CN114465625A - 宽带宽adc电路 - Google Patents
宽带宽adc电路 Download PDFInfo
- Publication number
- CN114465625A CN114465625A CN202111324857.5A CN202111324857A CN114465625A CN 114465625 A CN114465625 A CN 114465625A CN 202111324857 A CN202111324857 A CN 202111324857A CN 114465625 A CN114465625 A CN 114465625A
- Authority
- CN
- China
- Prior art keywords
- adc circuit
- digital output
- output signal
- signal
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
- H03M3/392—Arrangements for selecting among plural operation modes, e.g. for multi-standard operation
- H03M3/396—Arrangements for selecting among plural operation modes, e.g. for multi-standard operation among different frequency bands
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/458—Analogue/digital converters using delta-sigma modulation as an intermediate step
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/322—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M3/324—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement
- H03M3/344—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement by filtering other than the noise-shaping inherent to delta-sigma modulators, e.g. anti-aliasing
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/458—Analogue/digital converters using delta-sigma modulation as an intermediate step
- H03M3/466—Multiplexed conversion systems
- H03M3/468—Interleaved, i.e. using multiple converters or converter parts for one channel, e.g. using Hadamard codes, pi-delta-sigma converters
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
宽带宽ADC电路,将电阻输入连续时间Σ‑ΔADC电路与具有开关电容器输入的第二ADC电路相结合。这两种ADC电路的组合可以实现易于驱动、无混叠、宽带宽、具有出色DC精度的ADC。
Description
技术领域
该文件通常但不作为限制地涉及集成电路,并且更具体地涉及模数转换器电路和系统。
背景技术
在许多电子应用中,模拟输入信号被转换为数字输出信号(例如,用于进一步的数字信号处理)。例如,在精密测量系统中,电子设备可以配备一个或多个传感器进行测量,这些传感器可以生成模拟信号。然后可以将模拟信号提供给模数转换器(ADC)作为输入以生成数字输出信号以供进一步处理。在另一个例子中,在移动设备接收器中,天线可以基于携带信息/信号的电磁波在空气中生成模拟信号。然后可以将天线生成的模拟信号作为输入提供给ADC以生成数字输出信号以供进一步处理。
ADC的输入电压和输出电压之间的差值可以对应于ADC的量化误差。在某些ADC中,量化误差可以由ADC电路进一步处理以“整形”量化误差,这在频域中表现为量化噪声。例如,噪声整形技术可以将量化噪声从感兴趣的信号频带推向更高的频率。
Σ-Δ调制器是一种可以实现高分辨率数字信号的反馈系统。Σ-Δ调制器已在各种电子电路中实现,包括但不限于模数转换器(ADC)、数模转换器(DAC)、频率合成器和其他电子电路。
基于Σ-Δ调制的ADC已广泛应用于数字音频和高精度仪器系统。通常,Σ-ΔADC使用Σ-Δ调制器(例如,使用低分辨率ADC,如1位ADC、Flash ADC、Flash量化器等)对模拟信号进行编码,然后(如果适用)应用Σ-Δ调制器输出的数字滤波器以形成更高分辨率的数字输出。可提供环路滤波器以向Σ-Δ调制器提供误差反馈。Σ-Δ调制器的一项特性是其噪声整形能力。因此,Σ-ΔADC通常能够实现高分辨率的模数转换。
发明内容
本公开描述宽带宽ADC电路,将电阻输入连续时间Σ-ΔADC电路与具有开关电容器输入的第二ADC电路相结合。这两种ADC电路的组合可以实现易于驱动、无混叠、宽带宽、具有出色DC精度的ADC。
在一些方面,本公开涉及宽带宽模数转换器(ADC)电路,包括:连续时间Σ-ΔADC电路,其第一输入耦合到电阻元件以接收第一模拟输入信号并产生第一数字输出信号;独立于所述连续时间Σ-ΔADC电路的第二ADC电路,具有耦合到开关电容器电路的第二输入以接收第二模拟输入信号和输出以产生独立于所述第一数字输出信号的第二数字输出信号;和数字信号处理器,耦合以接收所述第一数字输出信号和所述第二数字输出信号以及输出以生成至少一个处理的数字输出信号。
在一些方面,本公开涉及一种操作宽带宽ADC电路的方法,该方法包括:使用连续时间Σ-ΔADC电路接收第一模拟输入信号并产生第一数字输出信号;使用独立于所述连续时间Σ-ΔADC电路的第二ADC电路接收第二模拟输入信号并产生独立于所述第一数字输出信号的第二数字输出信号;和处理所述第一数字输出信号和所述第二数字输出信号并产生至少一个处理的数字输出信号。
在一些方面,本公开涉及宽带宽模数转换器(ADC)电路,包括:第一连续时间Σ-ΔADC电路,具有耦合到电阻元件的第一输入以接收第一模拟输入信号并产生第一数字输出信号;第二连续时间Σ-ΔADC电路,独立于所述第一连续时间Σ-ΔADC电路,具有耦合到开关电容器电路的第二输入以接收第二模拟输入信号和输出以产生独立于所述第一数字输出信号的第二数字输出信号;和数字信号处理器,耦合以接收所述第一数字输出信号和所述第二数字输出信号以及输出以生成至少一个处理的数字输出信号。
附图说明
在不一定按比例绘制的附图中,相似的数字可以在不同的视图中描述相似的部件。具有不同字母后缀的相同数字可以代表相似组件的不同实例。附图通过示例而非限制的方式大体示出了本文件中讨论的各种实施例。
图1是数据采集系统的示例的示意框图,该系统可以实现Σ-Δ调制器。
图2是一阶单比特Σ-ΔADC的示例的框图。
图3是根据本公开的宽带宽ADC电路的示例的框图。
图4是根据本公开的宽带宽ADC电路的另一个示例的框图。
图5是根据本公开的包括RC滤波器电路的宽带宽ADC电路的示例的框图。
图6是根据本公开的包括多路复用器的宽带宽ADC电路的示例的框图。
具体实施方式
许多应用受益于或有时需要具有良好AC响应和高DC精度的宽带宽模数转换器(ADC)解决方案。ADC的带宽是指它可以正确转换为数字信号的模拟信号的频率范围。高DC精度是指ADC具有低增益误差、低失调误差、低增益和失调误差漂移、低积分非线性和低1/f噪声。
本发明人已经认识到,现有的ADC架构在将DC性能与高带宽和良好AC性能相结合方面存在局限性。一些ADC架构适用于窄带测量,例如DC测量。例如,ADC可以包括耦合到电容电路的输入,并且可以具有非常好的直流性能。然而,当用于AC测量时,此类ADC可能会带来系统级挑战。
具有耦合到电容电路的输入的ADC可能难以驱动,尤其是在需要高带宽和高精度时。因此,具有耦合到电容电路的输入的ADC可能需要专用的高带宽ADC驱动器放大器。驱动放大器会增加功耗、直流误差以及噪声和信号失真。
此外,具有耦合到电容电路的输入的ADC容易出现混叠。也就是说,即使使用过采样和数字滤波,在采样率fS下也可能没有抑制。因此,此类ADC可能需要模拟抗混叠滤波器来帮助防止信号混叠。然而,有源抗混叠滤波器会增加功耗、直流误差、噪声和信号失真以及通道间相位匹配误差。
某些ADC架构更适合交流测量,例如高速测量。例如,一些连续时间ADC电路可以包括耦合到电阻元件(也称为“电阻输入ADC”)的输入,这可以使它们易于驱动并可以提供固有的抗混叠特性。然而,这些电阻输入ADC也可能给设计人员带来挑战。
例如,与具有耦合到电容电路的输入的ADC相比,使用电阻输入ADC可能难以实现良好的DC性能。阻性输入ADC使用的电阻器,尤其是多晶硅电阻器,可能具有比电容器更高的电压系数,这会导致更差的积分非线性(INL)。此外,与电容器不同,电阻器,尤其是多晶硅电阻器,会产生闪烁噪声。此外,与电容器相比,电阻器相对于温度和老化的稳定性可能较差,这会导致更差的增益误差漂移和失调误差漂移随温度和时间的变化。
对于阻性输入ADC,很难实现灵活的输入共模范围。共模偏移会导致电流流入电阻器,从而增加噪声。此外,共模偏移加上不匹配的电阻网络会导致失调误差。
本公开描述宽带宽ADC电路,将电阻输入连续时间Σ-ΔADC电路与具有开关电容器输入的第二ADC电路相结合。这两种ADC电路的组合可以实现易于驱动、无混叠、宽带宽、具有出色DC精度的ADC。
图1是数据采集系统10的示例的示意框图,该系统可以实现Σ-Δ调制器。数据采集系统10可以是被配置为将信号(如模拟信号)转换成可用形式的电子设备(包括电子电路和/或一个或多个组件)。在各种实施方式中,数据采集系统10可以将物理条件转换成可以被存储和/或分析的数字形式。为了清楚起见,图1已被简化。可以在数据采集系统10中添加额外的特征,并且在数据采集系统10的其他实施例中可以替换或消除一些所描述的特征。
在图1中,数据采集系统10可以包括表示物理条件的输入信号15,例如温度、压力、速度、流速、位置、其他物理条件或其组合。传感器电路块20可以接收输入信号15并将物理条件(由输入信号15表示)转换成电信号,例如模拟信号25。模拟信号25可以是表示物理条件的电压或电流(由输入信号15表示)。
信号调节电路块30可以在模数转换器(ADC)的可接受范围内接收和调整模拟信号25,提供经调节的模拟信号35。经调节的模拟信号35可以在ADC电路块40处提供,使得信号调节电路块30可以充当传感器电路块20和ADC电路块40之间的接口,在ADC电路块40数字化模拟信号之前调节模拟信号25(并因此提供调节模拟信号35)。信号调节电路块30可以放大、衰减、滤波和/或对模拟信号25执行其他调节功能。ADC电路块40可以接收调节后的模拟信号35并将其转换为数字形式,提供数字信号45。数字信号45可以表示传感器通过输入信号15接收到的物理量。数字信号处理器(DSP)电路块50可以接收和处理数字信号45。
ADC电路块40可以包括使用反馈技术生成数字信号的Σ-ΔADC,其中Σ-ΔADC可以对其输入信号(这里是调节后的模拟信号35)进行过采样并执行噪声整形以实现高分辨率数字信号(此处为数字信号45)。Σ-ΔADC可以包括Σ-Δ调制器60和数字滤波器/抽取器70。Σ-Δ调制器60可以使用过采样(例如,采样率高于奈奎斯特率)和滤波来生成表示由Σ-ΔADC接收的输入信号的数字信号(如调节后的模拟信号35)。
在各种实现中,Σ-ΔADC反馈环路强制调制器的输出在感兴趣的带宽内很好地表示输入信号。数字滤波器/抽取器70可以衰减噪声和/或减慢数字信号的数据速率(例如,奈奎斯特采样率),提供数字信号45。数字滤波器/抽取器70可以包括数字滤波器、抽取器或两者。数字滤波器可以衰减从Σ-Δ调制器60接收的数字信号,抽取器可以降低从Σ-Δ调制器60接收的数字信号的采样率。
图2是一阶单比特Σ-ΔADC的示例的框图。Σ-Δ调制器100可以是图1的Σ-Δ调制器60的一个例子。Σ-Δ调制器100可以以采样时钟频率KfS确定的速率将输入信号(Vin)转换为连续的1和0串行流。一位数模转换器(DAC)102可由串行输出数据流驱动以产生反馈信号。可以使用求和元件104从输入信号中减去数模转换器(DAC)102的输出。求和元件104可以实现为运算放大器(opamp)的求和节点,例如积分器106的运算放大器。
积分器106可以对求和元件104的输出进行积分,并且积分器106的输出可以施加到时钟锁存比较器108。对于零输入信号,比较器输出可以包括大约相等数量的1和0。对于正输入电压,比较器输出包含的1多于0。对于负输入电压,比较器输出包含的0多于1。多个周期内比较器输出的平均值代表输入电压。比较器输出可以应用于每M个周期求平均值的数字滤波器和抽取器110,其中M是大于1的正整数。数字滤波器和抽取器110可以是图1的数字滤波器/抽取器70的示例。抽取器将输出端的有效采样率降低到采样率fS。
图3是根据本公开的宽带宽ADC电路200的示例的框图。图3中的ADC电路200可以包括以组合的输入和输出同时操作的两个ADC电路202、204。第一ADC电路202可以是具有耦合到电阻元件208并被配置为接收第一模拟输入信号210并生成对应的第一数字输出信号212的第一输入206的连续时间∑-ΔADC电路。虽然单独示出,在一些示例中,电阻元件208可以是第一ADC电路202的一部分。第一ADC电路202可以用于宽带宽AC性能。
独立于连续时间Σ-ΔADC电路202(两个ADC电路202、204可以不相互依赖地操作)的第二ADC电路204具有耦合到电容输入的第二输入214,例如开关电容器电路216,并被配置为接收第二模拟输入信号218并产生独立于第一数字输出信号212的对应的第二数字输出信号220。尽管单独示出,但在一些示例中,开关电容器电路216可以是第二ADC电路204的一部分。第二ADC电路204可以专注于窄带宽DC性能并且可以提供强DC共模抑制比(CMRR)。在一些示例中,ADC电路202、204都可以运行,而第二ADC电路204以较慢的采样率运行。
在一些例子中,第二ADC电路204可以包括具有开关电容输入的连续时间Σ-ΔADC电路。在其他示例中,第二ADC电路204可以包括离散时间ADC电路。例如,第二ADC电路204可以包括逐次逼近寄存器(SAR)ADC电路、快速ADC电路、Σ-ΔADC电路或流水线ADC电路。
此外,ADC电路200可以包括数字信号处理器222,其被配置为接收第一数字输出信号212和第二数字输出信号220并产生至少一个处理过的数字输出信号224。例如,在图3中,数字信号处理器222可以被配置为组合第一数字输出信号212和第二数字输出信号220,使得至少一个处理的数字输出信号224是单个组合的数字输出信号。也就是说,第一数字输出信号212和第二数字输出信号220可以被数字地重组为单个比特流。共同转让给Coln等人、标题为“分路数据采集信号链”的美国专利第9,083,369号中描述了重组技术的一个例子,其全部内容通过引用并入本文。
在一些例子中,ADC电路200可以包括单个通道。例如,图3中的ADC电路200可以包括被配置为接收第一模拟输入信号210的第一通道226。在这样的配置中,第一模拟输入信号210和第二模拟输入信号218可以是相同的模拟输入信号,即图3中的模拟信号VIN。在图3所示的例子中,连续时间Σ-ΔADC电路202包括第一输入206,第二ADC电路204包括第二输入214,所述第一输入和所述第二输入耦合到所述第一通道226。
图4是根据本公开的宽带宽ADC电路的另一个示例的框图。图4中的ADC电路300可以包括与单独的输入226、302和单独的对应输出224、304并行操作的两个ADC电路202、204。作为示例,图4的ADC电路300可以支持传感器集群操作,例如通过单独的通道监测振动和温度。
如图4中所见,ADC电路300可包括多个输入通道。例如,图4中的ADC电路300可以包括被配置为接收第一模拟输入信号210的第一通道226和被配置为接收第二模拟输入信号218的第二通道302。第一模拟输入信号210可为模拟信号VIN1,而第二模拟输入信号218可为模拟信号VIN2。在图4所示的示例中,连续时间Σ-ΔADC电路202包括耦合到第一通道226的第一输入206,并且第二ADC电路204包括耦合到第二通道302的第二输入214。
数字信号处理器222可以被配置为接收第一数字输出信号212和第二数字输出信号220,处理两个对应的输出信号212、220,然后输出第一处理的数字输出信号224和单独的第二处理的数字输出信号304。在一些示例中并且如下文更详细地描述的,数字信号处理器222可以生成并将第一唤醒信号306或第二唤醒信号308施加到连续时间Σ-ΔADC电路(唤醒信号306)或第二ADC电路(唤醒信号308)响应例如超过阈值的幅度。图5是根据本公开的宽带宽ADC电路400的另一个示例的框图。图5中的ADC电路400可以包括以组合的输入和输出同时操作的两个ADC电路202、204。此外,ADC电路400可以包括具有电阻器R和电容器C的RC滤波器电路402。
RC滤波器电路402可以耦合到开关电容器第二ADC电路204并且可以保护开关电容器第二ADC电路204免于混叠,例如采样和斩波混叠。RC滤波器电路402还可以抑制任何反冲干扰连续时间Σ-ΔADC电路202的输入,例如具有宽带宽AC性能的通道。连续时间Σ-ΔADC电路202和第二ADC电路204都可以测量相同的模拟信号VIN,但是RC滤波电路402可以去除第二通道302中的交流分量,使得第二ADC电路204没有混叠。然后,两个数字输出信号212、220可以由数字信号处理器222重新组合。
类似于图3的ADC电路200,在一些示例中,图5的数字信号处理器222可以被配置为组合第一数字输出信号212和第二数字输出信号220,以及至少一个经处理的数字输出信号224是单个组合的经处理的数字输出信号。然而,在其他示例中,图5的数字信号处理器222可以被配置为提供并行处理的数字输出信号,如图4所示。
图6是根据本公开的宽带宽ADC电路500的另一个示例的框图。图6的ADC电路500可以组合多个宽带宽和窄带宽通道。图6中所示的非限制性示例可包括第一连续时间Σ-ΔADC电路202,其具有耦合到电阻元件208并被配置为接收模拟输入信号210的输入206;第二连续时间Σ-ΔADC电路502,其具有耦合到电阻元件506并被配置为接收模拟输入信号507的输入504;以及ADC电路204,其具有耦合到开关电容器电路216并被配置为接收模拟输入信号218的输入214。
如上所述,在一些例子中,ADC电路204可以包括具有开关电容输入的连续时间Σ-ΔADC电路。在其他示例中,ADC电路204可以包括离散时间ADC电路。例如,ADC电路204可以包括逐次逼近寄存器(SAR)ADC电路、快速ADC电路、Σ-ΔADC电路或流水线ADC电路。
第一连续时间Σ-ΔADC电路202的输入206可以耦合到第一通道226并且被配置为生成对应的第一数字输出信号212。第二连续时间Σ-ΔADC电路502的输入504可以耦合到第二通道508并且被配置为生成对应的第二数字输出信号510。
图6的ADC电路500可以包括多路复用器512。多路复用器512可以包括相应地耦合到第一通道226、第二通道508、第三通道302以及在一些示例中的第四通道514的输入。通道226可配置接收模拟信号VIN2,第二通道508可配置接收模拟信号VIN2,第三通道302可配置接收模拟信号VIN3,第四通道514可配置接收模拟信号VIN4。
多路复用器512可以包括耦合到ADC电路204的输入214的输出并且可以被配置为选择第一通道226、第二通道508、第三通道302以及在一些示例中的第四通道514中的一个。
数字信号处理器222可被配置为接收第一连续时间Σ-ΔADC电路202的数字输出信号212、第二连续时间Σ-ΔADC电路502的数字输出信号510和数字输出ADC电路204的信号220。在图6所示的例子中,数字信号处理器222可以被配置为输出对应于数字输出信号212、510、220的并行处理的数字输出信号224、516、304。在示例中,数字信号处理器222可以被配置为组合数字输出信号212、数字输出信号510或数字输出信号220中的至少一个并且输出单个组合的数字输出信号。
图6的ADC电路500可以组合多个宽带宽和窄带宽通道。例如,对于宽带AC测量,两个并行的连续时间Σ-ΔADC电路202、502可以连续采样通道226、508,这些通道可以是AC测量通道。通道302、514可以是DC测量通道。对于窄带DC测量,ADC电路204不需要在通道之间同时采样,例如通道302、514,因为窄带信号可以缓慢移动。如图6所示,多路复用器512可以多路复用来自多个AC信道的输入,例如信道226、508。
在上面的图3-6中,在一些情况下可能需要有意地暂时或永久地禁用连续时间Σ-ΔADC电路或第二ADC电路。例如,连续时间Σ-ΔADC电路或第二ADC电路之一可以通过软件技术有意禁用,例如通过寄存器程序,或通过硬件,例如通过不连接输入引脚或使用保险丝来禁用。
在非限制性示例中,通过禁用第二ADC电路204,例如在图4中,可能希望在仅AC模式下操作,例如用于声纳、音频或科里奥利流量计应用。在另一个非限制性示例中,通过禁用连续时间Σ-ΔADC电路202,例如在仅测量DC信号(例如温度和压力)下,可能希望在仅DC模式下操作,例如图4。
在上面的图3-6中,可能需要一个ADC电路触发另一个ADC电路,例如将其从低功率状态唤醒。作为非限制性示例,ADC电路可用于振动应用并且DC通道可用于监测振动。AC域中可能存在重要信息,但客户可以通过将连续时间Σ-ΔADC电路置于低功耗状态来暂时禁用AC通道以节省功耗。如果发生显着振动,DC通道可以检测到由于混叠导致的宽带宽上的信号幅度变化,但无法通过信号频率(例如1kHz或10kHz等)区分幅度变化。在这样的示例中,直流通道可以用来唤醒AC通道中的连续时间Σ-ΔADC电路,连续时间Σ-ΔADC电路可以分析信号的频率信息。
例如,图4的第二ADC电路204(耦合到DC通道302)可以在比图4的连续时间Σ-ΔADC电路202(耦合到AC通道226)低得多的功率下操作。连续时间Σ-ΔADC电路202可以处于低功率状态,例如静止状态,直到连续时间Σ-ΔADC电路202接收到来自数字信号处理器222的唤醒信号。图4的信号处理器222可以在幅度超过阈值时使用幅度触发并输出唤醒信号306至连续时间Σ-ΔADC电路202,例如,将连续时间Σ-ΔADC电路202置于完全通电状态。换句话说,图4的数字信号处理器222例如可以将第一处理的数字输出信号212和第二处理的数字输出信号220之一的幅度与阈值进行比较,并且响应于超过阈值的幅度,生成唤醒信号并将唤醒信号施加到连续时间Σ-ΔADC电路(唤醒信号306)或第二ADC电路(唤醒信号308)。
在另一示例中,图4的连续时间Σ-ΔADC电路202(耦合到AC通道226)可以连续运行并且图4的数字信号处理器222可以周期性地向图4的第二ADC电路204(耦合到DC通道302)输出信号308以从低功率状态(例如静止状态)唤醒,以便校正DC偏移和/或漂移。尽管关于图4进行了描述,但是图3、5和6的数字信号处理器222可以生成类似的信号306、308。
在图4中,或在具有单独输入和输出的其他配置中,在一些示例中,可能需要宽带宽模数转换器(ADC)电路的两个或多个ADC电路之间的占空比,这可以允许宽带宽模数转换器(ADC)电路在交流和直流通道之间切换。例如,图4的宽带宽模数转换器(ADC)电路300可以使用来自数字信号处理器222的信号306、308,连续时间Σ-ΔADC电路202(耦合到AC通道226)和第二ADC电路204(耦合到DC通道302)之间的占空比。在非限制性示例中,连续时间Σ-ΔADC电路202可以执行连续振动监测并且第二ADC电路204可以执行周期性温度测量。在另一个非限制性示例中,连续时间Σ-ΔADC电路202可以执行周期性振动监测并且第二ADC电路204可以执行连续温度监测。
各种注释
在此描述的每个非限制性方面或示例可以独立存在,或者可以以各种排列组合或与一个或多个其他示例组合。
以上详细说明包括对附图的引用,附图构成详细说明的一部分。附图通过说明的方式示出了可以在其中实践本发明的特定实施例。这些实施例在本文中也称为“示例”。此类示例可包括除所示或描述的那些之外的元素。然而,本发明人还考虑仅提供所示或描述的那些元件的示例。此外,本发明人还考虑使用所示或描述的那些要素(或其一个或多个方面)的任何组合或排列的示例,或者关于特定示例(或其一个或多个方面),或者关于本文所示或描述的其他示例(或其一个或多个方面)。
如果本文档与通过引用并入的任何文档之间的用法不一致,则以本文档中的用法为准。
在本文件中,术语“一个”或“一些”在专利文件中很常见,用于包括一个或多个、独立于“至少一个”或“一个或多个”的任何其他实例或用法。在本文档中,除非另有说明,否则术语“或”用于指代非排他性的或,例如“A或B”包括“A但不是B”、“B但不是A”和“A和B”。在本文件中,术语“包括”和“其中”用作相应术语“包括”和“其中”的简单等效词。此外,在以下权利要求中,术语“包括”和“包含”是开放式的,即,除了在权利要求中的该术语之后列出的那些元素之外还包括元素的系统、装置、物品、组合物、制剂或过程仍被认为落入该权利要求的范围内。此外,在所附权利要求中,“第一”、“第二”、“第三”等术语仅作为标签使用,并非对其对象强加数值要求。
在此描述的方法示例可以至少部分地是机器或计算机实现的。一些示例可以包括用指令编码的计算机可读介质或机器可读介质,所述指令可操作以配置电子设备以执行如以上示例中所述的方法。这种方法的实现可以包括代码,例如微代码、汇编语言代码、高级语言代码等。这种代码可以包括用于执行各种方法的计算机可读指令。代码可以形成计算机程序产品的部分。此外,在一个示例中,代码可以有形地存储在一个或多个易失性、非暂时性或非易失性有形计算机可读介质上,例如在执行期间或在其他时间。这些有形计算机可读介质的示例可以包括但不限于硬盘、可移动磁盘、可移动光盘(例如,压缩盘和数字视频盘)、磁带、存储卡或记忆棒、随机存取存储器(RAM)、只读存储器(ROM)等。
以上描述旨在说明性而非限制性。例如,上述示例(或其一个或多个方面)可以彼此组合使用。可以使用其他实施例,例如本领域的普通技术人员在阅读以上描述后。提供摘要以符合37C.F.R.§1.72(b),以便读者快速确定技术公开的性质。提交的理解是它不会用于解释或限制权利要求的范围或含义。此外,在上述详细描述中,各种特征可以组合在一起以简化本公开。这不应被解释为意在未要求保护的公开特征对于任何权利要求是必不可少的。相反,本发明的主题可能在于少于特定公开实施例的所有特征。因此,以下权利要求特此作为示例或实施例并入详细说明中,每个权利要求独立作为单独的实施例,并且预期这些实施例可以以各种组合或排列彼此组合。本发明的范围应参考所附权利要求以及这些权利要求所赋予的等效物的全部范围来确定。
Claims (20)
1.宽带宽模数转换器(ADC)电路,包括:
连续时间Σ-ΔADC电路,其第一输入耦合到电阻元件以接收第一模拟输入信号并产生第一数字输出信号;
独立于所述连续时间Σ-ΔADC电路的第二ADC电路,具有耦合到开关电容器电路的第二输入以接收第二模拟输入信号和输出以产生独立于所述第一数字输出信号的第二数字输出信号;和
数字信号处理器,耦合以接收所述第一数字输出信号和所述第二数字输出信号以及输出以生成至少一个处理的数字输出信号。
2.权利要求1所述的宽带宽ADC电路,包括:
接收所述第一模拟输入信号的第一通道,
其中所述连续时间Σ-ΔADC电路包括第一输入,
其中所述第二ADC电路包括第二输入,和
其中所述第一输入和所述第二输入耦合到所述第一通道。
3.权利要求2所述的宽带宽ADC电路,所述数字信号处理器用于组合所述第一数字输出信号和所述第二数字输出信号,并且其中所述至少一个处理的数字输出信号是单个组合的数字输出信号。
4.权利要求1所述的宽带宽ADC电路,包括:
接收所述第一模拟输入信号的第一通道;和
接收所述第二模拟输入信号的第二通道;
其中所述连续时间Σ-ΔADC电路包括耦合到所述第一通道的第一输入,和
其中所述第二ADC电路包括耦合到所述第二通道的第二输入。
5.权利要求4所述的宽带宽ADC电路,其中所述数字信号处理器耦合以接收所述第一数字输出信号和所述第二数字输出信号,并且产生至少一个处理的数字输出信号的输出进一步耦合到:
接收所述第一数字输出信号并产生对应的第一处理的数字输出信号;和
接收所述第二数字输出信号并产生对应的第二处理的数字输出信号。
6.权利要求4所述的宽带宽ADC电路,包括:
耦合到所述第二通道的RC滤波器,所述数字信号处理器用于组合所述第一数字输出信号和所述第二数字输出信号,并且其中所述至少一个处理的数字输出信号是单个组合的数字输出信号。
7.权利要求1所述的宽带宽ADC电路,其中所述连续时间Σ-ΔADC电路是第一连续时间Σ-ΔADC电路并且包括耦合到所述第一通道的第一输入,并且其中所述第二ADC电路包括耦合到第二通道的第二输入,所述宽带宽模数转换器(ADC)电路还包括:
第二连续时间Σ-ΔADC电路,包括耦合到第三通道并产生第三数字输出信号的第三输入,所述数字信号处理器用于接收所述第三数字输出信号;
所述第一通道用于接收第一模拟输入信号;
所述第二通道用于接收第二模拟输入信号;
所述第三通道用于接收第三模拟输入信号;和
多路复用器,包括与所述第一通道、所述第二通道和所述第三通道对应耦合的输入,所述多路复用器包括与所述第二ADC电路的输入耦合的输出,所述多路复用器用于选择所述第一通道、所述第二通道和所述第三通道中的一个。
8.权利要求7所述的宽带宽ADC电路,其中所述数字信号处理器耦合以接收所述第一数字输出信号和所述第二数字输出信号,并且产生至少一个处理的数字输出信号的输出进一步耦合到:
接收所述第一数字输出信号并产生对应的第一处理的数字输出信号;
接收所述第二数字输出信号并产生对应的第二处理的数字输出信号;和
接收所述第三数字输出信号并产生对应的第三处理的数字输出信号。
9.权利要求1所述的宽带宽ADC电路,其中所述第二ADC电路包括开关电容器输入。
10.权利要求1所述的宽带宽ADC电路,其中所述第二ADC电路包括逐次逼近寄存器(SAR)ADC。
11.权利要求1所述的宽带宽ADC电路,其中所述连续时间Σ-ΔADC电路或所述第二ADC电路被配置为有意禁用。
12.权利要求1所述的宽带宽ADC电路,所述数字信号处理器生成唤醒信号并将其应用于所述连续时间Σ-ΔADC电路或所述第二ADC电路。
13.一种操作宽带宽ADC电路的方法,该方法包括:
使用连续时间Σ-ΔADC电路接收第一模拟输入信号并产生第一数字输出信号;
使用独立于所述连续时间Σ-ΔADC电路的第二ADC电路接收第二模拟输入信号并产生独立于所述第一数字输出信号的第二数字输出信号;和
处理所述第一数字输出信号和所述第二数字输出信号并产生至少一个处理的数字输出信号。
14.权利要求13所述的方法,其中处理第一数字输出信号和第二数字输出信号并产生至少一个处理的数字输出信号包括:
产生分别对应于所述第一数字输出信号和所述第二数字输出信号的第一处理的数字输出信号和第二处理的数字输出信号。
15.权利要求13所述的方法,包括:
使用耦合到所述第二ADC电路的RC滤波器滤波施加到所述宽带宽ADC电路的输入信号。
16.权利要求13所述的方法,包括:
生成唤醒信号并将所述唤醒信号施加到所述连续时间Σ-ΔADC电路或所述第二ADC电路。
17.权利要求16所述的方法,包括:
将所述第一处理的数字输出信号和所述第二处理的数字输出信号之一的幅度与阈值进行比较;和
响应超过阈值的幅度产生唤醒信号并将其施加到所述连续时间∑-ΔADC电路或所述第二ADC电路。
18.宽带宽模数转换器(ADC)电路,包括:
第一连续时间Σ-ΔADC电路,具有耦合到电阻元件的第一输入以接收第一模拟输入信号并产生第一数字输出信号;
第二连续时间Σ-ΔADC电路,独立于所述第一连续时间Σ-ΔADC电路,具有耦合到开关电容器电路的第二输入以接收第二模拟输入信号和输出以产生独立于所述第一数字输出信号的第二数字输出信号;和
数字信号处理器,耦合以接收所述第一数字输出信号和所述第二数字输出信号以及输出以生成至少一个处理的数字输出信号。
19.权利要求18所述的宽带宽ADC电路,包括:
接收所述第一模拟输入信号的第一通道,
其中所述第一连续时间Σ-ΔADC电路包括第一输入,
其中所述第二连续时间Σ-ΔADC电路包括第二输入,并且
其中所述第一输入和所述第二输入耦合到所述第一通道。
20.权利要求18所述的宽带宽ADC电路,包括:
接收所述第一模拟输入信号的第一通道;和
接收所述第二模拟输入信号的第二通道,
其中所述第一连续时间Σ-ΔADC电路包括耦合到所述第一通道的第一输入,以及
其中所述第二连续时间∑-ΔADC电路包括耦合到所述第二通道的第二输入。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/093,948 US11251807B1 (en) | 2020-11-10 | 2020-11-10 | Wide bandwidth ADC with inherent anti-aliasing and high DC precision |
US17/093,948 | 2020-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114465625A true CN114465625A (zh) | 2022-05-10 |
Family
ID=78592691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111324857.5A Pending CN114465625A (zh) | 2020-11-10 | 2021-11-10 | 宽带宽adc电路 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11251807B1 (zh) |
EP (1) | EP3996282A1 (zh) |
CN (1) | CN114465625A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115694511A (zh) * | 2022-12-30 | 2023-02-03 | 深圳芯盛思技术有限公司 | 连续时间Sigma-Delta模数转换系统及其运行方法和应用 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11716092B2 (en) * | 2017-10-25 | 2023-08-01 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Optimizable analog-to-digital converter for unipolar or bipolar pulse signals based on multi-bit sigma-delta modulation |
IT202100024644A1 (it) * | 2021-09-27 | 2023-03-27 | St Microelectronics Srl | Circuito di controllo di un giroscopio mems, giroscopio mems e metodo di controllo |
US20230341348A1 (en) * | 2022-04-21 | 2023-10-26 | Cirrus Logic International Semiconductor Ltd. | Circuitry for electrochemical cells |
US11967972B2 (en) * | 2022-05-03 | 2024-04-23 | Analog Devices International Unlimited Company | Spread spectrum chopping for sigma delta modulators |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5079550A (en) | 1989-10-27 | 1992-01-07 | Crystal Semiconductor Corporation | Combining continuous time and discrete time signal processing in a delta-sigma modulator |
US5461381A (en) * | 1993-12-13 | 1995-10-24 | Motorola, Inc. | Sigma-delta analog-to-digital converter (ADC) with feedback compensation and method therefor |
US6121909A (en) | 1998-06-02 | 2000-09-19 | Cirrus Logic, Inc. | One bit digital to analog converter with feedback across the discrete time/continuous time interface |
US6373418B1 (en) * | 2000-05-25 | 2002-04-16 | Rockwell Collins, Inc. | Nyquist response restoring delta-sigma modulator based analog to digital and digital to analog conversion |
US6362762B1 (en) * | 2000-08-23 | 2002-03-26 | Hrl Laboratories, Llc | Multiple mode analog-to-digital converter employing a single quantizer |
US6701297B2 (en) | 2001-03-02 | 2004-03-02 | Geoffrey Layton Main | Direct intermediate frequency sampling wavelet-based analog-to-digital and digital-to-analog converter |
US6924757B2 (en) | 2003-05-21 | 2005-08-02 | Analog Devices, Inc. | Sigma-delta modulator with reduced switching rate for use in class-D amplification |
US7095345B2 (en) | 2004-06-29 | 2006-08-22 | Analog Devices, Inc. | Hybrid tuning circuit for continuous-time sigma-delta analog-to-digital converter |
WO2008103468A1 (en) | 2007-02-20 | 2008-08-28 | Haiyun Tang | Combined sensing methods for cognitive radio |
US8111097B1 (en) | 2009-05-10 | 2012-02-07 | Cypress Semiconductor Corporation | Device with reconfigurable continuous and discrete time functionality |
US8581762B2 (en) * | 2010-12-03 | 2013-11-12 | Marvell World Trade Ltd. | Continuous time sigma-delta ADC with embedded low-pass filter |
US8451051B2 (en) * | 2011-10-04 | 2013-05-28 | Issc Technologies Corp. | Dual mode sigma delta analog to digital converter and circuit using the same |
US8779958B1 (en) | 2013-01-22 | 2014-07-15 | Analog Devices Technology | Continuous time input stage |
US9083369B2 (en) | 2013-05-10 | 2015-07-14 | Analog Devices, Inc. | Split-path data acquisition signal chain |
US10073812B2 (en) | 2014-04-25 | 2018-09-11 | The University Of North Carolina At Charlotte | Digital discrete-time non-foster circuits and elements |
US9729165B2 (en) | 2015-05-12 | 2017-08-08 | Texas Instruments Incorporated | Delta-sigma analog-to-digital converter topology with improved distortion performance |
US9564916B2 (en) | 2015-06-03 | 2017-02-07 | Analog Devices, Inc. | Suppressing signal transfer function peaking in a feedforward delta sigma converter |
US9735797B2 (en) | 2015-12-15 | 2017-08-15 | Analog Devices, Inc. | Digital measurement of DAC timing mismatch error |
US9793908B2 (en) * | 2015-12-18 | 2017-10-17 | Analog Devices Global | Protection circuits for tunable resistor at continuous-time ADC input |
US9843337B1 (en) | 2017-03-16 | 2017-12-12 | Analog Devices Global | Background flash offset calibration in continuous-time delta-sigma ADCS |
US10187075B1 (en) | 2018-05-08 | 2019-01-22 | Analog Devices Global Unlimited Company | Blocker tolerance in continuous-time residue generating analog-to-digital converters |
US10541706B2 (en) * | 2018-05-25 | 2020-01-21 | Arizona Board Of Regents On Behalf Of Arizona State University | Dynamic-zoom analog to digital converter (ADC) having a coarse flash ADC and a fine passive single-bit modulator |
US10680633B1 (en) | 2018-12-21 | 2020-06-09 | Analog Devices International Unlimited Compnay | Data acquisition system-in-package |
-
2020
- 2020-11-10 US US17/093,948 patent/US11251807B1/en active Active
-
2021
- 2021-11-09 EP EP21207328.2A patent/EP3996282A1/en active Pending
- 2021-11-10 CN CN202111324857.5A patent/CN114465625A/zh active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115694511A (zh) * | 2022-12-30 | 2023-02-03 | 深圳芯盛思技术有限公司 | 连续时间Sigma-Delta模数转换系统及其运行方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
US11251807B1 (en) | 2022-02-15 |
EP3996282A1 (en) | 2022-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3996282A1 (en) | Wide bandwidth adc with inherent anti-aliasing and high dc precision | |
US8212700B2 (en) | Delta-sigma-delta modulator | |
US7379002B1 (en) | Methods and apparatus for a multi-mode analog-to-digital converter | |
EP2355358A1 (en) | An ADC, a temperature sensor, a non-contact transponder, and a method of converting analog signals to digital signals | |
US8018366B2 (en) | Data converter having a passive filter | |
CN106899296B (zh) | 频域adc闪存校准系统、方法及计算机可读介质 | |
US9065474B2 (en) | Time-interleaved single input dual output sigma-delta modulator | |
CN115276661A (zh) | 一种超高分辨率的模数转换器 | |
Wang et al. | Near-optimal decoding of incremental delta-sigma ADC output | |
US10355709B1 (en) | Multiplexed sigma-delta analog-to-digital converter | |
US12068760B2 (en) | Continuous-time sigma delta analog-to-digital converter | |
EP4187793A1 (en) | Gain programmability techniques for delta-sigma analog-to-digital converter | |
US11967972B2 (en) | Spread spectrum chopping for sigma delta modulators | |
US11677411B2 (en) | A/D converter, sensor processing circuit, and sensor system | |
US11621722B2 (en) | Multi quantizer loops for delta-sigma converters | |
US11121718B1 (en) | Multi-stage sigma-delta analog-to-digital converter with dither | |
US20230060505A1 (en) | Techniques to reduce quantization noise in delta sigma converters | |
US11664815B2 (en) | Digital filter, A/D converter, sensor processing circuit, and sensor system | |
US10938407B2 (en) | Sigma-delta analog to digital converter | |
WO2020195955A1 (ja) | アナログデジタルコンバータ、センサシステム、及びテストシステム | |
KR101884947B1 (ko) | Plc 아날로그 입력모듈 | |
US10014879B1 (en) | Capacitance-to-digital converter | |
Munshi et al. | A Higher Order ADC Using Multi bit Quantizer and Noise Cancellation | |
Yousefzadeh et al. | A generic read-out circuit for resistive transducers | |
Uster | Current-mode analog-to-digital converter for array implementation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |