CN114448446A - 水下光通信ldpc编码处理方法、装置及计算机可读存储介质 - Google Patents

水下光通信ldpc编码处理方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
CN114448446A
CN114448446A CN202210126571.4A CN202210126571A CN114448446A CN 114448446 A CN114448446 A CN 114448446A CN 202210126571 A CN202210126571 A CN 202210126571A CN 114448446 A CN114448446 A CN 114448446A
Authority
CN
China
Prior art keywords
check matrix
matrix
ldpc
base
optical communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210126571.4A
Other languages
English (en)
Inventor
桂良启
夏禹
金玉彬
李潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Xingyuan Robot Technology Co ltd
Original Assignee
Guangdong Xingyuan Robot Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Xingyuan Robot Technology Co ltd filed Critical Guangdong Xingyuan Robot Technology Co ltd
Priority to CN202210126571.4A priority Critical patent/CN114448446A/zh
Publication of CN114448446A publication Critical patent/CN114448446A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6522Intended application, e.g. transmission or communication standard
    • H03M13/6544IEEE 802.16 (WIMAX and broadband wireless access)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Error Detection And Correction (AREA)

Abstract

本发明涉及通信技术领域,公开了一种水下光通信LDPC编码处理方法、装置及计算机可读存储介质,方法包括系统基于IEEE802.16标准下的LDPC构建第一基校验矩阵;对所述第一基校验矩阵进行更新得到第二基校验矩阵;对所述第二基校验矩阵进行扩展得到校验矩阵;发射端基于所述校验矩阵进行编码并输出编码信息;接收端对所述编码信息进行译码并输出原始信息。本发明提供的编码处理方法可以快速有效的降低水下光通信的误码率,采用的是结构化LDPC码是一种校验矩阵存储的码字,便于硬件实现,通过仿真验证了该编码的可行性。

Description

水下光通信LDPC编码处理方法、装置及计算机可读存储介质
技术领域
本发明涉及通信技术领域,尤其涉及一种水下光通信LDPC编码处理方法、装置及计算机可读存储介质。
背景技术
海洋是一块资源丰富的宝地,拥有着丰富的能源与物资。从古至今,人类从来没有停止过探索海洋的脚步。在深不见底的海洋中,向海洋深处进行探索没有通信技术的支持是寸步难行的。水下有线通信和水下无线通信是水下通信技术研究的两大分支。水下有线通信技术已经达到了较高的水平,水下有线通信技术已经应用在了例如蛟龙号水下深潜项目等国家重点项目中。水下有线通信的传输速率高、抗干扰能力强,但由于水下有线通信的信道是海底所铺设的光缆,光缆的铺设成本高,维修难度大,易受海水腐蚀,这些缺点将会限制水下有线通信的应用。当水下有线通信受到限制时,水下无线通信就能提供很好的补充作用。
在现有的技术中,水下无线光通信技术由于其带宽高、传输速率快、通信速率高、保密性强等优点,已经成为了许多国内外专家学者研究的热点。相比于水下磁通信和水下声通信这两种传统的水下通信技术,水下光通信被认为是最具发展潜力和未来水下高速通信组网的核心技术。
然而,由于水下光码分多址通信与空中光码分多址通信存在极大的不同,水中光信号的衰减远远大于空中,因此其编解码部分只能在电域中进行。而且由于海水散射的情况存在,使得通信时的码间干扰尤为严重,极大的影响了水下光通信的通信性能。
发明内容
本发明的主要目的在于解决水下光通信的码间干扰严重的问题。
本发明第一方面提供了一种水下光通信LDPC编码处理方法,所述处理方法包括:
系统基于IEEE802.16标准下的LDPC构建第一基校验矩阵;
对所述第一基校验矩阵进行更新得到第二基校验矩阵;
对所述第二基校验矩阵进行扩展得到校验矩阵;
基于所述校验矩阵进行编码并输出;
对所述编码进行译码并输出。
可选的,所述系统基于IEEE802.16标准下的LDPC构建第一基校验矩阵包括:
构造基校验矩阵Hb作为所述第一基校验矩阵,基校验矩阵Hb被分解为Hb=[Hb1Hb2]的形式,假设Hb的尺寸为mb×nb,Hb1则是一个mb×(nb-mb)的矩阵,Hb2的尺寸为mb×mb
其中,Hb1中的元素是非负整数或者-1,若其中一个位置的元素为-1,则该位置扩展为一个全零矩阵;若该位置的元素为非负整数,则在该位置扩展的是由单位矩阵E右移本位置元素值位所得的方阵;
Hb2的元素构成为
Figure BDA0003500590800000021
Hb2除去第一列,其余矩阵呈现出一个准双对角线的结构,对角线上的位置取值为0,代表该位置扩展的是一个大小为q×q的单位矩阵,非对角线取值为-1,代表着扩展为大小为q×q的全零矩阵;
Hb2的第一列由-1、h(1)、h(r)、h(mb)、M元素组成,其中r的取值范围为2≤r≤mb-1,当该位置元素为-1时,得到校验矩阵时扩展为单位矩阵,h(1)、h(r)、h(mb)均为非负整数,这些位置均被扩展为单位矩阵右移这个非负整数位的方阵,同时规定了h(1)=h(mb)。
可选的,所述系统基于IEEE802.16标准下的LDPC构建第一基校验矩阵包括:
所述系统基于IEEE802.16标准得到扩展因子q为96,码率为1/2的LDPC码的第一基校验矩阵,第一基校验矩阵为:
Figure BDA0003500590800000031
可选的,所述对所述第一基校验矩阵进行更新得到第二基校验矩阵包括:
所述第一基校验矩阵基于公式
Figure BDA0003500590800000032
进行更新得到第二基校验矩阵
Figure BDA0003500590800000033
公式中的
Figure BDA0003500590800000034
表示向下取整;
选用扩展因子q为24,码率为1/2的参数对第二基校验矩阵进行扩展后输出
可选的,所述第二基校验矩阵按照规则进行扩展得到校验矩阵;
所述规则为:当所述第二基校验矩阵中元素为-1,所述校验矩阵对应位置扩展为全0矩阵;若为非负整数,则所述校验矩阵对应的位置扩展为单位矩阵E右移非负整数次的方阵。
可选的,所述基于所述校验矩阵进行编码并输出包括:
编码过程包括:设输入信息比特为s,按照每组取q比特数据,q为扩展因子,将输入信息比特分为了k组,其中,k=nb-mb
输入信息比特表示为
Figure BDA0003500590800000035
其中si是长度为q的行向量;
设校验比特为p,则编码后的码元信息c被表示为:
Figure BDA0003500590800000036
由HcT=0可得H2·pT=H1·sT,其中,H1、H2分别为矩阵Hb1、Hb2的扩展;
H2·pT=H1·sT展开为第一公式:
Figure BDA0003500590800000041
其中,Zt,t={-1,0,1,h(1),h(r),h(mb),Hb1(i,j)}为基矩阵扩展后得到的新的矩阵。
将第一式的各行都加在第一行,经过模2运算得到第二公式:
Figure BDA0003500590800000042
将第二公式回代到所述第一公式得到第三公式:
Figure BDA0003500590800000043
将第三公式回代到所述第一公式得到:
Figure BDA0003500590800000044
Figure BDA0003500590800000045
可选的,所述对所述编码进行译码并输出包括:
改进的对数似然比的BP译码算法的具体实现步骤为对于校验矩阵元素中Hml=1的m,l执行以下运算:
初始化:
Figure BDA0003500590800000046
校验节点更新:
Figure BDA0003500590800000047
变量节点更新:
Figure BDA0003500590800000048
似后验概率更新:
Figure BDA0003500590800000049
比特判决:对得到的似后验概率进行判断,如果vl>0,判断发送比特为0;否则,判断发送比特为1;
在每次迭代之后将进行更新后的比特序列进行校验,若HTx=0,可以结束迭代,当迭代次数达到最大迭代次数时也可以结束迭代。
可选的,其特征在于,所述改进的对数似然比的BP译码算法包括:
对数似然比L(x)的表达式为
Figure BDA0003500590800000051
利用对数似然比将基本概率域上的指标进行更新,表达式为
Figure BDA0003500590800000052
推导得到
Figure BDA0003500590800000053
利用反曲正切函数
Figure BDA0003500590800000054
简化得到
Figure BDA0003500590800000055
利用
Figure BDA0003500590800000056
Figure BDA0003500590800000057
的上下两端除以
Figure BDA0003500590800000058
分母再同时除以
Figure BDA0003500590800000059
得到
Figure BDA00035005908000000510
引用
Figure BDA00035005908000000511
得到
Figure BDA00035005908000000512
利用双曲正切函数
Figure BDA00035005908000000513
简化得到
Figure BDA00035005908000000514
最后推导得出:
Figure BDA00035005908000000515
Figure BDA00035005908000000516
本发明第二方面提供了一种水下光通信LDPC编码处理装置,包括:
构建模块,用于基于IEEE802.16标准下的LDPC构建第一基校验矩阵;
更新模块,用于对所述第一基校验矩阵进行更新得到第二基校验矩阵;
扩展模块,用于对所述第二基校验矩阵进行扩展得到校验矩阵;
编码模块,用于基于所述校验矩阵进行编码;
译码模块,用于译码。
本发明的第三方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述的水下光通信LDPC编码处理方法。
与现有技术相比,本发明具有以下有益效果:
本发明提供的编码处理方法可以快速有效的降低水下光通信的误码率,采用的是结构化LDPC码是一种校验矩阵存储的码字,便于硬件实现,通过仿真验证了该编码的可行性,并且证明在20dB的噪声环境下,其误码率降低了4%。
附图说明
图1为本发明实施例水下光通信LDPC编码处理方法的一种流程示意图;
图2为本发明实施例水下光通信LDPC编码处理方法的另一种流程示意图;
图3为本发明实施例校验矩阵图;
图4为本发明实施例LDPC编码流程示意图;
图5为本发明实施例LDPC编码前后数据帧对比图;
图6为本发明实施例译码流程示意图;
图7为本发明实施例译码前后数据对比图;
图8为本发明实施例水下光通信LDPC编码处理装置的一种结构示意图。
具体实施方式
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在介绍本发明提供的水下光通信LDPC编码处理之前,首先介绍本发明所涉及的背景内容。
LDPC码(Low Density Parity Check Code)全称为低密度奇偶校验码,LDPC是分组码的一种,与其他分组码不同的是LDPC码的校验矩阵H=[hij]是一个稀疏矩阵,校验矩阵H中1的数目远小于0的数目。只要得到LDPC码的校验矩阵H就能进行编码。LDPC码可以被分成规则LDPC码和不规则LDPC码,规则LDPC码的每行每列中1的个数相同,而不规则LDPC码的每行每列中1的个数不同。LDPC码与可以根据校验矩阵H的构造方式分为随机构造LDPC码和结构化LDPC码,随机构造LDPC码在硬件实现时存储与编码都较为困难,而结构化LDPC码就是一种校验矩阵存储方便适合硬件实现的LDPC码。为了方便硬件实现,本发明选择使用结构化LDPC码。
本发明提供的水下光通信LDPC编码处理方法、装置以及计算机可读存储介质,可应用于水下光通信系统,用于在水下光通信LDPC编码处理方案中,通过构建基校验矩阵,对基校验矩阵进行更新和扩展得到校验矩阵,然后基于校验矩阵进行编码,再对编码进行译码,进而完成信号传输,可以快速有效地降低水下光通信的误码率。
本发明提及的水下光通信LDPC编码处理方法,其执行主体可以为编码装置,或者集成了该编码装置的水下光通信系统,系统所涉及的设备具体可以为服务器、物理主机或者用户设备(User Equipment,UE)等不同类型的,UE具体可以为智能手机、平板电脑、笔记本电脑、台式电脑或者个人数字助理(Personal Digital Assistant,PDA)等终端设备。
本发明实施例提供了一种水下光通信LDPC编码处理方法、装置及计算机可读存储介质。
为便于理解,下面对本发明实施例的进行具体描述,请参阅图1,本发明实施例中水下光通信LDPC编码处理方法的一个实施例包括:
S101、系统基于IEEE802.16标准下的LDPC构建第一基校验矩阵
IEEE802.16标准主要应用于城域网中,提供了无线宽带网络的物理层和MAC层(介质访问控制层)的规范,IEEE802.16e协议标准作为固定接入技术的扩展提供的移动宽带无线接入标准,在该标准中为了降低传输误码率,提出了一个LDPC码,就是IEEE802.16e标准中的LDPC码,是QC-LDPC码的一种,本发明使用的便是这种编码方式。
QC-LDPC码(Quasi-Cyslic Low-Density Parity-Check Codes)全名为准循环LDPC码,其校验矩阵由多个由循环移位矩阵或全0矩阵构成的大小相等的方阵构成,非常适合硬件实现,QC-LDPC码的准循环特性保证了高效率的编译码。
设I(Pij)(1≤i≤m,1≤j≤n)是循环移位位数为pij的大小为bxb的方阵,mb×nb的QC-LDPC码的校验矩阵H如式(1)表示:
Figure BDA0003500590800000081
其中,Pij∈{0,1,2,...,b-1,∞},当Pij=0时I(Pij)方阵表示为单位矩阵,当Pij=∞时I(Pij)表示为全零方阵,当Pij≠{0,∞}时I(Pij)表示循环移位次数为Pij的循环移位方阵。值得注意的是,生成的校验矩阵必须尽量避免产生短环,因为短环会破坏信息间传递的独立性,导致译码性能的恶化。
S102、对第一基校验矩阵进行更新得到第二基校验矩阵
扩展因子q为96,码率为1/2的LDPC码的第一基校验矩阵更新得到第二基校验矩阵,选用的扩展因子q的值为24,码率为1/2的参数对第二基校验矩阵进行扩展,扩展后的第二基校验矩阵作为最终的第二基校验矩阵,该步骤目的是为了与水下光通信系统中的OFDM调制匹配。
S103、对第二基校验矩阵进行扩展得到校验矩阵
为了使矩阵的长度与编码的码长一致,因此需要根据第二基校验矩阵扩展得到校验矩阵。
S104、发射端基于所述校验矩阵进行编码并输出编码信息;
S105、接收端对编码信息进行译码并输出原始信息。
该LDPC编码算法通过构造码字的校验矩阵简化编码过程,校验矩阵根据基校验矩阵扩展生成,最终码字的构造过程就被简化为了基校验矩阵的生成过程。基校验矩阵参考IEEE802.16e标准下的LDPC进行生成。
具体地,在步骤S101中,构造基校验矩阵Hb作为第一基校验矩阵,基校验矩阵Hb可以被分解为Hb=[Hb1 Hb2]的形式,如果Hb的尺寸为mb×nb,Hb1则是一个mb×(nb-mb)的矩阵,Hb2的尺寸为mb×mb
其中,Hb1中的元素是非负整数或者-1,如果某位置的元素为-1,则该位置扩展为一个全零矩阵;如果该位置的元素为非负整数,则在该位置扩展的是由单位矩阵E右移本位置元素值位所得的方阵。
Hb2的元素构成式如式(2)所示,经过观察,可以看出Hb2除去第一列,其余矩阵呈现出一个准双对角线的结构,对角线上的位置取值为0,代表该位置扩展的是一个大小为q×q的单位矩阵,非对角线取值为-1,代表着扩展为大小为q×q的全零矩阵。Hb2的第一列由-1、h(1)、h(r)、h(mb)等元素组成,其中,r的取值范围为2≤r≤mb-1。当该位置元素为-1时,得到校验矩阵时扩展为单位矩阵。要求h(1)、h(r)、h(mb)均为非负整数,这些位置均被扩展为单位矩阵右移这个非负整数位的方阵,同时规定了h(1)=h(mb)。
Figure BDA0003500590800000091
进一步地,选用扩展因子q为96,码率为1/2的LDPC码的基校验矩阵如式(3)所示,作为第一基校验矩阵。
Figure BDA0003500590800000092
具体地,在步骤102中,为了与水下光通信系统中的OFDM调制匹配,选用的扩展因子q的值为24,码率为1/2的参数对第二基校验矩阵进行扩展。扩展因子q的值为24,码率为1/2的第二基校验矩阵可由扩展因子q为96,码率为1/2的LDPC码的第一基校验矩阵更新得到。
更新的公式如式(4)所示:
Figure BDA0003500590800000101
其中,
Figure BDA0003500590800000102
表示向下取整。
经过更新得到第二基校验矩阵如式(5)所示。
Figure BDA0003500590800000103
具体地,在步骤S103中,为了使矩阵的长度与编码的码长一致,需要根据第二基校验矩阵扩展得到校验矩阵,当第二基校验矩阵中元素为-1,校验矩阵H对应位置扩展为全0矩阵;若为非负整数,则校验矩阵H相应的位置扩展为单位矩阵E右移非负整数次的方阵。将式(5)的基校验矩阵由上述规则进行扩展得到的校验矩阵如图3所示。
具体地,在步骤S104中,根据校验矩阵进行编码,设输入信息比特为s,按照每组取q比特数据,q就是扩展因子,可以将输入信息比特分为了k组,其中,k=nb-mb
输入信息比特可以被表示为式(6)的形式
Figure BDA0003500590800000104
其中si是长度为q的行向量。
设校验比特为p,则编码后的码元信息c可以被表示为式(7)的形式。
Figure BDA0003500590800000105
HcT=0 (8)
可得
H2·pT=H1·sT (9)
其中,H1、H2分别为矩阵Hb1、Hb2的扩展。
该方程组式展开如式10)所示
Figure BDA0003500590800000111
其中,
Zt,t={-1,0,1,h(1),h(r),h(mb),Hb1(i,j)} (11)
为基矩阵扩展后得到的新的矩阵。
将上式的各行都加在第一行,由于是在二元域中的计算,经过模2运算可以推出:
Figure BDA0003500590800000112
将式(12)回代到式(10)中可得:
Figure BDA0003500590800000113
将式(13)代到式(10)中可得到
Figure BDA0003500590800000114
Figure BDA0003500590800000115
具体地,在步骤S105中,LDPC译码分为硬判决和软判决两类。硬判决和软判决算法可以适用于不同的应用场合。
1.硬判决译码算法
硬判决算法是直接对码字进行判决,理论简单,实现容易,但是译码性能较差。比特翻转译码算法是硬判决算法中使用较多的一种,它在校验方程不成立的时候认为不满足校验方程数目最多的比特就是认为是错误的比特,算法实现是,在每次迭代时对不满足校验方程数目最多的比特进行翻转,直到所有比特全部满足校验方阵或者达到最大的迭代次数。
2.BP算法
软判决译码不是直接输出1或者0的判决结果,而是输出该比特取0或者1的概率,这个概率由校验节点和变量节点之间传递的信息表示。通常情况下,软判决译码比硬判决译码具有更好的性能。
软判决译码算法是迭代译码算法,上次的似然信息将会被更新的似然信息覆盖,更新后的似然信息是由变量节点通过某条边传递给校验节点的信息来表示;满足校验方差的情况下,参与此校验方程的其它变量节点对该变量节点的估计被表示为校验节点传递给变量节点的信息。每个变量节点信息根据上面的信息进行更新。每次迭代时重复上述步骤,迭代结束后用校验矩阵验证是否译码正确,如果是译码正确,迭代结束;否则继续迭代,直到达到最大迭代次数。
BP译码算法全称为置信传播迭代译码算法,也被称为和积算法,在进行更新时,BP算法主要使用加法和乘法运算。BP译码算法的实现原理以及实现简化版的BP译码算法的原理如下:
1)基础概率域的BP译码算法
设接收比特为xn,根据接收比特xn的接收值为y而得出的接收比特xn为x的概率为
Figure BDA0003500590800000121
其中x∈{0,1},显然有
Figure BDA0003500590800000122
这是仅仅考虑了信道特性的影响而得出的概率。
在设计中,假设信道的模型为AWGN信道,信道中的噪声为均值为0,方差为σ2的高斯白噪声,可得
Figure BDA0003500590800000123
Figure BDA0003500590800000124
的表达式如式(16)所示。
Figure BDA0003500590800000125
Figure BDA0003500590800000126
假设每个信号的传输能量归一化值为l,在码率为R的情况下,加性高斯白噪声的均方根如式(17)。
Figure BDA0003500590800000131
为了方便说明,设与校验节点sm相连的所有变量节点xl的集合为L(m),L(m)/l表示该集合L(m)去掉了变量节点xl构成的新集合。同理,与变量节点xl相连的所有校验节点sm的集合为M(l),M(l)/m表示集合M(l)去掉校验节点sm构成的新集合。设变量节点xl传递给校验节点sm的信息是
Figure BDA0003500590800000132
校验节点sm传递给变量节点xl的信息是
Figure BDA0003500590800000133
Figure BDA0003500590800000134
用根据集合M(l)/m的信息得出的接收信号取值x为0或者1的概率来表示,其中x∈{0,1},易证
Figure BDA0003500590800000135
Figure BDA0003500590800000136
则是用当接收信号为x时,校验节点sm对应的校验方程成立的概率来表示。根据定义可以得到概率
Figure BDA0003500590800000137
为接收比特信号中1的个数为偶数的概率;概率
Figure BDA0003500590800000138
为接收比特信号中1的个数为奇数的概率。根据推导得到校验节点的更新公式如式(18)所示
Figure BDA0003500590800000139
Figure BDA00035005908000001310
那么,基础概率域的BP译码算法的完整实现步骤是对校验矩阵元素Hmn=1的m,l执行以下运算:
(1)初始化:
Figure BDA00035005908000001311
其中fl 1表示信道的先验概率。
(2)校验节点更新:
Figure BDA00035005908000001312
Figure BDA00035005908000001313
(3)变量节点更新如式(21)所示
Figure BDA0003500590800000141
Figure BDA0003500590800000142
其中,αml为校正因子,添加校正因子的目的是使
Figure BDA0003500590800000143
(4)似后验概率更新如式22所示
Figure BDA0003500590800000144
Figure BDA0003500590800000145
其中,αl也是校正因子,可以使
Figure BDA0003500590800000146
(5)比特判决:
对得到的似后验概率进行判断,如果
Figure BDA0003500590800000147
判断发送比特为0,如果
Figure BDA0003500590800000148
判断发送比特为1
在每次迭代之后将进行更新后的比特序列进行校验,若HTx=0,可以结束迭代,当迭代次数达到最大迭代次数时也可以结束迭代。
2)改进的对数似然比的BP译码算法
上述分析的基本概率域上的BP算法的实现复杂度高,要大量的乘除及指数运算,会大大增加运算时间,在码长较长时数值计算也不稳定。本设计将两个概率指标用对数似然比(LLR)的方式转化为一个指标,同时对数运算可以将乘除运算转化为加减运算,这样即简化了指标的表达方式,同时也大大降低了算法的实现复杂度,减少了硬件资源的利用更加利于硬件实现。
对数似然比L(x)的表达式如式(23)
Figure BDA0003500590800000149
利用对数似然比将基本概率域上的指标进行更新,表达式如式(24)所示
Figure BDA0003500590800000151
Figure BDA0003500590800000152
Figure BDA0003500590800000153
Figure BDA0003500590800000154
根据式(20)和式(21)可以推导得到
Figure BDA0003500590800000155
上式可以用反曲正切函数
Figure BDA0003500590800000156
进行简化,得到新的表达式如式(26)所示。
Figure BDA0003500590800000157
利用
Figure BDA0003500590800000158
将式(26)的上下两端除以
Figure BDA0003500590800000159
分母再同时除以
Figure BDA00035005908000001510
可得式(27)。
Figure BDA00035005908000001511
再引用式(24)得到式(28)。
Figure BDA00035005908000001512
再利用双曲正切函数
Figure BDA00035005908000001513
化简得到式(29)
Figure BDA00035005908000001514
根据式(21)、式(22)、式(24)有
Figure BDA0003500590800000161
Figure BDA0003500590800000162
改进的对数似然比的BP译码算法的具体实现步骤为对于校验矩阵元素中Hml=1的m,l执行以下运算:
(1)初始化:
Figure BDA0003500590800000163
(2)校验节点更新:
Figure BDA0003500590800000164
(3)变量节点更新如式(34)。
Figure BDA0003500590800000165
(4)似后验概率更新如式35。
Figure BDA0003500590800000166
(5)比特判决:对得到的似后验概率进行判断,如果vl>0,判断发送比特为0;否则,判断发送比特为1。
在每次迭代之后将进行更新后的比特序列进行校验,若HTx=0,可以结束迭代,当迭代次数达到最大迭代次数时也可以结束迭代。
本发明实施例中水下光通信LDPC编码处理方法的另一个实施例如图2所示,包括:
S201、生成校验矩阵
根据式
Figure BDA0003500590800000167
对校验基矩阵进行更新,可以得到扩展因子q为96,码率为1/2的LDPC码的基校验矩阵式为:
Figure BDA0003500590800000171
当基校验矩阵中元素为-1,校验矩阵H对应位置扩展为全0矩阵;若为非负整数,则校验矩阵H相应的位置扩展为单位矩阵E右移非负整数次的方阵。得到的校验矩阵如图3所示。
S202、LDPC编码
LDPC编码的流程图如图4所示。
使用编写的QCEncode()函数对每次输入的288bit的数据进行编码,一帧数据编码编码前后的波形图如图5所示。
S203、BP译码
BP译码的流程图如6所示。
使用编写的LDPCDecode()函数对调制后输出的576bit的数据进行译码,一帧数据编码后译码后的波形图如图7所示。
由此可见,LDPC编码可以降低系统的误码率,当在信噪比为20db高斯白噪声的环境下,编码前的误码率为18.89%,编码后的误码率为14.37%。
本发明实施例方法可以快速有效的降低水下光通信的误码率,设计的LDPC编码是一种校验矩阵存储的码字,便于硬件实现,并且通过仿真实验证明了其有效性。
以上是本发明提供水下光通信LDPC编码处理方法的介绍,为便于更好的实施本发明提供的水下光通信LDPC编码处理方法,本发明还从功能模块角度提供了一种水下光通信LDPC编码处理装置。
参阅图8,图8为本发明水下光通信LDPC编码处理装置实施例的一种结构示意图,在该实施例中,水下光通信LDPC编码处理装置800具体可包括如下结构:
构建模块801,用于基于IEEE802.16标准下的LDPC构建第一基校验矩阵;
更新模块802,用于对第一基校验矩阵进行更新得到第二基校验矩阵;
扩展模块803,用于对第二基校验矩阵进行扩展得到校验矩阵;
编码模块804,用于基于校验矩阵进行编码;
译码模块805,用于译码。
在又一种示例性的实现方式中,装置还包括输出模块806,用于输出译码后的信息。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的水下光通信LDPC编码处理装置及其相应模块的具体工作过程,可以参考如图1对应实施例中水下光通信LDPC编码处理方法的说明,具体在此不再赘述。
本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一计算机可读存储介质中,并由处理器进行加载和执行。
为此,本发明提供一种计算机可读存储介质,其中存储有多条指令,该指令能够被处理器进行加载,以执行本发明如图1对应实施例中水下光通信LDPC编码处理方法的步骤,具体操作可参考如图1对应实施例中水下光通信LDPC编码处理方法的说明,在此不再赘述。
其中,该计算机可读存储介质可以包括:只读存储器(Read Only Memory,ROM)、随机存取记忆体(Random Access Memory,RAM)、磁盘或光盘等。
由于该计算机可读存储介质中所存储的指令,可以执行本发明如图1对应实施例中水下光通信LDPC编码处理方法的步骤,因此,可以实现本发明如图1对应实施例中水下光通信LDPC编码处理方法所能实现的有益效果,详见前面的说明,在此不再赘述。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种水下光通信LDPC编码处理方法,其特征在于,所述处理方法包括:
系统基于IEEE802.16标准下的LDPC构建第一基校验矩阵;
对所述第一基校验矩阵进行更新得到第二基校验矩阵;
对所述第二基校验矩阵进行扩展得到校验矩阵;
基于所述校验矩阵进行编码并输出;
对所述编码进行译码并输出。
2.根据权利要求1所述的水下光通信LDPC编码处理方法,其特征在于,所述系统基于IEEE802.16标准下的LDPC构建第一基校验矩阵包括:
构造基校验矩阵Hb作为所述第一基校验矩阵,基校验矩阵Hb被分解为Hb=[Hb1 Hb2]的形式,假设Hb的尺寸为mb×nb,Hb1则是一个mb×(nb-mb)的矩阵,Hb2的尺寸为mb×mb
其中,Hb1中的元素是非负整数或者-1,若其中一个位置的元素为-1,则该位置扩展为一个全零矩阵;若该位置的元素为非负整数,则在该位置扩展的是由单位矩阵E右移本位置元素值位所得的方阵;
Hb2的元素构成为
Figure FDA0003500590790000011
Hb2除去第一列,其余矩阵呈现出一个准双对角线的结构,对角线上的位置取值为0,代表该位置扩展的是一个大小为q×q的单位矩阵,非对角线取值为-1,代表着扩展为大小为q×q的全零矩阵;
Hb2的第一列由-1、h(1)、h(r)、h(mb)、M元素组成,其中r的取值范围为2≤r≤mb-1,当该位置元素为-1时,得到校验矩阵时扩展为单位矩阵,h(1)、h(r)、h(mb)均为非负整数,这些位置均被扩展为单位矩阵右移这个非负整数位的方阵,同时规定了h(1)=h(mb)。
3.根据权利要求1或2所述的水下光通信LDPC编码处理方法,其特征在于,所述系统基于IEEE802.16标准下的LDPC构建第一基校验矩阵包括:
所述系统基于IEEE802.16标准得到扩展因子q为96,码率为1/2的LDPC码的第一基校验矩阵,第一基校验矩阵为:
Figure FDA0003500590790000021
4.根据权利要求3所述的水下光通信LDPC编码处理方法,其特征在于,所述对所述第一基校验矩阵进行更新得到第二基校验矩阵包括:
所述第一基校验矩阵基于公式
Figure FDA0003500590790000022
进行更新得到第二基校验矩阵
Figure FDA0003500590790000023
公式中的
Figure FDA0003500590790000024
表示向下取整;
选用扩展因子q为24,码率为1/2的参数对第二基校验矩阵进行扩展后输出。
5.根据权利要求1或4所述的水下光通信LDPC编码处理方法,其特征在于,所述对所述第二基校验矩阵进行扩展得到校验矩阵包括:
所述第二基校验矩阵按照规则进行扩展得到校验矩阵;
所述规则为:当所述第二基校验矩阵中元素为-1,所述校验矩阵对应位置扩展为全0矩阵;若为非负整数,则所述校验矩阵对应的位置扩展为单位矩阵E右移非负整数次的方阵。
6.根据权利要求1所述的水下光通信LDPC编码处理方法,其特征在于,所述基于所述校验矩阵进行编码并输出包括:
编码过程包括:设输入信息比特为s,按照每组取q比特数据,q为扩展因子,将输入信息比特分为了k组,其中,k=nb-mb
输入信息比特表示为
Figure FDA0003500590790000031
其中si是长度为q的行向量;
设校验比特为p,则编码后的码元信息c被表示为:
Figure FDA0003500590790000032
由HcT=0可得H2·pT=H1·sT,其中,H1、H2分别为矩阵Hb1、Hb2的扩展;
H2·pT=H1·sT展开为第一公式:
Figure FDA0003500590790000033
其中,Zt,t={-1,0,1,h(1),h(r),h(mb),Hb1(i,j)}为基矩阵扩展后得到的新的矩阵。
将第一式的各行都加在第一行,经过模2运算得到第二公式:
Figure FDA0003500590790000034
将第二公式回代到所述第一公式得到第三公式:
Figure FDA0003500590790000035
将第三公式回代到所述第一公式得到:
Figure FDA0003500590790000036
Figure FDA0003500590790000037
7.根据权利要求1所述的水下光通信LDPC编码处理方法,其特征在于,所述对所述编码进行译码并输出包括:
改进的对数似然比的BP译码算法的具体实现步骤为对于校验矩阵元素中Hml=1的m,l执行以下运算:
初始化:
Figure FDA0003500590790000041
校验节点更新:
Figure FDA0003500590790000042
变量节点更新:
Figure FDA0003500590790000043
似后验概率更新:
Figure FDA0003500590790000044
比特判决:对得到的似后验概率进行判断,如果vl>0,判断发送比特为0;否则,判断发送比特为1;
在每次迭代之后将进行更新后的比特序列进行校验,若HTx=0,可以结束迭代,当迭代次数达到最大迭代次数时也可以结束迭代。
8.根据权利要求7所述的水下光通信LDPC编码处理方法,其特征在于,所述改进的对数似然比的BP译码算法包括:
对数似然比L(x)的表达式为
Figure FDA0003500590790000045
利用对数似然比将基本概率域上的指标进行更新,表达式为
Figure FDA0003500590790000046
推导得到
Figure FDA0003500590790000051
利用反曲正切函数
Figure FDA0003500590790000052
简化得到
Figure FDA0003500590790000053
利用
Figure FDA0003500590790000054
Figure FDA0003500590790000055
的上下两端除以
Figure FDA0003500590790000056
分母再同时除以
Figure FDA0003500590790000057
得到
Figure FDA0003500590790000058
引用
Figure FDA0003500590790000059
得到
Figure FDA00035005907900000510
利用双曲正切函数
Figure FDA00035005907900000511
简化得到
Figure FDA00035005907900000512
最后推导得出:
Figure FDA00035005907900000513
Figure FDA00035005907900000514
9.一种水下光通信LDPC编码处理装置,其特征在于,所述编码处理装置包括:
构建模块,用于基于IEEE802.16标准下的LDPC构建第一基校验矩阵;
更新模块,用于对所述第一基校验矩阵进行更新得到第二基校验矩阵;
扩展模块,用于对所述第二基校验矩阵进行扩展得到校验矩阵;
编码模块,用于基于所述校验矩阵进行编码;
译码模块,用于译码。
10.一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,其特征在于,所述指令被处理器执行时实现如权利要求1-8中任一项所述的水下光通信LDPC编码处理方法。
CN202210126571.4A 2022-02-10 2022-02-10 水下光通信ldpc编码处理方法、装置及计算机可读存储介质 Pending CN114448446A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210126571.4A CN114448446A (zh) 2022-02-10 2022-02-10 水下光通信ldpc编码处理方法、装置及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210126571.4A CN114448446A (zh) 2022-02-10 2022-02-10 水下光通信ldpc编码处理方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
CN114448446A true CN114448446A (zh) 2022-05-06

Family

ID=81371049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210126571.4A Pending CN114448446A (zh) 2022-02-10 2022-02-10 水下光通信ldpc编码处理方法、装置及计算机可读存储介质

Country Status (1)

Country Link
CN (1) CN114448446A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115499094A (zh) * 2022-08-18 2022-12-20 哈尔滨工业大学(威海) 基于qc-ldpc编码的水到空气跨介质通信方法
CN115801063A (zh) * 2022-10-21 2023-03-14 华中科技大学 一种地下磁感应无线通信方法、装置及系统
WO2024055934A1 (zh) * 2022-09-13 2024-03-21 华为技术有限公司 编码方法、译码方法、通信装置及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162907A (zh) * 2006-10-10 2008-04-16 华为技术有限公司 一种构造低密度奇偶校验码校验矩阵的方法及装置
CN104333390A (zh) * 2014-11-26 2015-02-04 西安烽火电子科技有限责任公司 一种ldpc码的校验矩阵的构造方法与编码方法
CN108832936A (zh) * 2018-05-30 2018-11-16 东南大学 一种ldpc码的构造方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162907A (zh) * 2006-10-10 2008-04-16 华为技术有限公司 一种构造低密度奇偶校验码校验矩阵的方法及装置
CN104333390A (zh) * 2014-11-26 2015-02-04 西安烽火电子科技有限责任公司 一种ldpc码的校验矩阵的构造方法与编码方法
CN108832936A (zh) * 2018-05-30 2018-11-16 东南大学 一种ldpc码的构造方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SUMALATHA JATOTH: "LDPC performance in IEEE802.16e and Telemetry systems", RESEARCH ARCHIVE OF INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD, 30 June 2016 (2016-06-30), pages 5 - 10 *
包秋艳: "基于IEEE802.16e协议的LDPC码编译码算法的研究", 中国优秀硕士学位论文全文数据库 (信息科技辑), 15 January 2011 (2011-01-15), pages 24 - 25 *
王冰冰: "空间通信中LDPC译码算法研究与译码器设计", 中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑), 15 January 2022 (2022-01-15), pages 10 - 12 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115499094A (zh) * 2022-08-18 2022-12-20 哈尔滨工业大学(威海) 基于qc-ldpc编码的水到空气跨介质通信方法
CN115499094B (zh) * 2022-08-18 2024-02-27 哈尔滨工业大学(威海) 基于qc-ldpc编码的水到空气跨介质通信方法
WO2024055934A1 (zh) * 2022-09-13 2024-03-21 华为技术有限公司 编码方法、译码方法、通信装置及计算机可读存储介质
CN115801063A (zh) * 2022-10-21 2023-03-14 华中科技大学 一种地下磁感应无线通信方法、装置及系统
CN115801063B (zh) * 2022-10-21 2024-05-14 华中科技大学 一种地下磁感应无线通信方法、装置及系统

Similar Documents

Publication Publication Date Title
CN114448446A (zh) 水下光通信ldpc编码处理方法、装置及计算机可读存储介质
CN110572163B (zh) 用于编码和译码ldpc码的方法和装置
USRE44421E1 (en) Decoding apparatus for low-density parity-check codes using sequential decoding, and method thereof
CN105207682B (zh) 基于动态校验矩阵的极化码置信传播译码方法
CN100505555C (zh) 一种无线通信系统中非正则低密度奇偶校验码的生成方法
CN109586732B (zh) 中短码ldpc编解码系统和方法
CN105763203B (zh) 一种基于硬可靠度信息的多元ldpc码译码方法
CN108462496B (zh) 一种基于随机比特流更新的ldpc译码器
Xu et al. Polar decoding on sparse graphs with deep learning
CN107124251B (zh) 一种基于任意内核的极化码编码方法
CN110233628B (zh) 极化码的自适应置信传播列表译码方法
US10892783B2 (en) Apparatus and method for decoding polar codes
WO2021063217A1 (zh) 一种译码方法及装置
TW202145723A (zh) 基於信度傳播之極化碼解碼方法
Yang et al. Nonlinear programming approaches to decoding low-density parity-check codes
CN110730008B (zh) 一种基于深度学习的rs码置信传播译码方法
CN106656210A (zh) 一种基于完备循环差集的可快速编码的Type‑II QC‑LDPC码构造方法
CN115664899A (zh) 一种基于图神经网络的信道解码方法及系统
Habib et al. Belief propagation decoding of short graph-based channel codes via reinforcement learning
CN101552613B (zh) 基于外信息符号变化的低密度校验码译码方法
CN113114269A (zh) 一种置信传播-信息修正译码方法
CN102611462B (zh) 一种ldpc-cc译码算法及译码器
CN108880748B (zh) 基于拉丁方阵的无速率Spinal码的编译码方法
WO2021073338A1 (zh) 译码方法和译码器
Yang et al. Efficient hardware architecture of deterministic MPA decoder for SCMA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination