CN114474636A - 注塑模组合式冷却系统 - Google Patents

注塑模组合式冷却系统 Download PDF

Info

Publication number
CN114474636A
CN114474636A CN202210132591.2A CN202210132591A CN114474636A CN 114474636 A CN114474636 A CN 114474636A CN 202210132591 A CN202210132591 A CN 202210132591A CN 114474636 A CN114474636 A CN 114474636A
Authority
CN
China
Prior art keywords
cooling
pipeline
pipelines
vortex
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210132591.2A
Other languages
English (en)
Inventor
殷燕芳
陈艳山
李玉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Polytechnic University
Original Assignee
Wuhan Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Polytechnic University filed Critical Wuhan Polytechnic University
Priority to CN202210132591.2A priority Critical patent/CN114474636A/zh
Publication of CN114474636A publication Critical patent/CN114474636A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7312Construction of heating or cooling fluid flow channels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7312Construction of heating or cooling fluid flow channels
    • B29C2045/7318Construction of heating or cooling fluid flow channels multilayered fluid channel constructions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Computer Graphics (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

本公开内容的实施方案总体上涉及注塑模具冷却管道设计,含模具的定模部分和动模部分组合式冷却系统设计以及判断其对产品成型影响的方法;所述注塑模组合式冷却系统为多维度贴合塑件内外表面分层次设置的冷却机构,在一实施方案中,包括至少一组螺旋状连接涡旋状混合冷却管道、一组多段圆弧连接多段直线混合冷却管道、一组喷水管冷却管道、一组涡旋状冷却管道或圆弧冷却管道,所述冷却管道的尺寸设计是基于Moldflow软件平台的冷却分析,模拟冷却过程的流动行为和传热行为,对该冷却分析的结果解析并结合经验获得其对产品成型冷却效果和影响因素,实现合理的冷却系统设计。

Description

注塑模组合式冷却系统
技术领域
本发明涉及注塑模设计领域,具体地说是注塑模组合式冷却系统设计,该冷却系统为多维度贴合塑件内外表面分层次设置的冷却机构。
背景技术
在塑料的注射成型中,模具的温度直接影响着塑件的质量,随着人们对生活中使用塑料产品的外观、尺寸精度和使用性能要求越来越高,这使得模具的温度控制需要更加严格;在普通的冷却水道不能达到设定温度范围的控制精度时,可以将冷却管道设计成多形式的组合冷却系统;冷却系统的冷却效果受很多因素影响,越来越多的企业选择使用模流分析技术来预测冷却精度信息,这些信息用实验的方法测定较困难的,获得冷却分析结果可以进一步优化冷却设计方案,减少模具研发成本和试模次数,提高生产效率和产品的质量。
现有一盒体塑件如图2所示,其结构较为复杂,主体结构为大圆柱壳体,厚度为3mm,在大圆柱壳体圆周侧壁均布有4个小圆柱壳体,厚度为3mm,塑件要求较高装配精度,外观要求不能有溢边、气孔和银纹等缺陷。
目前传统的制造工艺对冷却管道的加工采用直钻式通孔或盲孔的形式,直线形式的孔与圆柱表面的距离不能实现同步,难以等距离均匀地覆盖在制品表面进行冷却,容易导致热量局部堆积,使制品得不到有效冷却,从而影响塑件质量和生产效率;对于曲面类产品的冷却,采用随形冷却管道并用低熔点合金浇注固定的冷却装置具有十分明显的优势,其冷却效果的主要相关影响因素包括工艺参数和设计参数,运用MoldFlow软件实现塑料熔体在模具内冷却过程的模拟仿真,可以在冷却管道设计完成后预测工艺参数和设计参数的合理性,使设计方案尽快实施生产。
发明内容
本发明所要解决的技术问题是:针对现有技术的不足,提供一种注塑模组合式冷却系统,提高了塑件的成型质量和生产效率。
根据第一方面,本发明涉及用于塑件注射成型的模具设计中冷却系统的结构,含定模冷却装置和动模冷却装置,为组合式冷却系统;所述组合式冷却系统为多维度贴合塑件内外表面分层次设置的冷却机构,在盒体实施方案中,包括至少一组螺旋状连接涡旋状混合冷却管道、一组多段圆弧连接多段直线混合冷却管道、一组喷流管冷却管道、一组涡旋状冷却管道或圆弧冷却管道。
根据第二方面,本发明涉及用于塑件注射成型的模具设计中冷却系统的结构,所述冷却管道的尺寸设计是基于Moldflow软件平台的冷却分析,模拟冷却过程的流动行为和传热行为,对该冷却分析的结果解析并结合经验获得其对产品成型冷却效果,以判断其对产品成型影响因素,实现合理的冷却系统设计。
根据第三方面,本发明涉及第一方面或第二方面所述多维度贴合塑件设置的冷却机构在模具设计中的应用。
根据第四方面,本发明涉及包含第一方面或第二方面所述的螺旋状冷却管道、平面涡旋状冷却管道、圆弧冷却管道、直线冷却管道、喷流管冷却管道。
根据第五方面,本发明涉及由第四方面所述的冷却管道串联组成及连通方式。
根据第六方面,本发明涉及第五方面所述的冷却管道组合成的冷却系统在模具设计中的应用。
根据第七方面,本发明涉及第一方面或第二方面所述基于Moldflow软件平台的冷却分析在模具设计中的应用。
根据第八方面,本发明涉及第七方面所述在Moldflow平台上运用添加方式创建组合式冷却管道,进行冷却分析时各工艺参数设置方法以及对模流结果的解析和运用。
本发明比现有技术具有以下优点:
(1)本发明的注塑模组合式冷却系统中冷却管道路径是沿着型腔表面以等高线的形式布局,能实现均匀、精准且快速地调控模具温度,大幅提升企业的注塑生产能力和塑件质量,具有广泛的应用前景和实际意义;
(2)通过构建注塑模流分析模型,应用MPI软件进行塑件CAE分析,获得充填、流动和冷却的可视化结果,运用评判机制进行解析和优化,建立完整的注塑模冷却系统设计流程,为实际生产提供参考和借鉴。
附图说明
图1是实施例注塑模组合式冷却系统。
图2是塑件结构示意图。
图3a是冷却系统分解之一结构示意图。
图3b是冷却系统分解之二结构示意图。
图3c是冷却系统分解之三结构示意图。
图3d是冷却系统分解之四结构示意图。
图4是填充分析中最佳注射时间图。
图5冷却分析中网格单元温度分布曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,但并不因此将本发明限制在所述的实施例范围之中。
本发明提供了一种注塑模组合式冷却系统,含模具的定模冷却装置和动模冷却装置,该冷却系统为多维度贴合塑件内外表面分层次设置的冷却机构,定膜和动模实现同时均衡冷却,紊流状态的冷却介质的流动能及时有效将充满模腔的熔融物料的温度降低到顶出温度,维持成型周期内的热平衡,每一条冷却回路固定安装有带密封圈的进水接头和带密封圈的出水接头。
本发明注塑模组合式冷却系统的尺寸设计是基于Moldflow软件平台的冷却分析,模拟冷却过程的流动行为和传热行为,对该冷却分析的结果解析并结合经验获得其对产品成型冷却效果,以判断其对产品成型影响因素,实现合理的冷却系统设计。
本发明注塑模组合式冷却系统中冷却介质可以是冷却水和压缩空气,水作为介质的温度可以是环境温度,也可以高于或低于环境温度,模具与冷却介质的温度差Δθ=10℃~30℃,合理的温差才能保障制品尺寸精度和内部的应力稳定性,获得高质量塑件。
本发明注塑模组合式冷却系统中冷却管道截面形状可以是圆形,在某些实施方式中冷却管道截面形状可以是梯形或U形或半圆形或矩形或其它形状,截面尺寸用当量直径来换算,管道长度<1500mm,在管道中冷却介质的流动为湍流状态,雷诺数Re>6000,通常设置为104
本发明注塑模组合式冷却系统包括螺旋状冷却管道、平面涡旋状冷却管道、圆弧冷却管道、喷流管冷却管道,所述管道依据塑件内外表面形状等距环绕设置,管道中心轴线与塑件表面的距离均为管道直径的2倍;注塑模组合式冷却系统还包括直线型进出介质管道,所述管道连接时均采取串联方式组合,连接的各管道从冷却介质供应歧管到冷却介质收集歧管之间为单一流路,连接的各管道具有相同的管径,管道中出口和入口冷却介质的温差在3℃以内。
实施例1
如图1-3所示,塑件外表面由配置在定模的型腔成型,外表面中圆形端面配置平面涡旋状冷却管道,管道的两端串联着进出介质管道,进出管道垂直于端面贯穿模板,另一端与穿过相邻模板上的介质进出横孔连接,连接处采用密封圈密封并保证不泄露,冷却介质从浇口附近端横孔进入,从远离浇口另一端横孔流出。
塑件外表面中侧面配置贴合外周形状的多条组合式冷却管道,每条管道轴线位于参考平面内,参考平面与外周侧面垂直,每条管道包括多段大直径圆弧管道、多段小直径圆弧管道和进出介质管道,所有管道均串联相接,各圆弧管道间采用圆弧相切连接,每段圆弧管路与塑件表面均保持等距,组合式冷却管道的配置数量依据塑件侧面的高度来计算,多条串联组合式冷却管道间的排列形式为平行布局,每组间管道轴线间距为管道直径的4倍。
涡旋状冷却管道、圆弧管道和进出介质管道均由铜管成型后用低熔点合金浇注固定嵌入模板内部,模板上冷却介质进出横孔采用普通机加工直接成型。
实施例2
塑件壳体内表面由配置在动模的型芯成型,大直径圆柱壳体内表面配置螺旋状管道连接平面涡旋状管道组合成串联冷却管路,螺旋状管道与涡旋状管道旋向相同,管道连接形式采用圆弧相切连接,螺旋状管道的中心轴与涡旋状管道所在平面处于互相垂直位置,涡旋状冷却管道对塑件内表面圆形平面部分实施冷却,螺旋状冷却管道对塑件内表面圆周部分实施冷却,涡旋状管道一端连接介质进入管道,介质进入管道与涡旋状管道所在平面垂直,进口管道与涡旋状管道平面垂直,螺旋状管道一端连接介质流出管道,出口管道与进口管道平行,均与穿过相邻模板上的介质进出横孔连接,连接处采用密封圈密封并保证不泄露。
螺旋状冷却管道、涡旋状冷却管道、进出介质管道均由铜管成型后用低熔点合金浇注固定嵌入模板内部,模板上冷却介质进出横孔采用普通机加工直接成型。
实施例3
塑件壳体内表面中小直径圆柱壳体内表面配置喷流管冷却管道,对塑件内表面圆形平面部分和圆周部分实施冷却,冷却介质从喷流管顶端喷出,向四周分流冷却型芯壁,喷流管内小口径的内管直径与外管直径比值为0.707,内管与外管具有相同的流动助力,喷流管采用螺纹旋入型芯中,介质进出口与相邻模板上冷却介质进出横孔相连接,喷管件采用铜管,在与穿过模板上的介质进出横孔的连接时采用密封圈密封并保证连接处不泄露。
实施例4
实施例1-3所述注塑模组合式冷却系统尺寸的设计是基于Moldflow软件平台模拟冷却过程的流动行为和传热行为,对该冷却分析的结果解析获得,包括以下步骤:
(1)在Moldflow平台新建分析项目,运用Solidworks创建塑件3D模型并保存为.stl格式,对导入项目的模型进行双层面网格划分,整个模型网格密度取厚度的1/3~1/2,根据网格统计结果进行网格缺陷诊断和修复,使网格质量优化达到Moldflow分析标准后,具体为:自由边为0、多重边为0、无单元交叉、连通区域为1、最大纵横比为8、单元匹配率高于85%,保存网格方案;
(2)打开网格方案进行浇口位置分析,设置材料类型如SP-6/Chi MeiCorportion,注射机和工艺参数设置为默认,以分析计算获得最佳浇口位置为实际浇口位置设计直浇口浇注系统;
(3)运用Moldflow平台建模工具创建浇注系统,进行成型窗口分析,分析结果“质量(成型窗口):XY图”确定最佳注射时间;继续进行填充和保压分析,成型工艺设置中充填控制选择注射时间,并输入最佳注射时间为总注射时间,其他参数采用默认,参照结果设定保压模式;
(4)Moldflow平台冷却系统的创建方式有2种:运用建模工具直接创建和运用3D软件建模添加后间接创建,Moldflow的建模工具可以创建节点、直线、圆弧线、样条曲线、柱体单元等,本实施例中喷流管、圆弧和进出口直线管可以运用建模工具直接创建进行网格划分,涡旋状和螺旋状管道运用建模工具无法直接准确创建,须运用3D建模软件间接创建,在方案中才添加冷却系统3D模型并进行网格划分,运行冷却分析;
(5)导出每个阶段的分析结果进行评判解析,制作分析报告。
实施例5
实施例4所述组合式冷却管道的模流分析模型创建方法,具体步骤为:
(1)启动Solidworks,先绘制圆形草图,再运用曲线工具栏中螺旋线/涡状线工具创建平面涡旋状管道,定义方式为涡状线创建涡状线,然后在贯穿端点的垂直平面内按管道直径绘制圆形,运用扫描工具使涡状线成为涡旋体,完成后另存为STL文件;
(2)打开Moldflow平台的塑件项目,调用添加工具将绘制的管道零件涡旋体加入到项目中,调用创建菜单的节点工具找出管道零件和塑件的各自中心点坐标,运用实用程序下属的移动工具将管道零件和塑件的中心坐标调节到一致,调用柱体单元工具将3D实体管道转化为柱体,并在选择选项中设置属性为管道,截面形状是圆形,直径为10mm,管道热传导系数为1,管道粗糙度为0.05mm,“模具属性”中模具材料选择为铜,将涡旋体转化为涡旋状冷却水道后,进行网格划分并对图层进行归集和删除整理。
实施例6
实施例4所述组合式冷却管道的模流分析模型创建方法,具体步骤为:
(1)启动Pro/e,调用螺旋扫描中伸出项指令,在属性菜单选择常数-穿过轴-右手定则-完成,继续在草图平面中选择正向-缺省,须将长度10mm直线约束与圆柱轮廓边重合,输入节距值,调用伸出项-螺旋扫描,创建螺旋体,并另存为IGES文件;
(2)打开Moldflow平台的塑件项目,调用添加工具将绘制的管道零件螺旋体加入到项目中,调用创建菜单的节点工具找出管道零件和塑件的各自中心点坐标,运用实用程序下属的移动工具将管道零件和塑件的中心坐标调节到一致,调用柱体单元工具将3D实体管道转化为柱体,并在选择选项中设置属性为管道,截面形状是圆形,直径为10mm,管道热传导系数为1,管道粗糙度为0.05mm,模具属性中模具材料选择为铜,将螺旋体转化为螺旋状冷却水道后,进行网格划分并对图层进行归集和删除整理。
实施例7
实施例4所述组合式冷却管道的模流分析工艺条件设置包括以下几个参数:
(1)熔体温度:根据选定的材料的性能参数设定,材料为SP-6/Chi MeiCorportion,推荐熔体温度为230℃;材料为PPU 1752 S1/Targor,推荐熔体温度为230℃;材料为Calibre IM 401-11/Styron NA-LA,推荐熔体温度为300℃,材料为ABS HF380/LGChemical,推荐熔体温度为235℃,依此设置;
(2)开模时间:包括模具打开、塑件顶出以及和合模几个步骤共用的时间,可采用默认值或自行设定如6s、8s、9s、10s、11s、20s……;
(3)注射+保压+冷却时间:此为冷却分析重要参数,有两种选项,指定选项是指根据经验和冷却系统简单计算公式预设一个数值,自动选项中需要编辑顶出条件,包括模具表面温度、顶出温度和顶出温度下的最小零件冻结百分比,材料为SP-6/Chi MeiCorportion,推荐模温为50℃,顶出温度为88℃,材料为PPU 1752 S1/Targor,推荐模温为50℃,顶出温度为93℃,材料为Calibe IM 401-11/Styron NA-LA,推荐模温为100℃,顶出温度为127℃,材料为ABS HF380/LG Chemical,推荐模温为60℃,顶出温度为89℃,依此设置;同时制品冻结到80%,流道系统冻结到60%时塑件就可以顶出了,顶出温度下的最小零件冻结百分比设置默认100%;
(4)冷却求解器参数:包括模具温度收敛公差和最大模温迭代次数,模具温度收敛公差数值范围为0.00001∶0.5,理论上缩小收敛公差可提高精准度,但会增加求解时间和导致出现收敛问题,通常设置0.1即可,最大模温迭代次数范围为10∶10000,默认值为50,当存在太多集成警告(即,单元距离太近)时,边界单元求解器无法收敛于当前输入条件所确定的解,分析日志会提示“**警告**700990收敛之前已达到解决方案迭代限制”,此警告信息出现3次之后,分析即会终止,因此需要更新网络参数才能得到收敛解;
(5)高级选项:包括成型材料、工艺控制器、模具材料和求解器参数,依据浇口位置分析和成型窗口分析和填充分析结果设置。
实施例8
实施例4所述组合式冷却管道的模流分析结果包括:回路冷却介质温度、回路流动速率、回路雷诺数、回路管壁温度、冷流道表面温度、零件到达顶出温度的时间、零件最高温度、零件平均温度、零件最高温度位置、零件冻结百分比、零件温度曲线、模具温度,冷却分析结果与以下条件进行比对:
(1)塑件平均温度与设置模具温度差值默认为1℃,此为使零件完全冷却或达到顶出温度时间,在分析结果后可允许调整;
(2)使用“塑件温度曲线”的二维XY图查看模型中网格单元的温度曲线,确定塑件上下表面的温度之间差值最大不超过10℃;
(3)塑件厚度截面的温度差须根据局部硬度以及冷冻层百分比解析,采用塑件材料硬度指标和产品顶出的质量要求来确定塑件上下表面壁厚的冷却百分比最小值;
(4)塑件温度曲线:与充填分析的冷却层因子联合一起评估;
(5)回路流动速率和回路雷诺数与冷却介质供应泵有关,冷却介质的循环压力须小于供应泵的额定压力,否则须调整管道长度或直径或结构或供应泵;
(6)塑件温度分布结果中各节点温度差值大小表征零件成型时温度分布的均匀程度,判断冷却系统布局的合理性和冷却效果优劣;
(7)在保证质量的同时,冷却时间或成型周期IPO时间越短越好。
通过上述冷却计算结果解析,判定冷却系统方案优于传统的水道方案,解决了局部冷却不均匀和容易发生翘曲等缺陷的问题,达到了更好的冷却效果。
以上显示和描述了本发明的基本原理、主要特点,所述的实施例是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (8)

1.注塑模组合式冷却系统,含模具的定模冷却装置和动模冷却装置,所述注塑模组合式冷却系统为多维度贴合塑件内外表面分层次设置的冷却机构,在实施例中,包括至少一组螺旋状连接涡旋状混合冷却管道、一组多段圆弧连接多段直线混合冷却管道、一组喷流管冷却管道、一组涡旋状冷却管道或圆弧冷却管道,所述冷却管道的设计是基于Moldflow软件平台的冷却分析,模拟冷却过程的流动行为和传热行为,对该冷却分析的结果解析并结合经验获得其对产品成型冷却效果,以判断其对产品成型影响因素,实现合理的冷却系统设计。
2.如权利要求1所述注塑模组合式冷却系统,其特征在于:定膜和动模分别配置的冷却装置可实现同时均衡冷却,及时有效将充满模腔的熔融物料的温度降低到顶出匹配温度,维持成型周期内的热平衡,冷却装置中的介质为水,每一条冷却管道固定安装有带密封圈的进水接头和带密封圈的出水接头,所述管道横截面均为圆形。
3.如权利要求1所述注塑模组合式冷却系统,其特征在于:塑件外表面由配置在定模的型腔成型,外表面中圆形端面配置平面涡旋状冷却管道,管道的两端串联着进出介质管道,进出管道垂直于端面贯穿型腔板,另一端与穿过相邻模板上的介质进出横孔连接,连接处采用密封圈密封并保证不泄露,冷却介质从浇口附近端横孔进入,从远离浇口另一端横孔流出;外表面中侧面配置贴合外周形状的多条组合式冷却管道,包括多段大直径圆弧管道和多段小直径圆弧管道组合相连,各圆弧管道间是串联管路,每段管路与塑件表面均保持等距,大直径圆弧和小直径圆弧间采用相切连接,冷却介质的进出管道与大直径圆弧和小直径圆弧共面;组合式冷却管道的配置数量依据塑件侧面的高度来计算,多组串联组合式冷却管道间的排列形式为平行布局,每组间距保持一致。
4.如权利要求1所述注塑模组合式冷却系统,其特征在于:塑件壳体内表面由配置在动模的型芯成型,内表面由多个直径大小不一的独立内壳面组成,每个内壳面由单个型芯成型,每个内壳面配置有一组冷却管道:
(1)大直径圆柱壳体内表面配置螺旋状连接涡旋状组合冷却管道,各管道连接形成串联管路,螺旋状管道与涡旋状管道采用相切连接,涡旋状冷却管道对塑件内表面圆形平面部分实施冷却,与涡旋状冷却管道垂直的螺旋状冷却管道对塑件内表面圆周部分实施冷却,冷却介质进口位于涡旋状管道一端,进口管道与涡旋状管道平面垂直,一端连接涡旋管道一端进入相邻模板,冷却介质出口位于螺旋状管道一端,出口管道与涡旋状管道平面垂直,一端连接螺旋状管道一端进入相邻模板;
(2)小直径圆柱壳体内表面配置喷流管冷却管道,对塑件内表面圆形平面部分和圆周部分实施冷却,冷却介质从喷流管顶端喷出,向四周分流冷却型芯加快塑件的固化定型,喷流管内小口径的内管直径与外管直径比值为0.707,内管与外管具有相同的流动助力,喷流管采用螺纹旋入型芯中。
5.如权利要求1所述注塑模组合式冷却系统,其特征在于:所述螺旋状管道、涡旋状管道和圆弧管道均为铜管成型,嵌入型芯内部并用低熔点合金浇注固定,在与穿过模板上的介质进出横孔的连接时采用密封圈密封并保证连接处不泄露。
6.如权利要求1所述注塑模组合式冷却系统,其特征在于:所述喷管件采用铜管,在与穿过模板上的介质进出横孔的连接时采用密封圈密封并保证连接处不泄露。
7.如权利要求1所述注塑模组合式冷却系统,其特征在于:冷却水管的长度不超过1500mm,冷却管道进出冷却介质的温差在3℃以内,冷却管道的布局优先于脱模机构的布局设计,模具设计时应避免管道与脱模机构形成干涉。
8.如权利要求1所述注塑模组合式冷却系统,其特征在于:利用Moldflow平台进行冷却分析包括分析前处理、分析、分析后处理:
(1)所述分析前处理包括模型建立和边界条件的设定,具体为:运用Solidworks创建塑件3D模型并保存为Moldflow通用数据格式,导入Moldflow平台上新建的分析项目中,对模型进行网格划分,根据网格统计结果进行网格缺陷诊断和修复,使网格质量优化达到Moldflow分析标准;
(2)所述分析包括:先以默认边界条件进行浇口位置分析,参照结果创建浇注系统;进行成型窗口分析,参照结果结合塑件实际生产要求设定相应的边界条件:注射机参数、材料参数等,进行填充和保压分析,参照结果设定保压模式;运用Solidworks创建塑件冷却系统3D模型并保存为Moldflow通用数据格式,添加入Moldflow的分析项目中,进行冷却分析;
(3)所述分析后处理包括:导出每个阶段的分析结果进行评判解析,制作分析报告。
CN202210132591.2A 2022-02-11 2022-02-11 注塑模组合式冷却系统 Withdrawn CN114474636A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210132591.2A CN114474636A (zh) 2022-02-11 2022-02-11 注塑模组合式冷却系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210132591.2A CN114474636A (zh) 2022-02-11 2022-02-11 注塑模组合式冷却系统

Publications (1)

Publication Number Publication Date
CN114474636A true CN114474636A (zh) 2022-05-13

Family

ID=81480988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210132591.2A Withdrawn CN114474636A (zh) 2022-02-11 2022-02-11 注塑模组合式冷却系统

Country Status (1)

Country Link
CN (1) CN114474636A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115139464A (zh) * 2022-08-09 2022-10-04 余姚市恒光塑料配件有限公司 一种具有冷却系统的注塑模具及其加工方法
CN115946320A (zh) * 2023-03-08 2023-04-11 新乡职业技术学院 一种电池壳体注塑模具
CN117507256A (zh) * 2023-11-15 2024-02-06 东莞市现代精工实业有限公司 一种水壶膨胀箱下壳的成型模具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111633932A (zh) * 2020-06-03 2020-09-08 苏州华纳精密模具有限公司 异性随形冷却水路和模具型芯镶件及模具
CN212888795U (zh) * 2020-07-11 2021-04-06 光正模具技术(苏州)有限公司 一种便于快速冷却的注塑模具
CN113246344A (zh) * 2021-06-28 2021-08-13 上海应用技术大学 一种含有随形水道注塑模具的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111633932A (zh) * 2020-06-03 2020-09-08 苏州华纳精密模具有限公司 异性随形冷却水路和模具型芯镶件及模具
CN212888795U (zh) * 2020-07-11 2021-04-06 光正模具技术(苏州)有限公司 一种便于快速冷却的注塑模具
CN113246344A (zh) * 2021-06-28 2021-08-13 上海应用技术大学 一种含有随形水道注塑模具的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
吴茜, 注塑模具随形冷却水道设计方法研究 *
宋珂;胡青春;姜晓平;: "注塑模具冷却水道排布优化设计", 塑料工业 *
林权;陈杰;何靓;吴雄飞;邓小明;: "基于数值模拟技术的塑料弯管注塑模优化设计", 兰州工业学院学报 *
汤小东;: "基于CAE开口管件注塑模具冷却系统的研究与分析", 塑料科技 *
赵会娟;李秀副;李二梅;汤金金;唐光胤;: "基于Moldflow和CREO的哈夫模设计", 吉林化工学院学报 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115139464A (zh) * 2022-08-09 2022-10-04 余姚市恒光塑料配件有限公司 一种具有冷却系统的注塑模具及其加工方法
CN115946320A (zh) * 2023-03-08 2023-04-11 新乡职业技术学院 一种电池壳体注塑模具
CN117507256A (zh) * 2023-11-15 2024-02-06 东莞市现代精工实业有限公司 一种水壶膨胀箱下壳的成型模具

Similar Documents

Publication Publication Date Title
Feng et al. Design and fabrication of conformal cooling channels in molds: Review and progress updates
CN114474636A (zh) 注塑模组合式冷却系统
Park et al. Design of conformal cooling channels for an automotive part
Venkatesh et al. Comparison of straight line to conformal cooling channel in injection molding
Mercado-Colmenero et al. A new conformal cooling lattice design procedure for injection molding applications based on expert algorithms
Ferreira et al. Multidisciplinary optimization of injection molding systems
CN110076974A (zh) 基于增材制造技术的注塑模具随形冷却水道的设计方法
Kuo et al. Effects of different cooling channels on the cooling efficiency in the wax injection molding process
CN113591350B (zh) 一种材料挤出成形3d打印成形质量提升方法
Sun et al. Design and FEM analysis of the milled groove insert method for cooling of plastic injection moulds
Kariminejad et al. Comparison of conventional and conformal cooling channels in the production of a commercial injection-moulded component
Dimla Design considerations of conformal cooling channels in injection moulding tools design: an overview
CN104999083A (zh) 一种异形水路的斜顶制备方法及斜顶
CN110962301B (zh) 一种保险杠注塑模具及该模具的翘曲率控制方法
CN109483816A (zh) 一种手机塑料壳体注塑工艺及注塑装置
Salunke et al. Injection molding methods design, optimization, simulation of plastic toy building block by mold flow analysis
Luh et al. Automated design of honeycomb conformal cooling channels for improving injection molding quality
Zheng et al. Finite element analysis on the injection molding and productivity of conformal cooling channel
Saifullah et al. Cycle time reduction in injection moulding with conformal cooling channels
Çalışkan et al. Efficiency comparison of conformal cooling channels produced by additive and subtractive manufacturing in automotive industry plastic injection moulds: a hybrid application
Homar et al. Cooling simulation of conformal cooling injection mould insert produced by hybrid manufacturing
Cao et al. Design of an automobile injection mould based on automation technology
Hodolic et al. Development of integrated CAD/CAE system of mold design for plastic injection molding
CN204712395U (zh) 一种异形水路结构的斜顶
Luh et al. Automatic design of conformal cooling channels with an asymmetric centre

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220513