CN114453977B - Wide-range displacement measuring device and method of visual scanning linear variable density stripe ruler - Google Patents
Wide-range displacement measuring device and method of visual scanning linear variable density stripe ruler Download PDFInfo
- Publication number
- CN114453977B CN114453977B CN202210178715.0A CN202210178715A CN114453977B CN 114453977 B CN114453977 B CN 114453977B CN 202210178715 A CN202210178715 A CN 202210178715A CN 114453977 B CN114453977 B CN 114453977B
- Authority
- CN
- China
- Prior art keywords
- imaging
- stripe
- linear variable
- variable density
- ruler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000000007 visual effect Effects 0.000 title claims abstract description 4
- 238000003384 imaging method Methods 0.000 claims abstract description 112
- 238000012545 processing Methods 0.000 claims abstract description 21
- 238000005259 measurement Methods 0.000 claims abstract description 16
- 238000013507 mapping Methods 0.000 claims abstract description 8
- 238000013178 mathematical model Methods 0.000 claims abstract description 8
- 238000005070 sampling Methods 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000013461 design Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000005304 optical glass Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/22—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/24—Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
- B23Q17/2428—Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring existing positions of tools or workpieces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明属于机器视觉测量领域,具体涉及一种视觉扫描线性变密度条纹尺的大量程位移测量装置及方法。The invention belongs to the field of machine vision measurement, and in particular relates to a large-range displacement measurement device and method for visually scanning a linear variable-density stripe ruler.
背景技术Background technique
在机床的加工过程中,由于摩擦、刀具磨损等原因会导致机床走刀存在误差,从而影响工件的加工质量。因此,对机床走刀误差进行补偿对提高工件加工质量是必要的。During the processing of the machine tool, due to friction, tool wear and other reasons, there will be errors in the tool movement of the machine tool, which will affect the processing quality of the workpiece. Therefore, it is necessary to compensate the error of the machine tool to improve the machining quality of the workpiece.
当前,为了提高加工精度,常在机床中应用的有光栅尺、磁栅尺、球栅尺。光栅尺以光学玻璃刻线为测量基准,把光学玻璃安装到铝合金的尺身里面和读数头等配件组成光栅尺,铝合金半密封设计。光栅尺应用较为广泛,但是由于其是半密封设计,若在使用过程中水、油、铁屑进入有可能导致光栅损坏,而光栅加工不易,更换成本相对较高。磁栅尺因采用磁带原理,价格低廉、安装简单,但是由于基准信号较宽、存在消磁问题等,会影响测量的精度。球栅尺利用导磁介质量的变化实现电磁/磁电转换,精度较高,且由于是全密封设计,不易受工作环境影响而损坏,但是其成本高昂。At present, in order to improve machining accuracy, grating scales, magnetic scales, and ball scales are often used in machine tools. The grating ruler is based on the optical glass scribe line, and the optical glass is installed in the aluminum alloy ruler body and the reading head and other accessories to form the grating ruler. The aluminum alloy semi-sealed design. Grating rulers are widely used, but due to their semi-sealed design, if water, oil, or iron filings enter during use, the grating may be damaged, and the grating is not easy to process, and the replacement cost is relatively high. Because the magnetic scale adopts the magnetic tape principle, the price is low and the installation is simple, but the measurement accuracy will be affected due to the wide reference signal and the existence of degaussing problems. The ball scale uses the change of the amount of magnetic medium to realize the electromagnetic/magnetoelectric conversion, which has high precision, and because it is a fully sealed design, it is not easy to be damaged by the working environment, but its cost is high.
发明内容Contents of the invention
本发明的目的在于提供一种视觉扫描线性变密度条纹尺的大量程位移测量装置及方法,该装置及方法有利于提高测量效率和测量精度,且装置简单,实现成本低。The object of the present invention is to provide a large-range displacement measurement device and method for visually scanning linear variable-density strip ruler. The device and method are conducive to improving measurement efficiency and measurement accuracy, and the device is simple and the implementation cost is low.
为实现上述目的,本发明采用的技术方案是:一种视觉扫描线性变密度条纹尺的大量程位移测量装置,包括:In order to achieve the above object, the technical solution adopted in the present invention is: a large-range displacement measuring device for visually scanning linear variable-density stripe ruler, comprising:
线性变密度条纹尺,用以测量滑轨的实际位移信息;Linear variable density stripe ruler, used to measure the actual displacement information of the slide rail;
成像模块,安装固定于滑轨上,用以对线性变密度条纹尺表面的线性变密度条纹进行连续成像及数据采集,并将采集到的成像条纹信息传输至处理模块中;The imaging module is installed and fixed on the slide rail, and is used for continuous imaging and data collection of the linear variable density stripes on the surface of the linear variable density stripe ruler, and transmits the collected imaging stripe information to the processing module;
位移滑动平台,用以驱动滑轨带动成像模块做直线运动,以使成像模块对线性变密度条纹进行线性成像;以及The displacement sliding platform is used to drive the slide rail to drive the imaging module to perform linear motion, so that the imaging module can linearly image the linear variable density stripes; and
处理模块,用以对成像模块进行控制,并对成像条纹信息进行实时处理,根据成像条纹的密度变化规律,得到条纹密度信号频率变化曲线,建立频率变化信息与滑轨实际位移之间的映射关系和数学模型,进而计算出滑轨的实际位移信息;条纹频率与滑轨实际位移之间的数学关系式为:The processing module is used to control the imaging module and process the imaging fringe information in real time, obtain the fringe density signal frequency variation curve according to the density variation rule of the imaging fringe, and establish the mapping relationship between the frequency variation information and the actual displacement of the slide rail And the mathematical model, and then calculate the actual displacement information of the slide rail; the mathematical relationship between the fringe frequency and the actual displacement of the slide rail is:
其中,Δx(i)为第i帧采集线性变密度条纹尺时的滑轨实际位移,L为线性变密度条纹尺的实际长度,f i 为第i帧成像线性变密度条纹的频率,f e 为线性变密度条纹的最大频率,f s 为线性变密度条纹的初始频率。Among them, Δ x ( i ) is the actual displacement of the sliding rail when the i-th frame collects the linear variable-density stripe ruler, L is the actual length of the linear variable-density stripe ruler, f i is the frequency of imaging the linear variable-density stripe in the i -th frame, f e is the maximum frequency of the linear variable density fringe, f s is the initial frequency of the linear variable density fringe.
进一步地,所述线性变密度条纹尺为表面喷涂有线性变密度条纹的钢尺,所述线性变密度条纹尺沿滑轨运动方向固定设置于成像模块前侧,以让成像模块在随滑轨运动过程中采集到成像条纹信息。Further, the linear variable density stripe ruler is a steel ruler with linear variable density stripes sprayed on the surface, and the linear variable density stripe ruler is fixedly arranged on the front side of the imaging module along the moving direction of the slide rail, so that the imaging module can follow the slide rail Imaging fringe information is collected during motion.
进一步地,所述线性变密度条纹尺的条纹图像密度沿条纹明暗变化方向进行线性变化。Further, the fringe image density of the linear variable density stripe ruler changes linearly along the direction of the change of the light and shade of the stripes.
进一步地,所述线性变密度条纹尺安装在位移滑动平台上,根据条纹密度变化规律,计算出滑轨的实际位移信息。Further, the linear variable density stripe ruler is installed on the displacement sliding platform, and the actual displacement information of the slide rail is calculated according to the stripe density variation law.
进一步地,所述成像模块主要由成像镜头、线阵传感器和控制电路组成。Further, the imaging module is mainly composed of an imaging lens, a line sensor and a control circuit.
进一步地,所述成像模块的采样帧率和成像分辨率可根据位移滑动平台的测量精度要求进行调整。Further, the sampling frame rate and imaging resolution of the imaging module can be adjusted according to the measurement accuracy requirements of the displacement sliding platform.
进一步地,所述成像模块对线性变密度条纹进行成像时,其成像光轴与条纹平面垂直,且成像模块的成像范围与条纹平面相对应。Further, when the imaging module images the linear variable density fringes, its imaging optical axis is perpendicular to the fringe plane, and the imaging range of the imaging module corresponds to the fringe plane.
本发明还提供了一种视觉扫描线性变密度条纹尺的大量程位移测量方法,包括以下步骤:The present invention also provides a large-scale displacement measurement method of a visual scanning linear variable density strip ruler, comprising the following steps:
步骤S1:将线性变密度条纹尺安装在位移滑动平台上,将成像模块安装固定在位移滑动平台的滑轨上,并调整成像模块的成像位置,使其对准线性变密度条纹尺,以使条纹中心在成像模块的成像范围中;Step S1: Install the linear variable-density strip ruler on the displacement sliding platform, install and fix the imaging module on the slide rail of the displacement sliding platform, and adjust the imaging position of the imaging module so that it is aligned with the linear variable-density strip ruler, so that The fringe center is within the imaging range of the imaging module;
步骤S2:当位移滑动平台驱动滑轨运动时,滑轨带动成像模块运动,成像模块对线性变密度条纹尺表面的线性变密度条纹进行连续成像;Step S2: When the displacement sliding platform drives the slide rail to move, the slide rail drives the imaging module to move, and the imaging module continuously images the linear variable density stripes on the surface of the linear variable density stripe ruler;
步骤S3:成像模块将采集到的成像条纹信息传输至处理模块中,由于是对线性变密度条纹进行连续成像,因此成像条纹的密度会随着成像过程发生变化,处理模块处理获得成像条纹的密度变化规律,从而得到条纹密度信号频率变化曲线,建立频率变化信息与滑轨实际位移之间的映射关系和数学模型,进而计算出滑轨的实际位移信息。Step S3: The imaging module transmits the collected imaging fringe information to the processing module. Since the linear variable density fringe is continuously imaged, the density of the imaging fringe will change with the imaging process, and the processing module obtains the density of the imaging fringe According to the change law, the frequency change curve of the fringe density signal is obtained, and the mapping relationship and mathematical model between the frequency change information and the actual displacement of the slide rail are established, and then the actual displacement information of the slide rail is calculated.
与现有技术相比,本发明具有以下有益效果:通过设置成像模块随滑轨运动,使其对线性变密度条纹尺上的线性变密度条纹进行连续成像,通过对成像条纹信息进行实时处理获取成像条纹密度信息变化规律,进而建立条纹频率变化信息与滑轨实际位移之间的映射关系和数学模型,实现滑轨实际位移的测量。这种测量这种不仅信号提取更加快捷高效,提高了测量的效率,通过提高成像模块的采样帧率,还可进一步提高测量精度。此外,该装置结构和条纹涉及更加简单,制造及维护成本低。因此,本发明具有很强的实用性和广阔的应用前景。Compared with the prior art, the present invention has the following beneficial effects: by setting the imaging module to move with the slide rail, it can continuously image the linear variable-density stripes on the linear variable-density stripe scale, and obtain the imaged stripe information by real-time processing Imaging the change rule of fringe density information, and then establishing the mapping relationship and mathematical model between the fringe frequency change information and the actual displacement of the slide rail, and realizing the measurement of the actual displacement of the slide rail. This kind of measurement not only makes the signal extraction faster and more efficient, but also improves the efficiency of the measurement. By increasing the sampling frame rate of the imaging module, the measurement accuracy can be further improved. In addition, the structure and stripes of the device are simpler, and the manufacturing and maintenance costs are low. Therefore, the present invention has strong practicability and wide application prospect.
附图说明Description of drawings
图1是本发明实施例的装置结构示意图。Fig. 1 is a schematic diagram of the device structure of the embodiment of the present invention.
图中:1-线性变密度条纹尺,2-位移滑动平台,3-成像模块,4-处理模块,5-线性变密度条纹,6-滑轨。In the figure: 1-linear variable density stripe ruler, 2-displacement sliding platform, 3-imaging module, 4-processing module, 5-linear variable density stripe, 6-sliding rail.
具体实施方式Detailed ways
下面结合附图及实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be pointed out that the following detailed description is exemplary and is intended to provide further explanation to the present application. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used here is only for describing specific implementations, and is not intended to limit the exemplary implementations according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that when the terms "comprising" and/or "comprising" are used in this specification, they mean There are features, steps, operations, means, components and/or combinations thereof.
如图1所示,本实施例提供了一种视觉扫描线性变密度条纹尺的大量程位移测量装置,包括线性变密度条纹尺1、位移滑动平台2、成像模块3和处理模块4。线性变密度条纹尺1上具有线性变密度条纹5,用以测量滑轨的实际位移信息。位移滑动平台2上设有可运动的滑轨6,所述位移滑动平台2用以驱动滑轨6带动成像模块3做直线运动,以使成像模块3对线性变密度条纹5进行线性成像。成像模块3安装固定于滑轨6上,用以对线性变密度条纹尺1表面的线性变密度条纹5进行连续成像及数据采集,并将采集到的成像条纹信息传输至处理模块4中。处理模块4用以对成像模块3进行控制,包括控制其启停及参数设置;还用以对成像条纹信息进行存储和实时处理,根据成像条纹的密度变化规律,得到条纹密度信号频率变化曲线,建立频率变化信息与滑轨实际位移之间的映射关系和数学模型,每一个成像位置对应条纹的一个频率,进而计算出滑轨的实际位移信息。;条纹频率与滑轨实际位移之间的数学关系式为:As shown in FIG. 1 , this embodiment provides a large-range displacement measurement device for visually scanning a linear variable-density strip ruler, including a linear variable-density strip ruler 1 , a displacement sliding platform 2 , an
其中,Δx(i)为第i帧采集线性变密度条纹尺时的滑轨实际位移,L为线性变密度条纹尺的实际长度,f i 为第i帧成像线性变密度条纹的频率,f e 为线性变密度条纹的最大频率,f s 为线性变密度条纹的初始频率。Among them, Δ x ( i ) is the actual displacement of the sliding rail when the i-th frame collects the linear variable-density stripe ruler, L is the actual length of the linear variable-density stripe ruler, f i is the frequency of imaging the linear variable-density stripe in the i -th frame, f e is the maximum frequency of the linear variable density fringe, f s is the initial frequency of the linear variable density fringe.
在本实施例中,所述线性变密度条纹尺1为表面喷涂有线性变密度条纹的钢尺,所述线性变密度条纹尺1沿滑轨运动方向固定设置于成像模块3前侧,以让成像模块3在随滑轨6运动过程中采集到成像条纹信息。所述线性变密度条纹尺1的条纹图像密度沿条纹明暗变化方向进行线性变化。所述线性变密度条纹尺1安装在位移滑动平台2上,根据条纹密度变化规律,计算出滑轨的实际位移信息。In this embodiment, the linear variable density stripe ruler 1 is a steel ruler with linear variable density stripes sprayed on the surface, and the linear variable density stripe ruler 1 is fixedly arranged on the front side of the
在本实施例中,所述成像模块3主要由成像镜头、线阵传感器和控制电路组成。所述成像模块3的采样帧率和成像分辨率可根据位移滑动平台的测量精度要求进行调整。所述成像模块3对线性变密度条纹进行成像时,其成像光轴与条纹平面垂直,且成像模块的成像范围与条纹平面相对应。In this embodiment, the
本实施例还提供了基于上述装置的大量程位移测量方法,包括以下步骤:The present embodiment also provides a large-range displacement measurement method based on the above device, comprising the following steps:
步骤S1:将线性变密度条纹尺1安装在位移滑动平台2上,将成像模块3安装固定在位移滑动平台2的滑轨6上,并调整成像模块3的成像位置,使其对准线性变密度条纹尺,以使条纹中心在成像模块3的成像范围中。Step S1: install the linear variable density strip ruler 1 on the displacement sliding platform 2, install and fix the
步骤S2:当位移滑动平台2驱动滑轨6运动时,滑轨6带动成像模块3运动,成像模块3对线性变密度条纹尺1表面的线性变密度条纹5进行连续成像。Step S2: When the displacement slide platform 2 drives the slide rail 6 to move, the slide rail 6 drives the
步骤S3:成像模块3将采集到的成像条纹信息传输至处理模块4中,由于是对线性变密度条纹5进行连续成像,因此成像条纹的密度会随着成像过程发生变化,处理模块4处理获得成像条纹的密度变化规律,从而得到条纹密度信号频率变化曲线,建立频率变化信息与滑轨实际位移之间的映射关系和数学模型,最后通过相关运算计算出滑轨6的实际位移信息。这样,就可以测量出与滑轨6固连在一起的机构的实际位移信息。Step S3: The
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。The above is only a preferred embodiment of the present invention, and is not intended to limit the present invention to other forms. Any skilled person who is familiar with this profession may use the technical content disclosed above to change or modify the equivalent of equivalent changes. Example. However, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention without departing from the content of the technical solution of the present invention still belong to the protection scope of the technical solution of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210178715.0A CN114453977B (en) | 2022-02-25 | 2022-02-25 | Wide-range displacement measuring device and method of visual scanning linear variable density stripe ruler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210178715.0A CN114453977B (en) | 2022-02-25 | 2022-02-25 | Wide-range displacement measuring device and method of visual scanning linear variable density stripe ruler |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114453977A CN114453977A (en) | 2022-05-10 |
CN114453977B true CN114453977B (en) | 2023-02-21 |
Family
ID=81415130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210178715.0A Active CN114453977B (en) | 2022-02-25 | 2022-02-25 | Wide-range displacement measuring device and method of visual scanning linear variable density stripe ruler |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114453977B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105683815A (en) * | 2013-09-04 | 2016-06-15 | 卢门科有限责任公司 | Servo system, and encoder |
WO2018161717A1 (en) * | 2017-03-09 | 2018-09-13 | 福州大学 | Rotation speed measuring device and method employing two sinusoidal variable density fringes |
CN109341548A (en) * | 2018-12-21 | 2019-02-15 | 福州大学 | 3D Vibration Vision Measurement System and Method Based on Variable Density Stripes |
CN113447670A (en) * | 2021-06-25 | 2021-09-28 | 福州大学 | Rotation speed measuring method and system for monocular linear array visual tracking stripe coding mark |
-
2022
- 2022-02-25 CN CN202210178715.0A patent/CN114453977B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105683815A (en) * | 2013-09-04 | 2016-06-15 | 卢门科有限责任公司 | Servo system, and encoder |
WO2018161717A1 (en) * | 2017-03-09 | 2018-09-13 | 福州大学 | Rotation speed measuring device and method employing two sinusoidal variable density fringes |
CN109341548A (en) * | 2018-12-21 | 2019-02-15 | 福州大学 | 3D Vibration Vision Measurement System and Method Based on Variable Density Stripes |
CN113447670A (en) * | 2021-06-25 | 2021-09-28 | 福州大学 | Rotation speed measuring method and system for monocular linear array visual tracking stripe coding mark |
Also Published As
Publication number | Publication date |
---|---|
CN114453977A (en) | 2022-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110355607B (en) | Visual detection system for turning tool wear state of machining center | |
CN101881000B (en) | Photographic measurement system and method for pavement evenness | |
CN111854587B (en) | Guide rail five-degree-of-freedom motion error online measurement device and method | |
CN111185664B (en) | Monocular vision-based laser cutting follow-up system and method | |
CN208902380U (en) | A kind of caliberating device applied to camera focusing calibration | |
CN113421310A (en) | Method for realizing cross-field high-precision measurement based on motion position error compensation technology of grating ruler positioning | |
CN114295858B (en) | Train speed acquisition and camera triggering method and device based on multi-source data fusion | |
CN108132058A (en) | Digital Photogrammetric System on-line displacement measurement calibrates for error device and method | |
CN115979162A (en) | Part size automatic detection device and method | |
CN104034220B (en) | Long length strain line measurement instrument automated calibration system and method | |
CN114453977B (en) | Wide-range displacement measuring device and method of visual scanning linear variable density stripe ruler | |
CN202304767U (en) | Three-dimensional outline measurement device based on multiple sensors | |
CN115493545A (en) | Measuring device and method for straightness error of guide rail mounting surface | |
CN110900305B (en) | A method for measuring the positioning error of a machine tool table | |
CN210833451U (en) | Marking frame for measuring vehicle overall dimension | |
CN112815856A (en) | Seat slide rail body detection device based on machine vision | |
CN208155271U (en) | The adjustable Shadow Moir é measuring system of sensitivity | |
CN213021492U (en) | Automatic calibrating device for steel ruler | |
CN214537774U (en) | Image measuring apparatu Z axle does not have stage difference calibration piece | |
CN212512984U (en) | A metal structure welding deformation measurement system | |
CN114608486A (en) | A method for detecting and adjusting parallelism of gantry guide rails | |
CN110455188B (en) | Single-axis translation stage and structured light 3D sensor combined measurement calibration method | |
CN208998755U (en) | An elevator track flatness detection system based on multi-level light lever | |
CN111609793A (en) | A zoom cam curve precision detection system and method based on image measurement | |
CN219572946U (en) | An automatic detection device for steel tape images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |