CN114459334A - 一种用于拉伸应变矢量监测的复合传感器及其制备方法 - Google Patents

一种用于拉伸应变矢量监测的复合传感器及其制备方法 Download PDF

Info

Publication number
CN114459334A
CN114459334A CN202210109098.9A CN202210109098A CN114459334A CN 114459334 A CN114459334 A CN 114459334A CN 202210109098 A CN202210109098 A CN 202210109098A CN 114459334 A CN114459334 A CN 114459334A
Authority
CN
China
Prior art keywords
layer
tensile strain
sensing
composite sensor
stretchable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210109098.9A
Other languages
English (en)
Other versions
CN114459334B (zh
Inventor
张跃
徐良旭
廖庆亮
赵璇
李琪
赵浩然
苏兆洋
高禄森
任可
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202210109098.9A priority Critical patent/CN114459334B/zh
Publication of CN114459334A publication Critical patent/CN114459334A/zh
Application granted granted Critical
Publication of CN114459334B publication Critical patent/CN114459334B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4358Polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0292Polyurethane fibres

Abstract

本发明涉及智能传感领域,提供了一种用于拉伸应变矢量监测的复合传感器及其制备方法,复合传感器包括从上到下依次排列的顶部封装层、传感层、传感层之间的绝缘层与底部封装层;顶部封装层、绝缘层与底部封装层均为力学性能呈各向同性的可拉伸绝缘材料;传感层为电学性能呈各向异性的导电材料,可对拉伸应变的大小与方向进行双响应;传感层垂直叠层排列,相邻传感层之间的夹角为180°与传感层数之比。本发明通过测量各传感层的阻变信号,可对平面内任意拉伸应变进行矢量监测,并计算得到拉伸应变的大小与方向。该传感器灵敏度高,响应速度快,具有良好的耐久性与服役稳定性,在多自由度机械接口和人体多维动作精细感知等领域具重要应用前景。

Description

一种用于拉伸应变矢量监测的复合传感器及其制备方法
技术领域
本发明涉及智能传感技术领域,特别涉及一种用于拉伸应变矢量监测的复合传感器及其制备方法。
背景技术
职业性肌肉骨骼疾患目前已成为全球第一大高发职业性疾病,作为全球最常见与最昂贵的职业性疾病,它严重影响了劳动者的工作效率和身心健康,给国家造成了巨大的直接和间接经济损失。因此,迫切需要开发一种能够在日常活动中精细监测关节运动状态的拉伸应变矢量传感器件,用于预防与辅助治疗职业性肌肉骨骼疾患,此外,该类传感器在多自由度机械应变监测等非常规传感技术领域也有广泛的应用需求。众多的传感器如惯性传感器、应变仪、加速度计和光纤传感器等已经应用于人体动作的监测,但是,复杂且刚性的器件结构、有限的探测范围(通常测量范围<5%应变)以及不充分的运动信息获取限制了它们的对于复杂人体动作的精细感知。
柔性应变传感器具备良好的共形性与适应能力,能够对应变刺激快速响应并产生电信号变化,在人体动作监测以及大的机械应变检测等方面都展现出了巨大的应用潜力。然而,传统的应变传感器仅能检测单轴的应变量,缺乏对不规则应变大小与方向的矢量检测能力。针对以上存在问题,首先需要研制一种各向异性应变传感器,提升器件对不同方向拉伸应变的选择性响应能力。在此基础上,将多个应变传感器集成设计复合传感器,通过耦合多传感层的检测信号,进而实现平面内任意拉伸应变的大小与方向的动态计算,这将极大拓展柔性应变传感器在多维度应变检测与多自由度机械接口等非常规应变检测技术领域的应用。
发明内容
本发明的目的是至少克服现有技术的不足之一,提供了一种用于拉伸应变矢量监测的复合传感器及其制备方法,传感层的力电性能呈各向异性,可对拉伸应变的大小与方向进行双响应。复合传感器通过测量多个传感层的阻变信号,可对平面内任意拉伸应变的大小与方向进行实时动态的计算。
本发明采用如下技术方案:
一方面,本发明提供了一种用于拉伸应变矢量监测的复合传感器,自上而下包括顶部封装层、两个或多个传感层、设置于相邻传感层之间的绝缘层及底部封装层;
所述传感层为力电性能呈各向异性的导电材料,由可拉伸基底材料与低维导电材料复合而成;所述传感层能对拉伸应变的大小与方向进行双响应;相邻所述传感层之间呈一定夹角。
如上所述的任一可能的实现方式,进一步提供一种实现方式,所述复合传感器的传感层为垂直叠层排列,相邻传感层之间的夹角为180°与传感层数之比。传感层的数目越多,复合传感器对拉伸应变大小与方向的检测精度越高。
如上所述的任一可能的实现方式,进一步提供一种实现方式,所述顶部封装层、底部封装层及绝缘层均为力学性能呈各向同性的可拉伸绝缘材料。
如上所述的任一可能的实现方式,进一步提供一种实现方式,所述力电性能呈各向异性的导电材料通过设计有序结构的可拉伸基底材料获得。
如上所述的任一可能的实现方式,进一步提供一种实现方式,所述力学性能呈各向同性的可拉伸绝缘材料通过设计无序结构获得。
另一方面,本发明还提供了一种用于拉伸应变矢量监测的复合传感器的制备方法,包括:
S1、分别配置可拉伸绝缘材料、可拉伸基底材料的均匀分散液以及低维导电材料的均匀分散液;
S2、通过静电纺丝工艺分别制备力学性能呈各向同性的顶部封装层、底部封装层与绝缘层;通过静电纺丝工艺制备力学性能呈各向异性的可拉伸基底,然后采用浸涂工艺实现可拉伸基底与所述低维导电材料的复合,制备得到力电性能呈各向异性的传感层;
S3、按照设定的形状和尺寸,将顶部封装层、传感层、传感层之间的绝缘层与底部封装层依次垂直叠层排列后,采用热压工艺一次成型。
如上所述的任一可能的实现方式,进一步提供一种实现方式,步骤S1中,所述可拉伸绝缘材料包括但不限于聚氨酯PU、环氧树脂Epoxy、聚二甲基硅氧烷PDMS、硅橡胶等有机高分子材料,所述可拉伸绝缘材料的分散液溶剂为二甲基甲酰胺、四氢呋喃、丙酮的任一种或两种及以上组合,所述可拉伸绝缘材料的分散液浓度为15%wt -25% wt。
如上所述的任一可能的实现方式,进一步提供一种实现方式,步骤S1中,所述低维导电材料包括但不限于碳纳米管、石墨烯、碳纤维、二维层状过渡金属碳化物或碳氮化物、金属纳米线与纳米颗粒,分散溶剂为无水乙醇、去离子水的任意一种,所述低维导电材料的分散液浓度为0.1%wt -5% wt。
如上所述的任一可能的实现方式,进一步提供一种实现方式,所述有序与无序结构通过调整静电纺丝工艺参数有效调控,随着静电纺丝接收装置转速的增加,静电纺丝纤维整体排列逐渐由无序到有序,静电纺丝纤维膜力学性能逐渐由各向同性转变为各向异性。
如上所述的任一可能的实现方式,进一步提供一种实现方式,步骤S2中,静电纺丝工艺参数为:
制备顶部封装层、底部封装层或绝缘层时,施加电压为16-24 kV,给料量为0.5-1mL/h,静电纺丝温度为15~45 ℃,相对湿度为20~60 %,纺丝接收装置转速小于200 rpm;
制备可拉伸基底时,施加电压为16-24 kV,给料量为0.5-1 mL/h,纺丝温度为15~45℃,相对湿度为20~60 %,纺丝接收装置转速为2000-3000 rpm。
如上所述的任一可能的实现方式,进一步提供一种实现方式,步骤S3中,热压工艺的压缩温度为40-80℃,加载压力为10 MPa,加载时间不低于60s。
另一方面,本发明还提供了一种用于拉伸应变矢量检测的复合传感器的应用,其特征在于,所述复合传感器可共形穿戴于人体关节处,在人体关节运动过程中,复合传感器通过测量各传感层的阻变信号,可对平面内任意拉伸应变进行实时的矢量监测,并计算得到人体关节运动的幅值与方向。
本发明的有益效果为:
1. 本发明提出了一种各向异性应变传感器的制备方法,基于弹性体纤维的有序结构,各向异性应变传感器实现了对拉伸应变大小与方向的双响应。
2. 本发明发展了一种用于拉伸应变矢量检测的复合传感器的构筑策略,复合传感器由各向异性传感层垂直叠层而成,通过测量多个传感层的阻变信号,可对平面内任意拉伸应变的大小与方向进行实时动态的计算。
3. 该复合传感器的探测范围为0-100%拉伸应变量,通过增加传感层的数目可有效提升器件对应变大小与方向的检测精度。该复合传感器便于制备,成本低廉,在未来多自由度应变检测和人体动作的精细感知等方面具有重要的应用前景。
附图说明
图1a为实施例1制备的各向同性功能层(顶部封装层、底部封装层或绝缘层)的扫描电镜图片。
图1b为实施例1制备的各向同性功能层(顶部封装层、底部封装层或绝缘层)沿不同角度拉伸时的拉伸曲线。
图2a为实施例2制备的各向异性传感层的扫描电镜图片。
图2b为实施例2制备的各向异性传感层沿不同角度拉伸时的静态阻变。
图3为实施例3制备的复合传感器的结构示意图。
图4为实施例3制备的复合传感器的实物图。
图5a为实施例3制备的复合传感器上传感层沿不同角度拉伸时的阻变信号。
图5b为实施例3制备的复合传感器上传感层拉伸应变大小、方向与阻变关系。
图6a为实施例3制备的复合传感器下传感层沿不同角度拉伸时的阻变信号。
图6b为实施例3制备的复合传感器下传感层拉伸应变大小、方向与阻变关系。
图7为实施例3制备的复合传感器用于平面内任意拉伸应变大小与方向的计算。
具体实施方式
下文将结合具体附图详细描述本发明具体实施例。应当注意的是,下述实施例中描述的技术特征或者技术特征的组合不应当被认为是孤立的,它们可以被相互组合从而达到更好的技术效果。在下述实施例的附图中,各附图所出现的相同标号代表相同的特征或者部件,可应用于不同实施例中。
实施例1
本发明实施例中的顶部封装层、底部封装层及绝缘层(各向同性功能层)的制备流程如下:
(1) 称量2.0 g聚氨酯颗粒、3.2 g二甲基甲酰胺、4.8 g四氢呋喃于玻璃瓶中,放入磁子搅拌溶解,溶解过程中转速为600 rpm,加热温度为60 ℃,磁力搅拌时间为6小时,搅拌结束后将聚氨酯溶液静置2小时去除内部气泡。
(2) 通过静电纺丝工艺制备传感层的可拉伸基底,在静电纺丝过程中,设置电纺电压为20 kV,给料量为0.6 ml/h,接收滚筒转速为100 rpm,静电纺丝时间为8小时。静电纺丝结束后,在去离子水中将聚氨酯纤维基底从铝箔上剥离,转移至聚四氟乙烯板上真空干燥,设置干燥温度为50 ℃,干燥时间为4小时。
图1a为各向同性功能层的扫描电镜图片,可以看到,纤维尺寸均匀且连续,纤维取向整体上呈无序。图1b为各向同性功能层沿不同角度拉伸时的拉伸曲线,功能层沿不同方向拉伸时其力学性能呈各向同性。
实施例2
各向异性传感层的制备流程如下:
(1) 称量2.0 g聚氨酯颗粒、3.2 g二甲基甲酰胺、4.8 g四氢呋喃于玻璃瓶中,放入磁子搅拌溶解,溶解过程中转速为600 rpm,加热温度为60 ℃,磁力搅拌时间为6小时,搅拌结束后将聚氨酯溶液静置2小时去除内部气泡。
(2) 通过静电纺丝工艺制备传感层的可拉伸基底,在静电纺丝过程中,设置电纺电压为20 kV,给料量为0.6 ml/h,接收滚筒转速为2500 rpm,静电纺丝时间为8小时。静电纺丝结束后,在去离子水中将聚氨酯纤维基底从铝箔上剥离,转移至聚四氟乙烯板上真空干燥,设置干燥温度为50 ℃,干燥时间为4小时。
(3) 将聚氨酯纤维基底浸泡于碳纳米管水性分散液中,超声2小时,随后将电极材料平铺于聚四氟乙烯板上,真空干燥6小时,设置干燥温度为50 ℃,剥离得到各向异性的可拉伸导电材料。
图2a为各向异性传感层的扫描电镜图片,其中,可拉伸基底的纤维尺寸均匀且连续,纤维取向整体上呈定向的有序,碳纳米管附着在聚氨酯纤维表面相互连接构成空间导电网络。在拉伸状态下,聚氨酯纤维的拉伸变形会在碳纳米管空间导电网络上形成拉伸裂纹,减少导电通路并造成导体电阻的升高。图2b为各向异性传感层沿不同角度拉伸时的静态阻变响应,在沿不同方向拉伸时拉伸裂纹的形成与扩展方式不同,因此传感层沿不同方向拉伸时电阻变化呈各向异性,基于有序纤维结构的传感层可对拉伸应变的大小与方向进行双响应。
实施例3
本发明实施例一种用于拉伸应变矢量检测的复合传感器的制备流程如下:
(1) 称量2.0 g聚氨酯颗粒、3.2 g二甲基甲酰胺、4.8 g四氢呋喃于玻璃瓶中,放入磁子搅拌溶解,溶解过程中转速为600 rpm,加热温度为60 ℃,磁力搅拌时间为6小时,搅拌结束后将聚氨酯溶液静置2小时去除内部气泡。
(2) 通过静电纺丝工艺制备顶部封装层、底部封装层及间隔层,在静电纺丝过程中,设置电纺电压为20 kV,给料量为0.6 ml/h,接收滚筒转速为100 rpm,静电纺丝时间为8小时。静电纺丝结束后,在去离子水中将聚氨酯纤维薄膜从铝箔上剥离,转移至聚四氟乙烯板上真空干燥,设置干燥温度为50 ℃,干燥时间为4小时,得到无序纤维结构的聚氨酯薄膜。
(3) 通过静电纺丝工艺制备传感层纤维基底,在静电纺丝过程中,设置电纺电压为20 kV,给料量为0.6 ml/h,接收滚筒转速为2500 rpm,静电纺丝时间为8小时。静电纺丝结束后,在去离子水中将聚氨酯纤维薄膜从铝箔上剥离,转移至聚四氟乙烯板上真空干燥,设置干燥温度为50℃,干燥时间为4小时,得到有序纤维结构的聚氨酯薄膜。
(4) 传感层制备,将有序纤维结构的聚氨酯薄膜浸泡于碳纳米管水性分散液中,超声2小时,随后将电极材料平铺于聚四氟乙烯板上,真空干燥6小时,设置干燥温度为50℃,剥离得到各向异性的可拉伸导电材料。
(5) 复合传感器制备,顶部封装层、间隔层与底部封装层设计为方形,尺寸为2 cm×2 cm,传感层设计为圆形,直径为1.8 cm,将顶部封装层、两层传感层、传感层之间的绝缘层与底部封装层依次正交叠层排列,采用热压工艺一次成型,其中设置热压温度为60℃,加载压力为10 MPa,加载时间60 s。
本实施例中复合传感器的传感层数量为2层。图3为复合传感器结构示意图;图4为复合传感器实物图,复合传感器可共形穿戴于人体关节处;图5a、图6a为复合传感器上、下传感层沿不同角度拉伸时的阻变信号,复合传感器在拉伸过程中,随拉伸角度的增大,上、下传感层电阻变化呈相反的变化趋势;图5b、图6b为复合传感器上、下传感层拉伸应变大小、方向与阻变关系,根据三者的关系,分别拟合出了上、下传感层拉伸应变大小、方向与相对阻变的数学关系式:
相对阻变:上、下传感层未施加拉伸应变时的初始电阻值分别为R01、R02,在沿着一定方向施加一定量的拉伸应变时,上、下传感层的电阻值分别增大到R1、R2,相对阻变则是指上下传感层电阻的变化量与初始电阻的比值,即上传感层的相对阻变:(R1- R01)/R01,下传感层的相对阻变:(R2- R02)/R02
上传感层:(R1- R01)/R01=0.0688ε+0.0061θ+0.0016εθ
下传感层:(R2- R02)/R02=0.2471ε+0.0050θ-0.0021εθ
其中R01、R02分别为上、下传感层未施加拉伸应变时的初始电阻值,R1、R2分别为上、下传感层沿着不同方向施加不同的拉伸应变时的电阻值,ε为施加拉伸应变的大小,θ为施加拉伸应变的方向。根据拟合的数学关系式,可对平面拉伸应变进行动态矢量监测与计算。图7为实施例3制备的复合传感器用于平面内任意拉伸应变大小与方向的计算。星号代表的数据点为实际对复合传感器施加的拉伸应变,其中施加的拉伸应变方向为25°,施加的拉伸应变量为22.5%。当对复合传感器沿25°方向施加22.5%的拉伸应变时,上、下传感层的电阻会发生变化,上、下传感层相对阻变分别为(R1-R0)/R01、(R2-R02)/R02,代入拟合的数学公式后,分别绘制出上、下传感层拉伸应变量ε与拉伸角度θ的关系曲线,两曲线相交点则为计算的拉伸应变大小与方向。由图7可知,计算得到的拉伸应变大小与方向与实际施加的应变矢量具有高的一致性。
实施例4
本发明实施例一种用于拉伸应变动态解耦的复合传感器的制备流程如下:
(1) 称量2.0 g聚氨酯颗粒、3.2 g二甲基甲酰胺、4.8 g四氢呋喃于玻璃瓶中,放入磁子搅拌溶解,溶解过程中转速为600 rpm,加热温度为60 ℃,磁力搅拌时间为6小时,搅拌结束后将聚氨酯溶液静置2小时去除内部气泡。
(2) 通过静电纺丝工艺制备顶部封装层、底部封装层及间隔层,在静电纺丝过程中,设置电纺电压为20 kV,给料量为0.6 ml/h,接收滚筒转速为100 rpm,静电纺丝时间为8小时。静电纺丝结束后,在去离子水中将聚氨酯纤维薄膜从铝箔上剥离,转移至聚四氟乙烯板上真空干燥,设置干燥温度为50 ℃,干燥时间为4小时,得到无序结构的聚氨酯纤维薄膜。
(3) 通过静电纺丝工艺制备传感层纤维基底,在静电纺丝过程中,设置电纺电压为20 kV,给料量为0.6 ml/h,接收滚筒转速为2500 rpm,静电纺丝时间为8小时。静电纺丝结束后,在去离子水中将聚氨酯纤维薄膜从铝箔上剥离,转移至聚四氟乙烯板上真空干燥,设置干燥温度为50℃,干燥时间为4小时,得到有序结构的聚氨酯纤维薄膜。
(4) 传感层制备,将有序纤维结构的聚氨酯薄膜浸泡于碳纳米管水性分散液中,超声2小时,随后将电极材料平铺于聚四氟乙烯板上,真空干燥6小时,设置干燥温度为50℃,剥离得到各向异性的可拉伸导电材料。
(5) 复合传感器制备,顶部封装层、间隔层与底部封装层设计为方形,尺寸为2 cm×2 cm,传感层设计为圆形,直径为1.8 cm,将顶部封装层、三层及以上传感层、传感层之间的绝缘层与底部封装层依次垂直叠层排列,其中,相邻传感层之间的夹角为180°与传感层数之比,采用热压工艺一次成型,其中设置热压温度为60℃,加载压力为10 MPa,加载时间60 s。
本实施例中复合传感器的传感层数量为3层及以上。分别测量得到复合传感器各传感层沿不同角度拉伸时的拉伸应变大小、方向与传感层的阻变信号,拟合出各传感层拉伸应变大小、方向与相对阻变的数学关系式,在对复合传感器施加拉伸应变后,测量得到各传感层对应的相对阻变,将拟合得到的各传感层拉伸应变大小、方向与相对阻变的数学关系式两两组合求解并取均值,得拉伸应变的大小与方向。相较于2传感层的复合传感器,3层及以上多层传感层的复合传感器不仅能够增大应变方向的测量范围,而且使测量的结果更加准确。
本发明实施例采用2个传感层时已经可以达到较好的测量精度,如果采用3个或以上传感层,精度会进一步提高,但复合传感器整体变形能力会有所减弱,具体传感层数根据实际需求确定。
本文虽然已经给出了本发明的几个实施例,但是本领域的技术人员应当理解,在不脱离本发明精神的情况下,可以对本文的实施例进行改变。上述实施例只是示例性的,不应以本文的实施例作为本发明权利范围的限定。

Claims (10)

1.一种用于拉伸应变矢量监测的复合传感器,其特征在于,所述复合传感器包括顶部封装层、两个或多个传感层、设置于相邻传感层之间的绝缘层及底部封装层;
所述传感层为力电性能呈各向异性的导电材料,相邻所述传感层之间呈一定夹角,所述传感层能对拉伸应变的大小与方向进行双响应。
2.如权利要求1所述的一种用于拉伸应变矢量监测的复合传感器,其特征在于,所述传感层由可拉伸基底材料与低维导电材料复合而成;所述顶部封装层、底部封装层及绝缘层均为力学性能呈各向同性的可拉伸绝缘材料。
3.如权利要求1所述的一种用于拉伸应变矢量监测的复合传感器,其特征在于,各个所述传感层之间垂直叠层排列,相邻传感层之间的夹角为180°与传感层数之比。
4.如权利要求1所述的一种用于拉伸应变矢量监测的复合传感器,其特征在于,所述力电性能呈各向异性的导电材料通过在具有有序结构的可拉伸基底材料上复合低维导电材料获得;所述力学性能呈各向同性的可拉伸绝缘材料具有无序结构。
5.一种用于拉伸应变矢量监测的复合传感器的制备方法,其特征在于,所述制备方法包括:
S1、分别配置可拉伸绝缘材料、可拉伸基底材料的均匀分散液以及低维导电材料的均匀分散液;
S2、通过静电纺丝工艺分别制备力学性能呈各向同性的顶部封装层、底部封装层与绝缘层;通过静电纺丝工艺制备力学性能呈各向异性的可拉伸基底,然后采用浸涂工艺实现可拉伸基底与所述低维导电材料的复合,制备得到力电性能呈各向异性的传感层;
S3、按照设定的形状和尺寸,将顶部封装层、传感层、传感层之间的绝缘层与底部封装层依次叠层排列装配后,采用热压工艺一次成型。
6.如权利要求5所述的一种用于拉伸应变矢量监测的复合传感器的制备方法,其特征在于,步骤S1中,所述可拉伸绝缘材料与可拉伸基底材料包括聚氨酯PU、环氧树脂Epoxy、聚二甲基硅氧烷PDMS和硅橡胶,所述可拉伸绝缘材料与可拉伸基底材料的分散液溶剂为二甲基甲酰胺、四氢呋喃、丙酮的任一种或两种及以上组合,所述可拉伸绝缘材料与可拉伸基底材料的分散液浓度为15%wt -25% wt。
7.如权利要求5所述的一种用于拉伸应变矢量监测的复合传感器的制备方法,其特征在于,步骤S1中,所述低维导电材料包括碳纳米管、石墨烯、碳纤维、二维层状过渡金属碳化物或碳氮化物、金属纳米线与纳米颗粒,分散溶剂为无水乙醇、去离子水的任意一种,所述低维导电材料的分散液浓度为0.1%wt -5% wt。
8.如权利要求5所述的一种用于拉伸应变矢量监测的复合传感器的制备方法,其特征在于,步骤S2中,静电纺丝工艺参数为:
制备顶部封装层、底部封装层或绝缘层时,施加电压为16-24 kV,给料量为0.5-1 mL/h,静电纺丝温度为15~45 ℃,相对湿度为20~60 %,纺丝接收装置转速小于200 rpm;
制备可拉伸基底时,施加电压为16-24 kV,给料量为0.5-1 mL/h,纺丝温度为15~45℃,相对湿度为20~60 %,纺丝接收装置转速为2000-3000 rpm。
9.如权利要求5所述的一种用于拉伸应变矢量监测的复合传感器的制备方法,其特征在于,步骤S3中,热压工艺的压缩温度为40-80℃,加载压力为10 MPa,加载时间不低于60s。
10.如权利要求1-4任一项所述的一种用于拉伸应变矢量监测的复合传感器的应用,其特征在于,所述复合传感器共形穿戴于人体关节处,在人体关节运动过程中,复合传感器通过测量各传感层的阻变信号,对平面内任意拉伸应变进行实时的矢量监测,并得到关节运动的幅值与方向。
CN202210109098.9A 2022-01-28 2022-01-28 一种用于拉伸应变矢量监测的复合传感器及其制备方法 Active CN114459334B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210109098.9A CN114459334B (zh) 2022-01-28 2022-01-28 一种用于拉伸应变矢量监测的复合传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210109098.9A CN114459334B (zh) 2022-01-28 2022-01-28 一种用于拉伸应变矢量监测的复合传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN114459334A true CN114459334A (zh) 2022-05-10
CN114459334B CN114459334B (zh) 2023-10-10

Family

ID=81411001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210109098.9A Active CN114459334B (zh) 2022-01-28 2022-01-28 一种用于拉伸应变矢量监测的复合传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN114459334B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115568849A (zh) * 2022-09-26 2023-01-06 北京科技大学 一种三维动作感知器件及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6079277A (en) * 1997-12-12 2000-06-27 The Research Foundation Of State University Of New York Methods and sensors for detecting strain and stress
US20090249885A1 (en) * 2008-04-08 2009-10-08 Yuri Michael Shkel Dielectrostrictive sensor for measuring deformation
WO2017196845A1 (en) * 2016-05-09 2017-11-16 South Dakota Board Of Regents Highly stretchable strain sensor based on electrospun carbon nanofibers for human motion monitoring
US20180143091A1 (en) * 2011-09-24 2018-05-24 President And Fellows Of Harvard College Artificial skin and elastic strain sensor
CN109341909A (zh) * 2018-11-20 2019-02-15 郑州大学 一种多功能柔性应力传感器
KR20190057815A (ko) * 2017-11-20 2019-05-29 한국생산기술연구원 페브릭 스트레인 센서 및 그 제조방법
CN110333012A (zh) * 2019-07-24 2019-10-15 电子科技大学 一种阻变容变复合的二维应变传感器及其制备方法
CN110857894A (zh) * 2018-08-24 2020-03-03 中山大学 基于有序石墨烯的可检测应力方向的柔性力学传感器及其制备方法
US20200072596A1 (en) * 2018-09-03 2020-03-05 Research & Business Foundation Sungkyunkwan University Fiber composite and preparing method of the same
CN113647937A (zh) * 2021-08-16 2021-11-16 宁波荣勃通机电科技有限公司 检测装置、检测方法、鞋垫、训练方法和识别方法
CN113782278A (zh) * 2021-09-16 2021-12-10 北京科技大学 一种纤维基各向异性可拉伸导体的制备方法
CN113804096A (zh) * 2021-09-02 2021-12-17 苏州大学 一种各向异性碳复合纤维柔性应变传感器及其制备方法和应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6079277A (en) * 1997-12-12 2000-06-27 The Research Foundation Of State University Of New York Methods and sensors for detecting strain and stress
US20090249885A1 (en) * 2008-04-08 2009-10-08 Yuri Michael Shkel Dielectrostrictive sensor for measuring deformation
US20180143091A1 (en) * 2011-09-24 2018-05-24 President And Fellows Of Harvard College Artificial skin and elastic strain sensor
WO2017196845A1 (en) * 2016-05-09 2017-11-16 South Dakota Board Of Regents Highly stretchable strain sensor based on electrospun carbon nanofibers for human motion monitoring
KR20190057815A (ko) * 2017-11-20 2019-05-29 한국생산기술연구원 페브릭 스트레인 센서 및 그 제조방법
CN110857894A (zh) * 2018-08-24 2020-03-03 中山大学 基于有序石墨烯的可检测应力方向的柔性力学传感器及其制备方法
US20200072596A1 (en) * 2018-09-03 2020-03-05 Research & Business Foundation Sungkyunkwan University Fiber composite and preparing method of the same
CN109341909A (zh) * 2018-11-20 2019-02-15 郑州大学 一种多功能柔性应力传感器
CN110333012A (zh) * 2019-07-24 2019-10-15 电子科技大学 一种阻变容变复合的二维应变传感器及其制备方法
CN113647937A (zh) * 2021-08-16 2021-11-16 宁波荣勃通机电科技有限公司 检测装置、检测方法、鞋垫、训练方法和识别方法
CN113804096A (zh) * 2021-09-02 2021-12-17 苏州大学 一种各向异性碳复合纤维柔性应变传感器及其制备方法和应用
CN113782278A (zh) * 2021-09-16 2021-12-10 北京科技大学 一种纤维基各向异性可拉伸导体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
彭军;李津;李伟;陈婷婷;郑通通;刘皓;: "柔性可拉伸应变传感器研究进展与应用", 化工新型材料, no. 11 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115568849A (zh) * 2022-09-26 2023-01-06 北京科技大学 一种三维动作感知器件及其制备方法
CN115568849B (zh) * 2022-09-26 2023-11-10 北京科技大学 一种三维动作感知器件及其制备方法

Also Published As

Publication number Publication date
CN114459334B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
CN109576905B (zh) 一种基于MXene的柔性聚氨酯纤维膜应变传感器
Zhang et al. Enhanced piezoresistive performance of conductive WPU/CNT composite foam through incorporating brittle cellulose nanocrystal
Xu et al. Wearable CNT/Ti3C2T x MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring
Pierre Claver et al. Recent progress in flexible pressure sensors based electronic skin
Doshi et al. Thin and flexible carbon nanotube-based pressure sensors with ultrawide sensing range
Yang et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics
Shuai et al. Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure
Liu et al. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial
CN110608825B (zh) 基于聚酰亚胺基底微结构的柔性压力传感器及其制备方法
Wu et al. Channel crack-designed gold@ PU sponge for highly elastic piezoresistive sensor with excellent detectability
Fu et al. High-performance structural flexible strain sensors based on graphene-coated glass fabric/silicone composite
Jiang et al. Ultrawide sensing range and highly sensitive flexible pressure sensor based on a percolative thin film with a knoll-like microstructured surface
Li et al. Ultrasensitive pressure sensor sponge using liquid metal modulated nitrogen-doped graphene nanosheets
Zhou et al. All-nanofiber network structure for ultrasensitive piezoresistive pressure sensors
Wang et al. Highly sensitive flexible tactile sensor mimicking the microstructure perception behavior of human skin
Wang et al. Multidimensional force sensors based on triboelectric nanogenerators for electronic skin
CN110823085B (zh) 一种具有规则裂纹结构的柔性应变传感器及其制作方法
Xu et al. Wearable RGO/MXene piezoresistive pressure sensors with hierarchical microspines for detecting human motion
Su et al. Layered MXene/aramid composite film for a soft and sensitive pressure sensor
Ma et al. Carbon black/graphene nanosheet composites for three-dimensional flexible piezoresistive sensors
CN114459334A (zh) 一种用于拉伸应变矢量监测的复合传感器及其制备方法
Li et al. Differentiation of multiple mechanical stimuli by a flexible sensor using a dual-interdigital-electrode layout for bodily kinesthetic identification
Zhang et al. Significant strain-rate dependence of sensing behavior in TiO 2@ carbon fibre/PDMS composites for flexible strain sensors
Wang et al. Strain sensor with high sensitivity and large response range based on self-assembled elastic-sliding conductive networks
Pan et al. PVDF/AgNP/MXene composites-based near-field electrospun fiber with enhanced piezoelectric performance for self-powered wearable sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant