CN114474712A - Continuous fiber reinforced composite material efficient high-speed 3D printing head and using method thereof - Google Patents
Continuous fiber reinforced composite material efficient high-speed 3D printing head and using method thereof Download PDFInfo
- Publication number
- CN114474712A CN114474712A CN202210052808.9A CN202210052808A CN114474712A CN 114474712 A CN114474712 A CN 114474712A CN 202210052808 A CN202210052808 A CN 202210052808A CN 114474712 A CN114474712 A CN 114474712A
- Authority
- CN
- China
- Prior art keywords
- printing
- nozzle
- continuous fiber
- modules
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010146 3D printing Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000000463 material Substances 0.000 title claims abstract description 17
- 239000003733 fiber-reinforced composite Substances 0.000 title claims abstract description 10
- 239000000835 fiber Substances 0.000 claims abstract description 81
- 238000007639 printing Methods 0.000 claims abstract description 51
- 238000007731 hot pressing Methods 0.000 claims abstract description 39
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 20
- 230000008021 deposition Effects 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 15
- 230000009471 action Effects 0.000 claims description 11
- 238000010008 shearing Methods 0.000 claims description 7
- 230000007246 mechanism Effects 0.000 claims description 4
- 230000009477 glass transition Effects 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims 6
- 230000003014 reinforcing effect Effects 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 14
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000011159 matrix material Substances 0.000 abstract description 2
- 238000003825 pressing Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 239000011199 continuous fiber reinforced thermoplastic Substances 0.000 description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
Abstract
Description
技术领域technical field
本发明属于增材制造技术领域,具体涉及一种连续纤维增强复合材料高效高速3D打印头及其使用方法。The invention belongs to the technical field of additive manufacturing, and in particular relates to a continuous fiber reinforced composite material high-efficiency and high-speed 3D printing head and a method for using the same.
背景技术Background technique
连续纤维增强热塑性复合材料3D打印技术主要是基于传统增材制造技术中的材料挤出成形工艺发展出来的,根据材料的不同可以细分为两种技术形式:一是原位浸渍3D打印工艺,主要材料纤维干丝与热塑性树脂丝材为原材料,在同一打印头内部加热熔融复合挤出后层层堆积成形;另一种是预浸丝3D打印工艺,先将纤维丝束与热塑性树脂复合制备成预浸丝,后直接将预浸丝送入3D打印喷头加热熔融层层堆积成形。目前,已用于3D打印的纤维材料包括碳纤维、芳纶纤维、玻璃纤维等,热塑性树脂基体包括PLA、PA、PC、PEEK等,成形材料的拉伸强度最高超过了700MPa,远远超过了3D打印纯材料的性能,达到了传统复合材料制造工艺的水平,并形成了飞机支架、工装夹具、自行车一体式框架、医疗假肢等典型的应用案例,具备工业化应用的条件。The continuous fiber reinforced thermoplastic composite material 3D printing technology is mainly developed based on the material extrusion forming process in the traditional additive manufacturing technology. The main materials are fiber dry filaments and thermoplastic resin filaments as raw materials, which are heated, melted and extruded in the same print head and then stacked and formed layer by layer. The prepreg filament is then directly sent to the 3D printing nozzle to heat and melt to form layer by layer. At present, the fiber materials that have been used for 3D printing include carbon fiber, aramid fiber, glass fiber, etc., and the thermoplastic resin matrix includes PLA, PA, PC, PEEK, etc., and the tensile strength of the forming material exceeds 700MPa, far exceeding 3D The performance of printing pure materials has reached the level of traditional composite material manufacturing processes, and has formed typical application cases such as aircraft brackets, tooling fixtures, bicycle integrated frames, medical prostheses, etc., and has the conditions for industrial application.
然而,要实现连续纤维增强热塑性复合材料3D打印由小批量、定制化应用向成批量、大规模应用仍面临着诸多问题与挑战,其中最为明显的缺点是成形效率低,主要原因包括以下两点:However, there are still many problems and challenges to realize the 3D printing of continuous fiber reinforced thermoplastic composites from small batches and customized applications to batch and large-scale applications. The most obvious disadvantage is the low forming efficiency. The main reasons include the following two points :
1)打印速度低。连续纤维增强热塑性复合材料3D打印速度远远低于3D打印纯材料速度,一般而言,纯材料挤出成形工艺的打印速度能够达到50mm/s(3000mm/min)以上,然而,连续纤维中干丝原位浸渍打印速度仅为100-200mm/min左右,预浸丝打印速度有所提高,但最高也仅能达到20mm/s(1200mm/min)左右。连续纤维3D打印采用较低的成形速度一是为了增加材料在喷嘴内部的时间,使热塑性树脂能够完全熔融,与纤维束发生充分的复合,达到减小复合材料内部孔隙、提升界面性能的效果,以保证复合材料的优异性能,由于3D打印喷嘴内部的压力有限,若再减小二者的复合时间,将更难形成良好的微观结构;二是为了防止纤维损伤,在纤维束经过喷嘴加热熔融挤出沉积过程中,纤维束与喷嘴之间会存在剪切作用,在高的运动速度下剪切作用会更加严重,而连续纤维特别是碳纤维脆性比较大,抗剪切能力比较差,容易在成形过程中造成纤维损伤甚至是纤维剪断,造成力学性能下降或者打印失败,为此需要通过减小打印速度保证成形质量。1) The printing speed is low. The 3D printing speed of continuous fiber reinforced thermoplastic composites is much lower than the speed of 3D printing pure materials. Generally speaking, the printing speed of pure material extrusion molding process can reach more than 50mm/s (3000mm/min). The printing speed of in-situ dipping of silk is only about 100-200mm/min, and the printing speed of pre-preg silk has been improved, but the maximum can only reach about 20mm/s (1200mm/min). Continuous fiber 3D printing uses a lower forming speed. First, to increase the time of the material inside the nozzle, so that the thermoplastic resin can be completely melted and fully compounded with the fiber bundle, so as to reduce the internal pores of the composite material and improve the interface performance. In order to ensure the excellent performance of the composite material, due to the limited pressure inside the 3D printing nozzle, if the compounding time of the two is reduced, it will be more difficult to form a good microstructure; second, in order to prevent fiber damage, the fiber bundle is heated and melted through the nozzle. During the extrusion deposition process, there will be a shearing effect between the fiber bundle and the nozzle, and the shearing effect will be more serious at high moving speeds, while continuous fibers, especially carbon fibers, are relatively brittle and have poor shear resistance. Fiber damage or even fiber shearing is caused during the forming process, resulting in decreased mechanical properties or printing failure. For this reason, it is necessary to reduce the printing speed to ensure the forming quality.
2)丝束尺寸小。连续纤维增强热塑性复合材料3D打印一般采用小丝束的纤维为原材料,以碳纤维为例,比较常用的是1K碳纤维丝束,该碳纤维丝束在打印时线宽相对比较小,一般在1mm左右,且每次采用单个喷嘴进行成形,3D打印线线搭接、层层堆积的成形特点导致喷嘴往复运动路径的急剧增加,而传统复合材料成形工艺如纤维铺放技术,常采用12K、24K等大丝束纤维带进行多丝束并行铺放,一次成形线宽要远远高于3D打印。对于3D打印而言,理论上也可以采用大丝束纤维,但大丝束纤维带来的问题是成形结构特征尺寸受到限制,往往只能用于成形一些结构比较简单的零件如复合材料层合板,而无法用于成形结构比较复杂的特别是存在一些小尺寸特征的构件,限制连续纤维增强热塑性复合材料3D打印的应用场景。2) The tow size is small. 3D printing of continuous fiber reinforced thermoplastic composite materials generally uses small tow fibers as raw materials. Taking carbon fiber as an example, 1K carbon fiber tow is more commonly used. The line width of this carbon fiber tow is relatively small during printing, generally about 1mm. And each time a single nozzle is used for forming, the forming characteristics of 3D printing line overlap and layer-by-layer accumulation lead to a sharp increase in the reciprocating motion path of the nozzle, while traditional composite material forming processes such as fiber laying technology often use 12K, 24K and other large sizes. Tow fiber ribbons are laid in parallel with multiple tows, and the line width of one forming is much higher than that of 3D printing. For 3D printing, large tow fibers can also be used in theory, but the problem brought by large tow fibers is that the feature size of the forming structure is limited, and it can often only be used to form some parts with relatively simple structures such as composite laminates , and cannot be used to form components with complex structures, especially those with small-scale features, which limit the application scenarios of 3D printing of continuous fiber-reinforced thermoplastic composites.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的缺点,本发明的目的在于提供一种连续纤维增强复合材料高效高速3D打印头及其使用方法,实现热塑性树脂基复合材料的快速制造。In order to overcome the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a continuous fiber reinforced composite material high-efficiency high-speed 3D printing head and its using method, so as to realize the rapid manufacture of thermoplastic resin-based composite materials.
为了达到上述目的,本发明采取如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种连续纤维增强复合材料高效高速3D打印头,包括多个连续纤维3D打印的单喷头模块1,多个单喷头模块1以纵向错位平行阵列的方式进行排列,在X方向相邻单喷头模块1存在水平中心距3,在Y方向相邻单喷头模块1存在竖直中心距4,所有单喷头模块1固定在支架2上。A continuous fiber reinforced composite material high-efficiency high-speed 3D printing head, comprising a plurality of single-
所述的单喷头模块1包括主动送丝单元6、预热单元7以及热压单元8,预热单元7的上方设有主动送丝单元6,预热单元7的后方设有热压单元8;主动送丝单元6包括送丝齿轮9及其下方设置的纤维剪断机构10;预热单元7包括喷嘴13及其上部连接的加热块12,加热块12内部设有第一加热单元11;热压单元8包括热压辊15,热压辊15内设有第二加热单元16,热压辊15连接有压力单元14;连续纤维预浸丝5通过送丝齿轮9向加热块12与喷嘴13内部输送,热压辊15对沉积的连续纤维预浸丝5施加热压作用。The
所述的一种连续纤维增强复合材料高效高速3D打印头的使用方法,包括:The method for using a continuous fiber reinforced composite material efficient and high-speed 3D printing head includes:
在单喷头模块工作模式下,连续纤维预浸丝5经送丝齿轮9首先送入预热单元7内部,预热单元7在第一加热单元11作用下将加热温度控制在热塑性树脂20玻璃化转变温度,在连续纤维预浸丝5中纤维干丝19被热塑性树脂20包裹,在软化状态下热塑性树脂20与喷嘴13表面直接接触;所述的连续纤维预浸丝5为1K、3K等小丝束纤维,采用高打印速度(超过1500mm/min)进给连续纤维预浸丝5,并按照特定的路径进行连续纤维的沉积,此过程为高速送丝阶段17;连续纤维预浸丝5在完成沉积以后,热压辊15的温度设置在热塑性树脂20的熔点温度以上,在热压辊15挤压力作用下连续纤维预浸丝5展平变宽,得到实际扫描线宽21,同时热塑性树脂20融化将相邻沉积线连接在一起,此过程为高温热压展平阶段18;In the working mode of the single nozzle module, the
在多喷头模块协同工作模式下,每个单喷头模块1按照高速送丝阶段17加高温热压展平阶段18的流程执行任务,零件的基本轮廓特征23包括等宽直线轮廓24、变宽直线轮廓25、等宽曲线轮廓26、变宽曲线轮廓27,具体包括以下步骤:In the multi-nozzle module cooperative working mode, each single-
1)根据基本轮廓特征23以及单个实际扫描线宽21的几何关系生成连续纤维填充路径22;1) generating a continuous
2)根据单喷头模块1的数量,将生成的连续纤维填充路径22分配给不同单喷头模块1,当连续纤维填充路径22数量大于单喷头模块数量时,采用多次打印的策略;当连续纤维填充路径22数量小于单喷头模块1数量时,选择相应数量的单喷头模块1,最终得到不同单喷头模块1所需执行的运动路径;2) According to the number of
3)根据每个单喷头模块1分配的运动路径,设计每个单喷头模块1的执行动作时序,考虑不同单喷头模块1之间的在Y方向的竖直中心距4以及运动路径的长短,确定每个单喷头模块1的开始打印时间、纤维剪断时间、停止打印时间,形成多喷头模块协同工作运动指令;3) According to the movement path assigned by each
4)利用多喷头模块协同工作指令控制3D打印头完成打印。4) Control the 3D printing head to complete the printing by using the multi-nozzle module cooperative work instruction.
在多喷头模块协同工作过程中,支架2的长度方向与打印方向30存在夹角29,对于同一打印方向30,旋转支架2改变夹角29的大小,在实际打印过程中,根据零件的基本轮廓特征23的不同旋转支架2实时改变夹角29的大小实现变线宽打印,实现复杂构件的成形。During the cooperative operation of the multi-nozzle modules, there is an included
本发明的有益效果为:The beneficial effects of the present invention are:
本发明通过低温预热高速送丝阶段提高打印纤维预浸丝的进给速度,减小纤维摩擦损伤;再通过高温热压展平阶段将相邻沉积线连接在一起,同时结合多喷头模块协同打印的方式提高3D打印复合材料的成形速度与效率,为实现连续纤维增强热塑性复合材料3D打印成批量、大规模应用提供一种可行的技术手段。The invention increases the feeding speed of the printing fiber prepreg through the low-temperature preheating and high-speed wire feeding stage, and reduces the friction damage of the fiber; and then connects the adjacent deposition lines together through the high-temperature hot pressing and flattening stage, and at the same time combines the multi-nozzle modules to cooperate The printing method improves the forming speed and efficiency of 3D printing composite materials, and provides a feasible technical means for realizing batch and large-scale application of continuous fiber reinforced thermoplastic composite materials 3D printing.
附图说明Description of drawings
图1为本发明3D打印头整体结构示意图。FIG. 1 is a schematic diagram of the overall structure of the 3D printing head of the present invention.
图2为本发明单喷头模块结构示意图。FIG. 2 is a schematic structural diagram of a single nozzle module of the present invention.
图3为本发明单喷头模块高速打印方法示意图。FIG. 3 is a schematic diagram of a high-speed printing method for a single nozzle module according to the present invention.
图4为本发明多喷头协同高效打印方法示意图。FIG. 4 is a schematic diagram of the multi-nozzle collaborative efficient printing method of the present invention.
图5为本发明变线宽打印方法示意图。FIG. 5 is a schematic diagram of the variable line width printing method of the present invention.
具体实施方式Detailed ways
以下结合实施例和附图对本发明做进一步说明。The present invention will be further described below with reference to the embodiments and accompanying drawings.
参照图1,一种连续纤维增强复合材料高效高速3D打印头,包括多个连续纤维3D打印的单喷头模块1,单喷头模块1的数量根据需要进行选择,多个单喷头模块1以纵向错位平行阵列的方式进行排列,在X方向相邻单喷头模块1存在水平中心距3,在Y方向相邻单喷头模块1存在竖直中心距4;由于小丝束纤维打印时线宽比较小,若将单喷头模块1采用横向并行排列的方式,由于喷头物理空间的限制,难以将相邻单喷头模块1的水平中心距3减小到纤维束打印线宽的范围,会造成相邻堆积线的分离,为此将多个单喷头模块1以纵向错位平行阵列的方式进行排列;由于采用错位分布,此时就可以避开喷头物理空间的限制,将相邻喷头在X方向上的中心间距调节到纤维束打印线宽范围内;所有单喷头模块1固定在支架2上。Referring to Figure 1, a continuous fiber reinforced composite material high-efficiency high-speed 3D printing head includes a plurality of
参照图2,所述的单喷头模块1包括主动送丝单元6、预热单元7以及热压单元8,预热单元7的上方设有主动送丝单元6,预热单元7的后方设有热压单元8;主动送丝单元6包括一对送丝齿轮9及其下方设置的纤维剪断机构10;预热单元7包括喷嘴13及其上部通过螺纹连接的加热块12,加热块12内部设有第一加热单元11用于温度控制;热压单元8包括热压辊15,热压辊15内设有第二加热单元16,热压辊15连接有压力单元14;连续纤维预浸丝5通过送丝齿轮9向加热块12与喷嘴13内部输送,在送丝齿轮9与加热块12之间的纤维剪断机构10能够剪断纤维连续纤维预浸丝5,加热块12内部的第一加热单元11用于温度控制,热压单元8位于加热块12后方,其中压力单元14提供向下的挤压力,第二加热单元16提供热源,二者共同作用于热压辊15,对沉积的连续纤维预浸丝5施加热压作用。Referring to FIG. 2 , the
所述的一种连续纤维增强复合材料高效高速3D打印头的使用方法,包括:The method for using a continuous fiber reinforced composite material efficient and high-speed 3D printing head includes:
参照图3,在单喷头模块工作模式下,连续纤维预浸丝5在送丝齿轮9摩擦力作用下首先送入预热单元7内部,预热单元7在第一加热单元11作用下将加热温度控制在热塑性树脂20玻璃化转变温度附近,以对连续纤维预浸丝5进行初步的预热,使热塑性树脂20保持在软化的状态而不完全融化,具备基本塑形的能力,在连续纤维预浸丝5中纤维干丝19被热塑性树脂20包裹,在软化状态下热塑性树脂20与喷嘴13表面直接接触起到润滑与保护纤维干丝19的作用,减小纤维损伤;所述的连续纤维预浸丝5为1K、3K等小丝束纤维,丝材直径较小,在短时间内即可将温度加热到玻璃化转变温度,因此,可采用高打印速度(超过1500mm/min)进给连续纤维预浸丝5,并按照特定的路径进行连续纤维的沉积,此过程为高速送丝阶段17,高速送丝阶段17中连续纤维预浸丝5仍保持在较小的尺寸未完全展平,沉积线之间仍未结合保持分散独立的状态;连续纤维预浸丝5在完成沉积以后,预热单元7后方的热压单元8对其施加热压作用,其中压力单元14为热压辊15提供向下的挤压力,第二加热单元16对热压辊15进行加热,由于喷嘴13处于高速运动状态,热压辊15的温度设置在热塑性树脂20的熔点温度以上,在热压辊15挤压力作用下连续纤维预浸丝5展平变宽,得到实际扫描线宽21,同时热塑性树脂20融化将相邻沉积线连接在一起,此过程为高温热压展平阶段18。Referring to FIG. 3 , in the working mode of the single nozzle module, the
参照图4,在多喷头模块协同工作模式下,每个单喷头模块1按照高速送丝阶段17加高温热压展平阶段18的流程执行任务,常见零件的基本轮廓特征23包括等宽直线轮廓24、变宽直线轮廓25、等宽曲线轮廓26、变宽曲线轮廓27,具体工作流程包括以下步骤:Referring to FIG. 4 , in the cooperative working mode of the multiple nozzle modules, each
1)根据基本轮廓特征23以及单个实际扫描线宽21的几何关系生成连续纤维填充路径22;1) generating a continuous
2)根据单喷头模块1的数量,将生成的连续纤维填充路径22分配给不同的单喷头模块1,当连续纤维填充路径22数量大于单喷头模块1数量时,采用多次打印的策略,如图4中第一次打印28-1,第二次打印28-2,第三次打印28-3,当连续纤维填充路径22数量小于单喷头模块1数量时,选择相应数量的单喷头模块1,如图4中第三次打印28-3所示,最终得到不同单喷头模块1所需执行的运动路径,在图4中,单喷头模块1对应的运动路径包括第一次打印运动路径1-1、第二次打印运动路径1-2、第三次打印运动路径1-3;2) According to the number of
3)根据每个单喷头模块1分配的运动路径,设计每个单喷头模块1的执行动作时序,考虑不同单喷头模块1之间的在Y方向的竖直中心距4以及运动路径的长短,确定每个单喷头模块1的开始打印时间、纤维剪断时间、停止打印时间,形成多喷头模块协同工作运动指令;3) According to the movement path assigned by each
4)利用多喷头模块协同工作指令控制3D打印头完成打印。4) Control the 3D printing head to complete the printing by using the multi-nozzle module cooperative work instruction.
参照图5,在多喷头模块协同工作过程中,支架2的长度方向与打印方向30存在一定的夹角29,对于同一打印方向30,旋转支架2可以改变夹角29的大小,改变夹角29的大小可以引起单个喷头模块间在打印方向30上的水平中心距3,水平中心距3的改变能够引起连续纤维扫描线宽21的变化,在实际打印过程中,可以根据零件的基本轮廓特征23的不同旋转支架2实时改变夹角29的大小实现变线宽打印,实现复杂构件的成形。Referring to FIG. 5 , during the cooperative operation of the multi-nozzle modules, there is a
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210052808.9A CN114474712B (en) | 2022-01-18 | 2022-01-18 | Continuous fiber reinforced composite material high-efficiency high-speed 3D printing head and its use method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210052808.9A CN114474712B (en) | 2022-01-18 | 2022-01-18 | Continuous fiber reinforced composite material high-efficiency high-speed 3D printing head and its use method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114474712A true CN114474712A (en) | 2022-05-13 |
CN114474712B CN114474712B (en) | 2022-10-18 |
Family
ID=81512208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210052808.9A Active CN114474712B (en) | 2022-01-18 | 2022-01-18 | Continuous fiber reinforced composite material high-efficiency high-speed 3D printing head and its use method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114474712B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021522089A (en) * | 2018-05-02 | 2021-08-30 | ネーデルランドセ オルガニサティエ フォール トエゲパスト−ナトールヴェテンシャッペリク オンデルゾエク ティエヌオー | Methods and systems for layering objects from solidifiable media |
CN114986939A (en) * | 2022-06-02 | 2022-09-02 | 南京航空航天大学 | Shearing continuous beating mechanism for additive manufacturing of continuous fiber reinforced composite material |
CN115042438A (en) * | 2022-06-17 | 2022-09-13 | 南京航空航天大学 | Printing head structure for continuous fiber prepreg wire |
CN115195128A (en) * | 2022-07-19 | 2022-10-18 | 中南大学 | 3D printing method and device for continuous fiber reinforced structure |
CN115256951A (en) * | 2022-06-28 | 2022-11-01 | 北京航空航天大学宁波创新研究院 | Method and system for printing continuous fiber structures |
WO2024239788A1 (en) * | 2023-05-20 | 2024-11-28 | 南京航空航天大学 | 3d printing head with laser preheating and in-situ compaction and method therefor operating same |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105856562A (en) * | 2015-01-23 | 2016-08-17 | 中国科学院宁波材料技术与工程研究所 | Three-dimensional model printing system and forming method of three-dimensional model |
CN107379539A (en) * | 2017-08-14 | 2017-11-24 | 上海宇航系统工程研究所 | A kind of continuous fiber prepreg 3D printing shower nozzle and its 3D printer, Method of printing |
CN108136674A (en) * | 2016-06-17 | 2018-06-08 | 源秩科技(上海)有限公司 | Multiinjector 3D printing nozzle and Method of printing and 3D printing system |
US20190232553A1 (en) * | 2018-02-01 | 2019-08-01 | Divergent Technologies, Inc | Apparatus and methods for additive manufacturing with variable extruder profiles |
CN209580498U (en) * | 2019-01-29 | 2019-11-05 | 姚光纯 | A kind of spray head matrix arrangement 3D printing molding machine |
CN111572016A (en) * | 2019-02-15 | 2020-08-25 | 中南大学 | 3D printing forming method of continuous fiber reinforced member |
CN211390163U (en) * | 2019-09-25 | 2020-09-01 | 浙江闪铸三维科技有限公司 | Many shower nozzles of 3D printer aligning gear |
CN212288758U (en) * | 2019-11-30 | 2021-01-05 | 共享智能铸造产业创新中心有限公司 | High resolution printhead |
US20210078245A1 (en) * | 2018-05-02 | 2021-03-18 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | A method and system for layerwise forming an object from a medium capable of solidification |
CN112706401A (en) * | 2020-12-07 | 2021-04-27 | 上海航天设备制造总厂有限公司 | Weak-anisotropy continuous fiber reinforced polymer composite material and additive manufacturing method |
CN113147024A (en) * | 2021-04-16 | 2021-07-23 | 固纤(苏州)智能科技有限公司 | Spray head device with real-time shearing and feedback pressing functions for printing continuous fibers |
-
2022
- 2022-01-18 CN CN202210052808.9A patent/CN114474712B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105856562A (en) * | 2015-01-23 | 2016-08-17 | 中国科学院宁波材料技术与工程研究所 | Three-dimensional model printing system and forming method of three-dimensional model |
CN108136674A (en) * | 2016-06-17 | 2018-06-08 | 源秩科技(上海)有限公司 | Multiinjector 3D printing nozzle and Method of printing and 3D printing system |
CN107379539A (en) * | 2017-08-14 | 2017-11-24 | 上海宇航系统工程研究所 | A kind of continuous fiber prepreg 3D printing shower nozzle and its 3D printer, Method of printing |
US20190232553A1 (en) * | 2018-02-01 | 2019-08-01 | Divergent Technologies, Inc | Apparatus and methods for additive manufacturing with variable extruder profiles |
US20210078245A1 (en) * | 2018-05-02 | 2021-03-18 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | A method and system for layerwise forming an object from a medium capable of solidification |
CN209580498U (en) * | 2019-01-29 | 2019-11-05 | 姚光纯 | A kind of spray head matrix arrangement 3D printing molding machine |
CN111572016A (en) * | 2019-02-15 | 2020-08-25 | 中南大学 | 3D printing forming method of continuous fiber reinforced member |
CN211390163U (en) * | 2019-09-25 | 2020-09-01 | 浙江闪铸三维科技有限公司 | Many shower nozzles of 3D printer aligning gear |
CN212288758U (en) * | 2019-11-30 | 2021-01-05 | 共享智能铸造产业创新中心有限公司 | High resolution printhead |
CN112706401A (en) * | 2020-12-07 | 2021-04-27 | 上海航天设备制造总厂有限公司 | Weak-anisotropy continuous fiber reinforced polymer composite material and additive manufacturing method |
CN113147024A (en) * | 2021-04-16 | 2021-07-23 | 固纤(苏州)智能科技有限公司 | Spray head device with real-time shearing and feedback pressing functions for printing continuous fibers |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021522089A (en) * | 2018-05-02 | 2021-08-30 | ネーデルランドセ オルガニサティエ フォール トエゲパスト−ナトールヴェテンシャッペリク オンデルゾエク ティエヌオー | Methods and systems for layering objects from solidifiable media |
JP7314174B2 (en) | 2018-05-02 | 2023-07-25 | ネーデルランドセ オルガニサティエ フォール トエゲパスト-ナトールヴェテンシャッペリク オンデルゾエク ティエヌオー | Method and system for layering objects from solidifiable media |
CN114986939A (en) * | 2022-06-02 | 2022-09-02 | 南京航空航天大学 | Shearing continuous beating mechanism for additive manufacturing of continuous fiber reinforced composite material |
CN115042438A (en) * | 2022-06-17 | 2022-09-13 | 南京航空航天大学 | Printing head structure for continuous fiber prepreg wire |
CN115256951A (en) * | 2022-06-28 | 2022-11-01 | 北京航空航天大学宁波创新研究院 | Method and system for printing continuous fiber structures |
CN115195128A (en) * | 2022-07-19 | 2022-10-18 | 中南大学 | 3D printing method and device for continuous fiber reinforced structure |
CN115195128B (en) * | 2022-07-19 | 2024-06-11 | 中南大学 | 3D printing method and equipment for continuous fiber reinforced structure |
WO2024239788A1 (en) * | 2023-05-20 | 2024-11-28 | 南京航空航天大学 | 3d printing head with laser preheating and in-situ compaction and method therefor operating same |
Also Published As
Publication number | Publication date |
---|---|
CN114474712B (en) | 2022-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114474712B (en) | Continuous fiber reinforced composite material high-efficiency high-speed 3D printing head and its use method | |
EP3740373B1 (en) | Fiber-reinforced 3d printing | |
JP6483113B2 (en) | Machine for additive manufacturing with fiber reinforcement | |
US11618207B2 (en) | Systems and methods for printing 3-dimensional objects from thermoplastics | |
JP6475232B2 (en) | Fiber reinforced additive manufacturing method | |
CN102211409B (en) | Continuous fiber base cloth and thermoplastic resin composite board molding equipment | |
JP6574491B2 (en) | Manufacturing method of press-molded body | |
CN104441658A (en) | 3D printing head for continuous-fiber-reinforced intelligent composite material and use method of 3D printing head | |
CN106182494B (en) | A kind of preparation process of continuous fiber reinforced thermoplastic prepreg tape | |
WO2018203768A1 (en) | Method for additive manufacturing of products made of composite materials reinforced with continuous fibres | |
RU2010144414A (en) | METHOD FOR PRODUCING FIBEROUS Billets | |
CN114030179A (en) | Two-channel feeding continuous fiber reinforced composite material 3D printer and control method | |
CN114248437A (en) | A 3D printing method of continuous fiber braid reinforced fiber composite material | |
CN114261090A (en) | A continuous fiber additive manufacturing nozzle based on fused deposition modeling method | |
CN114454513A (en) | A continuous fiber reinforced thermoplastic resin matrix composite material wire forming device | |
CN114407358A (en) | A multi-degree-of-freedom continuous composite fiber material 3D printer | |
CN113103585B (en) | 3D printer head capable of laying continuous fiber web and printing method | |
CN112140533A (en) | A 3D printing device and method of composite continuous fiber and particle matrix material | |
CN113320151A (en) | 3D printing head and printing method of continuous fiber reinforced resin composite material | |
CN110001090A (en) | A kind of preparation method of continuous fiber reinforced thermoplastic composite material | |
KR102082632B1 (en) | Depositing device for the controlled deposition of reinforcing fibre bundles | |
CN115771262A (en) | 3D printing method and device based on fiber composite material | |
CN116571758A (en) | Additive manufacturing method and system for metal matrix fiber composites | |
CN115782255A (en) | Continuous production line for sandwich type thermoplastic prepreg and production method thereof | |
CN213891274U (en) | 3D printer sizing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |