CN114476093A - 一种分布式电推进飞行器及其控制方法 - Google Patents

一种分布式电推进飞行器及其控制方法 Download PDF

Info

Publication number
CN114476093A
CN114476093A CN202210266771.XA CN202210266771A CN114476093A CN 114476093 A CN114476093 A CN 114476093A CN 202210266771 A CN202210266771 A CN 202210266771A CN 114476093 A CN114476093 A CN 114476093A
Authority
CN
China
Prior art keywords
aircraft
adjusting plate
electric propulsion
thrust adjusting
distributed electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210266771.XA
Other languages
English (en)
Inventor
陶智
余明星
李海旺
唐鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202210266771.XA priority Critical patent/CN114476093A/zh
Publication of CN114476093A publication Critical patent/CN114476093A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C7/00Structures or fairings not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明提供了一种分布式电推进飞行器及其控制方法,包括:机身,机身上表面轴对称设置有第一侧板以及第二侧板,在第一侧板与第二侧板之间固设有上转轴以及下转轴,在所述上转轴的偏轴上固设有上推力调节板,在所述下转轴的偏轴上固设有下推力调节板;所述上推力调节板以及所述下推力调节板用于改变气流方向以增加分布式电推进飞行器降落时的阻力。本发明在已有气动布局的基础上,在不改变推进系统流量、充分发挥翼身融合分布式推进飞行器增升优势的前提下,采用改变气流方向的方式调节推力,满足不同状态的推力需求,实现全飞行工况下的增升增阻需求。

Description

一种分布式电推进飞行器及其控制方法
技术领域
本发明涉及电推进飞行器领域,尤其涉及一种分布式电推进飞行器及其控制方法。
背景技术
作为最有发展前景的下一代民用运输机、客机、军用运输机、军用轰炸机等大载重量飞行器,翼身融合分布式推进飞行器通过分布排列在飞行器尾部的涵道风扇抽吸边界层,利用耦合效应大幅度提升了整机升阻比,由于利用边界呈抽吸效应的分布式飞行器存在飞行器与推进系统强耦合的关系,这一气动特性的提升与涵道风扇的转速密切相关。然而飞行器的飞行具有连续性,在实际飞行过程中会经历不同飞行状态,包括起飞、巡航、降落等工况,在不同工况下,涵道风扇的转速会处于不同的水平,因而会导致其飞行升力也会因为涵道风扇转速的调整而受到影响,尤其是在飞行器降落等工况中,推力调节与稳定升力的紧耦合问题突出,涵道风扇转速降低使得飞行器无法保持增升优势,导致飞行安全性能下降。
翼身融合分布式推进飞行器通过抽吸边界层,利用飞行器-发动机耦合优势,大幅提升气动特性,具有增升、减阻、低油耗、低噪声、飞行器安全裕度高等优点,成为了最具发展前景的大载重飞行器。但目前绝大多数相关研究都聚焦在巡航工况,然而在降落等工况下,飞行需要匹配合适的推力,但飞行器推力调节的紧耦合问题非常严重——飞行器只能通过降低涵道风扇转速减小推力,抽吸流量减小,增升效果大幅降低,使得降落工况下的飞行稳定性和安全性大幅降低。
反推可以减速,传统客机的反推装置主要有抓斗式,折流叶栅式和瓣式三种结构形式,但是传统反推极易造成飞行器失速,传统客机的反推装置并不适用于这种分布式推进系统,而涡桨发动机所特有的减速方法——反桨也不适用,因为沉降掉高问题是在低空进近时出现的,如果此时反桨会导致飞行器瞬间失去升力。
目前,并没有一种能够解决上述技术问题的技术方案,具体地,并没有一种分布式电推进飞行器及其控制方法。
发明内容
本发明的目的是提出一种分布式电推进飞行器,包括:机身,所述机身上表面轴对称设置有第一侧板以及第二侧板,在所述第一侧板与所述第二侧板之间固设有上转轴以及下转轴,其中,
在所述上转轴的偏轴上固设有上推力调节板,在所述下转轴的偏轴上固设有下推力调节板;
所述上推力调节板以及所述下推力调节板用于改变气流方向以增加分布式电推进飞行器降落时的阻力。
根据本发明提供的一种分布式电推进飞行器,还包括分设在机身两侧的第一机翼以及第二机翼;
在所述机身与所述第一机翼相连接处垂直向上延伸设置所述第一侧板,在所述机身与所述第二机翼相连接处垂直向上延伸设置所述第二侧板。
根据本发明提供的一种分布式电推进飞行器,还包括沿机身相垂直方向分布式设置的一个或多个涵道风扇,所述涵道风扇沿机尾方向的后端间隔设置有呈上下分布设置的所述上推力调节板以及所述下推力调节板。
根据本发明提供的一种分布式电推进飞行器,还包括固定导流板,所述固定导流板分为上导流板以及下导流板,其中,所述上导流板通过分设在所述机身两侧的支撑架固定,所述下导流板贴合所述机身上表面设置。
根据本发明提供的一种分布式电推进飞行器,还包括中央处理单元,其用于根据飞行器不同的飞行阶段,控制所述上推力调节板以及所述下推力调节板的开启与关闭。
根据本发明提供的一种分布式电推进飞行器,在飞行器起飞阶段,所述中央处理单元控制所述上推力调节板、所述下推力调节板与所述机身平行设置并处于开启状态。
根据本发明提供的一种分布式电推进飞行器,在飞行器着陆阶段,所述中央处理单元控制所述上推力调节板与所述下推力调节板构成夹角并处于关闭状态。
根据本发明提供的一种分布式电推进飞行器,在飞行器起飞阶段和/或飞行器着陆阶段,所述中央处理单元控制所述涵道风扇的风扇转速保持不变。
根据本发明提供的一种分布式电推进飞行器,还包括电池驱动电机,所述电池驱动电机用于驱动所述涵道风扇、所述上推力调节板以及所述下推力调节板。
根据本发明提供的一种分布式电推进飞行器,所述机身上表面被设置为用以提供多个涵道风扇耦合融合的平面。
本发明还提供一种辅助分布式电推进飞行器的控制方法,包括:
在飞行器起飞阶段,控制所述上推力调节板、所述下推力调节板与所述机身平行设置;
在飞行器着陆阶段,控制所述上推力调节板与所述下推力调节板构成夹角并处于闭合状态。
本发明通过在机身上表面轴对称设置有第一侧板以及第二侧板,在所述第一侧板与所述第二侧板之间固设有上转轴以及下转轴,在所述上转轴的偏轴上固设有上推力调节板,在所述下转轴的偏轴上固设有下推力调节板,其中,所述上推力调节板以及所述下推力调节板用于改变气流方向以增加分布式电推进飞行器降落时的阻力。
本发明提出基于大流量小推力的推进飞行器,即在分布式飞行器降落工况下,涵道风扇的转速仍然保持在较大水平,以维持飞行器的升力,同时利用飞行器尾部附加的推力调节板所提供的增升系统,来调节飞行器的推力控制在较小水平,从而实现降落工况下的大流量小推力调节。实现了在已有气动布局的基础上,在不改变推进系统流量、充分发挥翼身融合分布式推进飞行器增升优势的前提下,采用改变气流方向的方式调节推力,满足不同状态的推力需求,实现全飞行工况下的增升增阻需求。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的一种分布式电推进飞行器的结构示意图之一;
图2是本发明提供的一种分布式电推进飞行器的结构示意图之二;
图3是本发明提供的一种分布式电推进飞行器的结构示意图之三;
图4是本发明提供的一种分布式电推进飞行器的结构示意图之四;
图5是本发明提供的一种分布式电推进飞行器的模块连接示意图;
图6是本发明提供的一种辅助分布式电推进飞行器的控制方法的流程示意图;
图7是本发明提供的一种辅助分布式电推进飞行器的推力调节原理图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合图1-图7描述本发明的具体实施方式。
本发明将结合图1至图4对所述分布式电推进飞行器的结构做更详细的描述,所述一种分布式电推进飞行器,包括:机身1,如图1所示,所述机身即为飞行器的主体部分,其被设置为具备平滑上表面的结构,而在其他的实施例中,为了减少飞行过程中的空气阻力,也可以设置为其他流线型形状。
进一步地,所述机身1上表面轴对称设置有第一侧板11以及第二侧板12,如图1所示,第一侧板11以及第二侧板12为基于所述机身的轴对称设置,第一侧板11以及第二侧板12在图1中被设置为直角梯形,而在其他的实施例中,也可以设置为其他形状。
进一步地,在第一侧板11与第二侧板12之间固设有上转轴13以及下转轴14,如图4所示,示出了一种电推进飞行器的部分剖面图,所述上转轴13以及下转轴14分设于上下两个方向,优选地,所述上转轴13与所述第一侧板11固定连接,所述下转轴14与所述第二侧板12固定连接,其连接的方式包括但不限于螺纹连接、铆接、焊接、卡接、套接等。
进一步地,在所述上转轴13的偏轴上固设有上推力调节板15,在下转轴14的偏轴上固设有下推力调节板16,如图4所示,本发明为了更好的实现对飞行器在着陆过程中的稳定性进行分析,并不对所述上转轴13以及所述下转轴14的偏轴位置作出限定,而设置偏轴则是为了更好的通过控制气流来协调飞行器,更好的增加飞行升力,更好的增加飞行器着陆阻力。
进一步地,所述上推力调节板15以及所述下推力调节板16用于改变气流方向以增加分布式电推进飞行器降落时的阻力,如图1至图4所示,在分布排列的涵道风扇周围,安装了固定导流板和可动推力调节板,采用翻板式推力调节机构,当飞行器推力需求改变时,两侧推力调节板以一定规律闭合,闭合的同时上下两侧气体通道打开,实现持续抽吸下推力的连续控制,此过程中涵道风扇转速保持不变。本发明通过设置推力调节板进而实现俯仰力矩可控条件下推力的连续调节,采用改变气流方向的方式实现涵道风扇转速不变条件下的推力连续有效调节,在此基础上提出控制方案,保持翼身融合分布式推进飞行器飞发耦合增升的优势。
进一步地,如图1所示,本发明提供的分布式电推进飞行器,还包括分设在机身1两侧的第一机翼17以及第二机翼18,所述第一机翼17以及第二机翼18呈对称设置。
进一步地,在机身1与第一机翼17相连接处垂直向上延伸设置第一侧板11,在机身1与第二机翼18相连接处垂直向上延伸设置第二侧板12,机身1与第一机翼17可以为一个整体,也可以为可拆卸结构,本发明旨在说明所述第一侧板11的位置,而对所述机身1与所述第一机翼17相连接进行限定,但这并不意味着两者存在必然的连接结构,两者也可以为一体成型的结构,同理,所述第二侧板12同样也设置在所述机身1与所述第二机翼18相连接处。
进一步地,还包括沿机身1相垂直方向分布式设置的一个或多个涵道风扇2,所述涵道风扇2沿机尾方向的后端间隔设置有呈上下分布设置的所述上推力调节板15以及所述下推力调节板16,如图3所示,所述涵道风扇2的数量为6个,而在其他的实施例中,也可以为8个、10个甚至更多,所述机身1上表面被设置为用以提供多个涵道风扇2耦合融合的平面,进一步地,所述一个或多个涵道风扇2所构成的结构与所述机身1相垂直,所述涵道风扇2为分布式设置,其可以被均匀的间隔设置,也可以基于所述机身轴对称排列,在此不予赘述。所述涵道风扇2沿机尾方向的后端间隔设置有所述上推力调节板15以及所述下推力调节板16,所述上推力调节板15以及所述下推力调节板16在飞行器着陆阶段将形成一个端面,而所述涵道风扇2沿机尾方向的后端间隔设置有所述端面,即根据空气动力学基本常识,气流经由所述涵道风扇2后会基于所述上推力调节板15以及所述下推力调节板16而形成增加升力、增加阻力的作用。
进一步地,还包括固定导流板3,所述固定导流板3分为上导流板31以及下导流板32,其中,所述上导流板31通过分设在所述机身1两侧的支撑架33固定,所述下导流板32贴合所述机身1上表面设置,如图3所示,所述机身1的两侧分设有垂直设置的支撑架33,所述支撑架33上方设置有上导流板31,进一步地,所述下导流板32的下表面贴合所述机身1上表面,所述下导流板32的上表面贴合所述涵道风扇2的下缘设置。
图5是本发明提供的一种分布式电推进飞行器的模块连接示意图,如图5所示,本发明还包括中央处理单元4,其用于根据飞行器不同的飞行阶段,控制所述上推力调节板15以及所述下推力调节板16的开启与关闭,所述中央处理单元4分别与所述涵道风扇2、所述上推力调节板15以及所述下推力调节板16相连接。
进一步地,在飞行器起飞阶段,所述中央处理单元4控制所述上推力调节板15、所述下推力调节板16与所述机身1平行设置并处于开启状态,在飞行器起飞阶段,为了减少阻力,优选地需要降低所述上推力调节板15、所述下推力调节板16所带来的阻力,进而可以控制所述上推力调节板15、所述下推力调节板16与所述机身1平行设置。
进一步地,在飞行器着陆阶段,所述中央处理单元4控制所述上推力调节板15与所述下推力调节板16构成夹角并处于关闭状态,在飞行器着陆阶段,为了增加阻力来减少滑行时间,为了增加升力,优选地控制所述上推力调节板15与所述下推力调节板16构成夹角并处于关闭状态。
进一步地,在飞行器起飞阶段和/或飞行器着陆阶段,所述中央处理单元4控制所述涵道风扇2的风扇转速保持不变,飞行器的飞行具有连续性,在实际飞行过程中会经历不同飞行状态,包括起飞、巡航、降落等工况,在不同工况下,涵道风扇的转速会处于不同的水平,因而会导致其飞行升力也会因为涵道风扇转速的调整而受到影响,尤其是在飞行器降落等工况中,推力调节与稳定升力的紧耦合问题突出,涵道风扇转速降低使得飞行器无法保持增升优势,导致飞行安全性能下降,而控制所述涵道风扇2的风扇转速保持不变将可以保持增升优势,提高飞行安全性能。
而为了保持所述涵道风扇2的风扇转速保持不变,利用飞行器尾部附加的推力调节板所提供的增升系统,来调节飞行器的推力控制在较小水平,从而实现降落工况下的大流量小推力调节。
进一步地,本发明还包括电池驱动电机5,所述电池驱动电机5用于驱动所述涵道风扇2、所述上推力调节板15以及所述下推力调节板16,电池放出的电通过直流母线和电缆传输进入逆变器,进而进入电池驱动电机5旋转,电池驱动电机5通过机械装置与涵道风扇2连接,带动涵道风扇2旋转,从而为飞行器提供推力,并通过抽吸边界层产生附加升力,同时通过设置监视控制器,用于监测电池的荷电状态,并对其他部件实现故障诊断。
本发明提出了一种带有增升系统的翼身融合分布式电推进飞行器,所述飞行器以电池驱动电机5作为驱动装置,以电池作为能量来源,同时在所述飞行器尾部布置了6台涵道风扇,在为飞行器提供推力的同时,通过抽吸机体表面的边界层,从而实现增加飞行器升力的作用。同时,针对飞行器降落阶段升力与转速紧耦合的问题,设计了推力调节装置,用以在不改变涵道风扇转速的条件下,通过改变气流方向增加阻力,提升飞行器降落稳定性。最后,针对带有增升系统的翼身融合分布式电推进飞行器,提出了其在起飞阶段和着陆阶段的航点和航段划分及其约束条件,并提出了每一阶段的用于实现飞行器平稳起飞和着陆运行程序。
本发明着眼于飞行器飞行全工况过程,提出了利用涵道风扇抽吸边界层的翼身融合飞发耦合布局形式及其电力系统布局形式;提出了分布式动力系统大流量小推力调节方法,解决了分布式推进飞行器的紧耦合问题,实现俯仰力矩可控条件下的推力连续调节,具有增升增阻作用;提出了飞行器在起飞和着陆阶段的飞行程序,在充分发挥翼身融合分布式推进飞行器的飞发融合耦合优势上实现飞行器平稳飞行。
图6是本发明提供的一种辅助分布式电推进飞行器的控制方法的流程示意图,如图6所示,主要包括:
步骤S101,在飞行器起飞阶段,控制所述上推力调节板、所述下推力调节板与所述机身平行设置。
具体地,在飞行器起飞阶段,所述中央处理单元4控制所述上推力调节板15、所述下推力调节板16与所述机身1平行设置并处于开启状态,在飞行器起飞阶段,为了减少阻力,优选地需要降低所述上推力调节板15、所述下推力调节板16所带来的阻力,进而可以控制所述上推力调节板15、所述下推力调节板16与所述机身1平行设置。
步骤S102,在飞行器着陆阶段,控制所述上推力调节板与所述下推力调节板构成夹角并处于闭合状态。
具体地,在飞行器着陆阶段,所述中央处理单元4控制所述上推力调节板15与所述下推力调节板16构成夹角并处于关闭状态,在飞行器着陆阶段,为了增加阻力来减少滑行时间,为了增加升力,优选地控制所述上推力调节板15与所述下推力调节板16构成夹角并处于关闭状态。
图7是本发明提供的一种辅助分布式电推进飞行器的推力调节原理图,如图7所示,本发明所示出的分布式电推进飞行器具有以下特点:
推力调节板的偏转与气流通道的打开具有同时性,简化了装置控制方式;
着眼于整个推进系统,控制具有良好的同步性;
将机身部分延长作为下侧推力调节板,使得装置对气动特性影响小,加工难度小,结构紧凑;
上下侧推力调节板可以实现非对称偏转,便于探究偏转规律。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (11)

1.一种分布式电推进飞行器,其特征在于,包括:机身,所述机身上表面轴对称设置有第一侧板以及第二侧板,在所述第一侧板与所述第二侧板之间固设有上转轴以及下转轴;
在所述上转轴的偏轴上固设有上推力调节板,在所述下转轴的偏轴上固设有下推力调节板;
所述上推力调节板以及所述下推力调节板用于改变气流方向以增加分布式电推进飞行器降落时的阻力。
2.根据权利要求1所述的分布式电推进飞行器,其特征在于,还包括分设在机身两侧的第一机翼以及第二机翼;
在所述机身与所述第一机翼相连接处垂直向上延伸设置所述第一侧板,在所述机身与所述第二机翼相连接处垂直向上延伸设置所述第二侧板。
3.根据权利要求1所述的分布式电推进飞行器,其特征在于,还包括沿机身相垂直方向分布式设置的一个或多个涵道风扇,所述涵道风扇沿机尾方向的后端间隔设置有呈上下分布设置的所述上推力调节板以及所述下推力调节板。
4.根据权利要求1所述的分布式电推进飞行器,其特征在于,还包括固定导流板,所述固定导流板分为上导流板以及下导流板,其中,所述上导流板通过分设在所述机身两侧的支撑架固定,所述下导流板贴合所述机身上表面设置。
5.根据权利要求1所述的分布式电推进飞行器,其特征在于,还包括中央处理单元,其用于根据飞行器不同的飞行阶段,控制所述上推力调节板以及所述下推力调节板的开启与关闭。
6.根据权利要求5所述的分布式电推进飞行器,其特征在于,在飞行器起飞阶段,所述中央处理单元控制所述上推力调节板、所述下推力调节板与所述机身平行设置并处于开启状态。
7.根据权利要求5所述的分布式电推进飞行器,其特征在于,在飞行器着陆阶段,所述中央处理单元控制所述上推力调节板与所述下推力调节板构成夹角并处于关闭状态。
8.根据权利要求5所述的分布式电推进飞行器,其特征在于,在飞行器起飞阶段和/或飞行器着陆阶段,所述中央处理单元控制所述涵道风扇的风扇转速保持不变。
9.根据权利要求1所述的分布式电推进飞行器,其特征在于,还包括电池驱动电机,所述电池驱动电机用于驱动所述涵道风扇、所述上推力调节板以及所述下推力调节板。
10.根据权利要求1所述的分布式电推进飞行器,其特征在于,所述机身上表面被设置为用以提供多个涵道风扇耦合融合的平面。
11.一种辅助分布式电推进飞行器的控制方法,其特征在于,包括:
在飞行器起飞阶段,控制所述上推力调节板、所述下推力调节板与所述机身平行设置;
在飞行器着陆阶段,控制所述上推力调节板与所述下推力调节板构成夹角并处于闭合状态。
CN202210266771.XA 2022-03-17 2022-03-17 一种分布式电推进飞行器及其控制方法 Pending CN114476093A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210266771.XA CN114476093A (zh) 2022-03-17 2022-03-17 一种分布式电推进飞行器及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210266771.XA CN114476093A (zh) 2022-03-17 2022-03-17 一种分布式电推进飞行器及其控制方法

Publications (1)

Publication Number Publication Date
CN114476093A true CN114476093A (zh) 2022-05-13

Family

ID=81485515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210266771.XA Pending CN114476093A (zh) 2022-03-17 2022-03-17 一种分布式电推进飞行器及其控制方法

Country Status (1)

Country Link
CN (1) CN114476093A (zh)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130112804A1 (en) * 2010-05-07 2013-05-09 Ohio University Multi-Modal Vehicle
CN103171766A (zh) * 2011-12-20 2013-06-26 北京航空航天大学 短距起降无人飞翼
CN103231795A (zh) * 2013-04-12 2013-08-07 成都飞机设计研究所 一种公务机的发动机上置及前掠翼鸭式布局
CN103921931A (zh) * 2014-04-28 2014-07-16 龙川 涵道机翼系统以及运用该系统的飞行器
CN104908942A (zh) * 2014-03-14 2015-09-16 顾乃健 可垂直起降的轻型飞机
US20150291289A1 (en) * 2012-12-11 2015-10-15 United Technologies Corporation Asymmetric thrust reversers
CN105235675A (zh) * 2015-10-14 2016-01-13 江门飞鲸科技实业有限公司 一种使用单涵道风扇进行矢量推进的气垫船
CN106005371A (zh) * 2016-05-27 2016-10-12 东北师范大学 差分直驱全动三舵面无人机
CN108367803A (zh) * 2016-01-15 2018-08-03 极光飞行科学公司 混合动力推进式垂直起降航空器
CN109334950A (zh) * 2018-10-18 2019-02-15 珠海展祥模型有限公司 一种固定翼飞机
CN109747814A (zh) * 2019-03-18 2019-05-14 北京航空航天大学 一种机身翻板式推力减小装置
CN109911194A (zh) * 2018-11-22 2019-06-21 周雯韵 一种采用分布式动力系统的短距或垂直起降飞行器
US20200023986A1 (en) * 2018-07-20 2020-01-23 Rolls-Royce Plc Supersonic aircraft turbofan engine
CN210437383U (zh) * 2019-06-03 2020-05-01 北京领恩科技有限公司 飞行器
CN112512921A (zh) * 2018-07-27 2021-03-16 赛乐特温斯有限责任公司 飞机和用于运行飞机的方法
CN112722243A (zh) * 2021-01-19 2021-04-30 西北工业大学 一种用于短距/垂直起降的分布式电涵道风扇动力系统
CN112722263A (zh) * 2021-01-19 2021-04-30 西北工业大学 一种分布式动力耦合增升翼面的垂直/短距起降飞行器
CN112896529A (zh) * 2021-03-10 2021-06-04 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种辅助推进装置及电动飞机
CN113508080A (zh) * 2019-03-04 2021-10-15 帕尔夫知识产权私人有限公司 垂直起降载具
CN113799970A (zh) * 2021-10-28 2021-12-17 上海磐拓航空科技服务有限公司 一种集成涵道风扇的升力面结构

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130112804A1 (en) * 2010-05-07 2013-05-09 Ohio University Multi-Modal Vehicle
CN103171766A (zh) * 2011-12-20 2013-06-26 北京航空航天大学 短距起降无人飞翼
US20150291289A1 (en) * 2012-12-11 2015-10-15 United Technologies Corporation Asymmetric thrust reversers
CN103231795A (zh) * 2013-04-12 2013-08-07 成都飞机设计研究所 一种公务机的发动机上置及前掠翼鸭式布局
CN104908942A (zh) * 2014-03-14 2015-09-16 顾乃健 可垂直起降的轻型飞机
CN103921931A (zh) * 2014-04-28 2014-07-16 龙川 涵道机翼系统以及运用该系统的飞行器
CN105235675A (zh) * 2015-10-14 2016-01-13 江门飞鲸科技实业有限公司 一种使用单涵道风扇进行矢量推进的气垫船
CN108367803A (zh) * 2016-01-15 2018-08-03 极光飞行科学公司 混合动力推进式垂直起降航空器
CN106005371A (zh) * 2016-05-27 2016-10-12 东北师范大学 差分直驱全动三舵面无人机
US20200023986A1 (en) * 2018-07-20 2020-01-23 Rolls-Royce Plc Supersonic aircraft turbofan engine
CN112512921A (zh) * 2018-07-27 2021-03-16 赛乐特温斯有限责任公司 飞机和用于运行飞机的方法
CN109334950A (zh) * 2018-10-18 2019-02-15 珠海展祥模型有限公司 一种固定翼飞机
CN109911194A (zh) * 2018-11-22 2019-06-21 周雯韵 一种采用分布式动力系统的短距或垂直起降飞行器
CN113508080A (zh) * 2019-03-04 2021-10-15 帕尔夫知识产权私人有限公司 垂直起降载具
CN109747814A (zh) * 2019-03-18 2019-05-14 北京航空航天大学 一种机身翻板式推力减小装置
CN210437383U (zh) * 2019-06-03 2020-05-01 北京领恩科技有限公司 飞行器
CN112722243A (zh) * 2021-01-19 2021-04-30 西北工业大学 一种用于短距/垂直起降的分布式电涵道风扇动力系统
CN112722263A (zh) * 2021-01-19 2021-04-30 西北工业大学 一种分布式动力耦合增升翼面的垂直/短距起降飞行器
CN112896529A (zh) * 2021-03-10 2021-06-04 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种辅助推进装置及电动飞机
CN113799970A (zh) * 2021-10-28 2021-12-17 上海磐拓航空科技服务有限公司 一种集成涵道风扇的升力面结构

Similar Documents

Publication Publication Date Title
CN110035954B (zh) 用于私人飞机的通风旋翼安装臂架
JP7333144B2 (ja) 航空機抗力低減システム及び内部冷却電気モータ・システム並びにこれらを使用する航空機
US11492099B2 (en) Aircraft nacelle having electric motor and thrust reversing air exhaust flaps
CN208746231U (zh) 一种分布式涵道螺旋桨动力垂直起降无人机
CN104816823A (zh) 一种涵道旋翼飞行器
CN108569399A (zh) 一种采用分布式涵道动力的短距起降无人机
CN104401480A (zh) 涵道式倾转飞行器
WO2022082962A1 (zh) 一种飞机推进系统
CN110466297A (zh) 一种飞行汽车及飞行汽车控制方法
US20200247536A1 (en) Vertical takeoff and landing (vtol) aircraft
US20210291964A1 (en) Open rotor boundary layer ingestion booster
CN110723284A (zh) 一种可倾转涵道风扇的垂直升降固定翼飞行器
CN112407299A (zh) 一种翼身融合布局飞机
CN204623838U (zh) 一种涵道旋翼飞行器
CN108382578B (zh) 一种高速混合布局垂直起降飞行器
CN113799970A (zh) 一种集成涵道风扇的升力面结构
CN111942581B (zh) 一种分布升力鸭式布局垂直起降无人机及控制方法
CN114476093A (zh) 一种分布式电推进飞行器及其控制方法
EP4134301A1 (en) Vertical takeoff and landing aircraft
US20220063793A1 (en) Aircraft equipped with a distributed counterrotating unducted fan propulsion system
WO2012146931A1 (en) Lift generating device
CN115196008B (zh) 一种基于混合电推进的超高速直升机构型
CN117963144B (zh) 一种飞机的推进传动装置及使用方法
CN215922545U (zh) 一种倾转涵道无人机
CN108528705A (zh) 用于固定翼无人机的动力机尾装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination