al. Synthesis, characterization and study of vanadyl tetradentate Schiff base complexes as catalyst in aerobic selective oxidation of olefins
Hirahara et al. New series of dinuclear ruthenium (II) complexes synthesized using photoisomerization for efficient water oxidation catalysis
Zhou et al. Multielectron transfer and single-crystal x-ray structure of a trinuclear cyanide-bridged platinum-iron species
Wang et al. Synthesis of dimethyl carbonate from methyl carbamate and methanol over lanthanum compounds
Liu et al. Highly Efficient and Selective Visible‐Light Driven CO2‐to‐CO Conversion by a Co (II) Homogeneous Catalyst in H2O/CH3CN Solution
CN108892783B (zh) 一种基于曙红的可见光驱动制氢的金属-有机框架材料及其制备方法
CN107175133A (zh) 一种二氧化硅负载的铜‑联吡啶催化剂及其制备方法
Grodkowski et al. Ferrous ions as catalysts for photochemical reduction of CO2 in homogeneous solutions
Villalobos et al. Platinum (II) complexes containing quaternized nitrogen ligands: Synthesis, stability, and evaluation as catalysts for methane and benzene H/D exchange
Bian et al. Synthesis and properties of a novel tripodal bipyridyl ligand tb-carbinol and its Ru (II)–Re (I) trimetallic complexes: investigation of multimetallic artificial systems for photocatalytic CO 2 reduction
Dutta et al. Dehydrogenation of formic acid mediated by a Phosphorus–Nitrogen PN3P-manganese pincer complex: Catalytic performance and mechanistic insights
CN108080036B (zh) 一种基于光敏性金属-有机配位纳米笼与二氧化钛的杂化材料及其制备方法和应用
CN108126754B (zh) 一种不对称氮氢-吡啶-镍类金属催化剂及其制备方法和应用
CN107540660B (zh) 一种以三联吡啶衍生物为配体的铁配合物及其合成方法和应用
CN113603648B (zh) 一种钴配合物及其制备方法和应用
Kim et al. Synthesis, structures, electrochemistry and catalytic activities of copper (II) and palladium (II) complexes with asymmetric tetraazacycloannulenes
Fukushima et al. Photoinduced four-and six-electron reduction of mononuclear ruthenium complexes having NAD+ analogous ligands
Apaydin et al. Synthesis and investigation of tetraphenyltetrabenzoporphyrins for electrocatalytic reduction of carbon dioxide
Lawrence et al. Synthesis, X-ray crystallographic, electrochemical, and spectroscopic studies of Bis-(1, 10-phenanthroline)(2, 2′-bipyridine) cobalt (III) Hexafluorophosphate
Lin et al. Synthesis, characterization and properties of a copper complex with dicyano acetic acid methyl ester ligand derived from tetracyanoethylene
Morvan et al. Electrochemical Synthesis of Mono‐and Disubstituted Diiron Dithiolate Complexes as Models for the Active Site of Iron‐Only Hydrogenases
CN105601678A (zh) 一种桥头氮原子上带二茂铁基团的[FeFe]-氢化酶模型物及其制备方法
CN107698777B (zh) 一种铜配位的多孔聚合物、制备方法及应用
Prignot et al. Divergent behavior in the chemistry of metal‐bis (dithiolene) complexes appended with peripheral aliphatic butyl chains

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant