CN114440928A - 激光雷达与里程计的联合标定方法、机器人、设备和介质 - Google Patents

激光雷达与里程计的联合标定方法、机器人、设备和介质 Download PDF

Info

Publication number
CN114440928A
CN114440928A CN202210102237.5A CN202210102237A CN114440928A CN 114440928 A CN114440928 A CN 114440928A CN 202210102237 A CN202210102237 A CN 202210102237A CN 114440928 A CN114440928 A CN 114440928A
Authority
CN
China
Prior art keywords
odometer
laser radar
attitude
mobile robot
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210102237.5A
Other languages
English (en)
Inventor
李维凯
洪东升
邓成呈
刘藏龙
王文月
李坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Shenhao Technology Co Ltd
Original Assignee
Hangzhou Shenhao Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Shenhao Technology Co Ltd filed Critical Hangzhou Shenhao Technology Co Ltd
Priority to CN202210102237.5A priority Critical patent/CN114440928A/zh
Publication of CN114440928A publication Critical patent/CN114440928A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/022Optical sensing devices using lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本申请属于机器人技术领域,具体涉及一种激光雷达与里程计的联合标定方法、机器人、设备和介质,其中方法包括:获取移动机器人按照预设路线移动时实时采集的里程计数据和激光雷达数据;基于里程计数据确定移动机器人在预设时间间隔的第一姿态变换量;基于激光雷达数据确定激光坐标系在预设时间间隔的第二姿态变换量;根据第一姿态变换量、第二姿态变换量构建残差,通过最小二乘法求解得到里程计的内参数校准值和激光雷达的外参数校准值;以内参数校准值和外参数校准值分别校准里程计的内参数和激光雷达的外参数。本申请的标定方法可同时对激光雷达外参数和里程计内参数标定,大大提高了标定的效率和精度。

Description

激光雷达与里程计的联合标定方法、机器人、设备和介质
技术领域
本申请属于机器人技术领域,具体涉及一种激光雷达与里程计的联合标定方法。
背景技术
激光雷达和里程计(轮式编码器)是移动机器人中最常用的两个传感器,特别是在工业和民用领域的轮式机器人中,如自主导航车,无人车和轮式服务机器人等,基于编码器和激光雷达融合的里程计可以提升机器人对环境的感知和自身定位的能力。
在实际应用中,编码器和激光雷达通常被放置在不同的位置,导致两种传感器的坐标系不一致,在实际使用之前,需要对这两个坐标系之间的相对位置进行校准,即标定激光雷达的外参数。此外,由于机械加工和安装误差、机器人长期运行导致的轮子磨损等因素,里程计的内参数通常会与机械给定值存在误差,需定期进行标定。总之,准确的内、外参数标定结果对移动机器人系统的状态估计和环境感知具有重要的意义。
目前常见的激光—里程计标定方案中,激光雷达外参数和里程计内参数是分开标定的。针对激光雷达外参数,常见的方法是:由标定人员控制小车运动,分别计算出激光雷达和里程计各自的相对运动,然后利用非线性优化的方法求解出外参数。针对里程计内参数,常见的标定方法是:控制机器人直线行驶一定距离,读取里程计给出的位移,并用标尺测量实际位移;控制机器人原地旋转一定角度,读取里程计给出的角度变化,并用角度尺测量实际角度变化;根据实际测量值和里程计测量值的误差,修正里程计内参数。以上的标定方法存在效率和精度较低、导致传感器测量误差较大的问题。
发明内容
(一)要解决的技术问题
鉴于现有技术的上述缺点、不足,本申请提供一种激光雷达与里程计联合标定方法、机器人、设备和介质。
(二)技术方案
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供一种激光雷达与里程计联合标定方法,所述激光雷达用于采集激光雷达数据以获取移动机器人的环境信息,所述里程计用于采集里程计数据以获取所述移动机器人的行程信息,该方法包括以下步骤:
获取所述移动机器人按照预设路线移动时所述里程计实时采集的里程计数据和所述激光雷达实时采集的激光雷达数据;
基于所述里程计数据确定所述移动机器人在预设时间间隔的姿态变化量,将确定的姿态变化量作为第一姿态变换量;
基于所述激光雷达数据确定激光坐标系在预设时间间隔的姿态变化量,将确定的姿态变化量作为第二姿态变换量;
根据所述第一姿态变换量、所述第二姿态变换量构建残差,通过最小二乘法求解得到所述里程计的内参数校准值和所述激光雷达的外参数校准值;
以所述内参数校准值和所述外参数校准值分别校准所述里程计的内参数和所述激光雷达的外参数。
可选地,所述基于所述里程计数据确定所述移动机器人在预设时间间隔的姿态变化量,将确定的姿态变化量作为第一姿态变换量的步骤包括;
S21、基于所述里程计数据和预先给定的里程计内参数,根据以下公式得到所述移动机器人的左轮角速度ωL和右轮角速度ωR;所述里程计数据包括移动机器人的前进速度检测值v0和旋转角速度检测值ω0,所述里程计内参数包括左右轮半径rL,rR和轮间距b;
Figure BDA0003492842270000031
Figure BDA0003492842270000032
S22、基于所述左轮角速度和右轮角速度、待优化的里程计内参数,根据以下公式计算所述移动机器人当前的前进速度v和旋转角速度ω;
Figure BDA0003492842270000033
S23、基于所述前进速度和所述旋转角速度,通过积分运算得到所述移动机器人的实时姿态;
S24、基于所述移动机器人的实时姿态,根据以下公式确定所述移动机器人在预设时间间隔t∈[tk,tk+1]的姿态变化量;
q=(qx,qy,qθ)∈SE(2)
Figure BDA0003492842270000034
其中,q为机器人相对于固定坐标系的姿态,qx为x坐标,qy为y坐标,qθ为角度,SE(2)表示二维空间的李群;qk和qk+1分别为两个时刻移动机器人的姿态,rk为第一姿态变化量,rL为左轮半径,rR为右轮半径,b为左右轮间距,
Figure BDA0003492842270000035
表示qk的逆,⊙表示SE(2)的运算。
可选地,通过基于激光雷达的定位算法或ICP点云匹配算法确定激光坐标系在预设时间间隔的姿态变化量
Figure BDA0003492842270000036
可选地,所述第一姿态变换量与所述第二姿态变换量的关系表示为:
Figure BDA0003492842270000037
sk=(qk⊙l)-1⊙(qk+1⊙l)=l-1⊙rk(rL,rR,b)⊙l
l=(lx,ly,lθ)∈SE(2)
其中,l为激光雷达外参数,lx为激光坐标系在机器人坐标系中的x坐标,ly为激光坐标系在机器人坐标系中的y坐标,lθ为激光坐标系相对于机器人坐标系的旋转角度,sk为基于第一姿态变换量得到的预设时间间隔的激光坐标系的相对变化量。
可选地,所述第二姿态变换量服从高斯分布。
可选地,构建的残差表达式为:
Figure BDA0003492842270000041
其中,
Figure BDA0003492842270000042
第二姿态变换量,σ为高斯分布的方差。
第二方面,本申请实施例提供一种移动机器人,该机器人包括处理器、里程计和激光雷达,所述处理器用于执行如上第一方面任一项所述的激光雷达与里程计联合标定方法。
第三方面,本申请实施例提供一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上第一方面任一项所述的激光雷达与里程计联合标定方法的步骤。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上第一方面任一项所述的激光雷达与里程计联合标定方法的步骤。
(三)有益效果
本申请的有益效果是:本申请提出了一种激光雷达与里程计联合标定方法、机器人、设备和介质,其中的方法包括:获取移动机器人按照预设路线移动时实时采集的里程计数据和激光雷达数据;基于里程计数据确定移动机器人在预设时间间隔的第一姿态变换量;基于激光雷达数据确定激光坐标系在预设时间间隔的第二姿态变换量;根据第一姿态变换量、第二姿态变换量构建残差,通过最小二乘法求解得到里程计的内参数校准值和激光雷达的外参数校准值;以内参数校准值和外参数校准值分别校准里程计的内参数和激光雷达的外参数。本申请的标定方法可同时对激光雷达外参数和里程计内参数标定,大大提高了标定的效率和精度。
附图说明
本申请借助于以下附图进行描述:
图1为本申请一个实施例中的激光雷达与里程计联合标定方法流程示意图;
图2为本申请另一个实施例中的激光雷达与里程计联合标定方法流程示意图;
图3为本申请又一个实施例中的移动机器人结构示意图;
图4为本申请再一实施例中的电子设备的架构示意图。
附图标记说明:
31-处理器,32-里程计,33-激光雷达。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。可以理解的是,以下所描述的具体的实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合;为了便于描述,附图中仅示出了与发明相关的部分。
本方法适用于两轮差速驱动移动机器人,该机器人具有下列组件:(1)里程计及双轮差速电机,(2)水平扫描的单线激光雷达,(3)通过即时定位与地图构建(simultaneouslocalization and mapping,SLAM)机器人能够实时估计自己在场景中的位姿,从而能够实现自主导航。场景可以是室内,也可以是室外。
实施例一
本实施例中激光雷达用于采集激光雷达数据以获取两轮差速移动机器人的环境信息,里程计用于采集里程计数据以获取两轮差速移动机器人的行程信息。图1为本申请一个实施例中的激光雷达与里程计联合标定方法流程示意图,如图1所示,本实施例的激光雷达与里程计联合标定方法包括以下步骤:
S10、获取移动机器人按照预设路线移动时里程计实时采集的里程计数据和激光雷达实时采集的激光雷达数据;
S20、基于里程计数据确定移动机器人在预设时间间隔的姿态变化量,将确定的姿态变化量作为第一姿态变换量;
S30、基于激光雷达数据确定激光坐标系在预设时间间隔的姿态变化量,将确定的姿态变化量作为第二姿态变换量;
S40、根据第一姿态变换量、第二姿态变换量构建残差,通过最小二乘法求解得到里程计的内参数校准值和激光雷达的外参数校准值;
S50、以内参数校准值和外参数校准值分别校准里程计的内参数和激光雷达的外参数。
本实施例的激光雷达与里程计联合标定方法,能够同时、快速的标定激光雷达外参数和里程计内参数,不仅标定精度高而且提高了标定效率,从而降低了传感器测量误差,可用于机器人出厂前的参数校准,也可用于机器人长期运行过程的定期校准。
为了更好地理解本发明,以下对本实施例中的各步骤进行展开说明。
本实施例中,S20包括:
S21、基于所述里程计数据和预先给定的里程计内参数,根据以下公式得到移动机器人的左轮角速度ωL和右轮角速度ωR;所述里程计数据包括移动机器人的前进速度检测值v0和旋转角速度检测值ω0,所述里程计内参数包括左右轮半径rL,rR和轮间距b;
Figure BDA0003492842270000061
Figure BDA0003492842270000062
S22、基于所述左轮角速度和右轮角速度、待优化的里程计内参数,根据以下公式计算移动机器人当前的前进速度v和旋转角速度ω;
Figure BDA0003492842270000071
S23、基于所述前进速度和所述旋转角速度,通过积分运算得到所述移动机器人的实时姿态;
S24、基于所述移动机器人的实时姿态,根据以下公式确定所述移动机器人在预设时间间隔t∈[tk,tk+1]的姿态变化量;
q=(qx,qy,qθ)∈SE(2) (4)
Figure BDA0003492842270000072
其中,q为机器人相对于固定坐标系的姿态,qx为x坐标,qy为y坐标,qθ为角度,SE(2)表示二维空间的李群;qk和qk+1分别为两个时刻移动机器人的姿态,rk为第一姿态变化量,rL为左轮半径,rR为右轮半径,b为左右轮间距,
Figure BDA0003492842270000073
表示qk的求逆,⊙表示SE(2)的运算。
求逆和加法运算过程如以下公式所示:
Figure BDA0003492842270000074
Figure BDA0003492842270000075
本实施例S30中,可以通过基于激光雷达的定位算法或迭代最近点(IterativeClosest Point,ICP)点云匹配算法确定激光坐标系在预设时间间隔的姿态变化量。具体地,激光雷达的定位算法可以是SLAM算法。需要说明的是,也可以采用其他的点云匹配算法,以上点云匹配算法仅仅是示例性的说明,并不构成对点云匹配算法的具体限定。
具体地,基于测距的定位算法可以是基于接收信号强度测量法、到达时间测量法、到达时间差测量法和到达角度测量法。
需要说明的是,上述的基于测距的定位算法仅仅是示例性的说明,并不构成对定位算法的具体限定。
本实施例中,所述第一姿态变换量与所述第二姿态变换量的关系即激光坐标系和机器人坐标系的关系,可以表示为:
Figure BDA0003492842270000081
sk=(qk⊙l)-1⊙(qk+1⊙l)=l-1⊙rk(rL,rR,b)⊙l (9)
l=(lx,ly,lθ)∈SE(2) (10)
其中,l为激光雷达外参数,lx为激光坐标系在机器人坐标系中的x坐标,ly为激光坐标系在机器人坐标系中的y坐标,lθ为激光坐标系相对于机器人坐标系的旋转角度,sk为基于第一姿态变换量得到的预设时间间隔的激光坐标系的相对变化量。
本实施例中,所述第二姿态变换量服从高斯分布。
构建的残差表达式为:
Figure BDA0003492842270000082
其中,
Figure BDA0003492842270000083
第二姿态变换量,σ为高斯分布的方差。
之后通过最小二乘法即可求解得到里程计的内参数校准值和激光雷达的外参数校准值,其中,里程计内参数校准值具体包括左右轮半径校准值和轮间距校准值,激光雷达的外参数校准值具体包括激光坐标系在机器人坐标系中的x坐标校准值,激光坐标系在机器人坐标系中的y坐标校准值,激光坐标系相对于机器人坐标系的旋转角度校准值。
实施例二
本实施例的执行主体可以是机器人中的标定模块,标定模块可以包括存储器和处理器,在其他一些实施例中执行主体还可以是其他可实现相同或相似功能的电子设备,本实施例对此不加以限制。在本实施例中,以机器人中的标定模块为例对本发明的激光雷达与里程计联合标定方法进行说明。
需要说明的是,在标定前需要将机器人开至环境特征相对明显、地面相对水平的区域,以尽量保证激光位姿估计的精度。如果使用定位算法估计激光在地图中的姿态,需在该区域预先建好地图。
图2为本申请另一个实施例中的激光雷达与里程计联合标定方法流程示,本实施例在实施例一的基础上,对本实施例的具体实现过程进行了详细说明。以下结合图2对本实施例方法的步骤进行具体说明。
步骤S1、在标定模块中输入当前机器人的里程计内参数;
启动标定程序,开始采集数据;控制机器人,走一个“8”字形路线。
步骤S2、接收nav_msgs:Odometry类型的里程计数据,根据公式(3)、(4)和给定的里程计内参数,计算得到机器人左、右轮的角速度ωL和ωR
根据公式(3)、(5)、(8)计算由里程计估计得到的机器人的姿态。将数据缓存至里程计位姿队列odom_pose。同时,接收激光坐标系姿态,可由定位算法或ICP等点云匹配算法给出。将数据缓存至激光坐标系位姿队列laser_pose。
步骤S3、机器人行走完毕后,按时间戳同步两个队列的数据,根据公式(5)和(8)-(10)得到各个时间间隔的激光坐标系的位姿变化sk
Figure BDA0003492842270000091
步骤S4、根据式(11)和同步的数据,优化求解得到内、外参数。
步骤S5、根据公式(5)、(9)、(10),利用得到的内、外参数和队列计算odom_pose,得到新的估计值
Figure BDA0003492842270000092
根据式(11)计算
Figure BDA0003492842270000093
Figure BDA0003492842270000094
的残差,过滤掉一部分残差较大的数据。
步骤S6、重复步骤S3-S5,迭代计算多次。最后得到内、外参数标定结果。
本实施例的激光雷达与里程计联合标定方法通过采集行走过程中里程计估算的机器人在地图中的姿态和定位算法等方式估算的激光在地图中的姿态,迭代计算内外参数,最后输出标定结果,解决了激光—里程计标定效率较低、测量误差较大等问题,可实现机器人自主、在线标定。
实施例三
本申请第二方面通过实施例三提供了一种移动机器人,图3为本申请又一个实施例中的移动机器人结构示意图,如图3所示,该机器人包括处理器31、里程计32和激光雷达33,处理器31用于执行如上实施例中任意一项所述的激光雷达与里程计联合标定方法。
本实施例提供的移动机器人,可用于执行上述方法实施例中激光雷达与里程计联合标定方法的步骤,其实现原理和技术效果类似,本实施例此处不再赘述。
实施例四
本申请第三方面通过实施例四提供了一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现如上实施例中任意一项所述的激光雷达与里程计联合标定方法的步骤。
图4为本申请再一实施例中的电子设备的架构示意图。
图4所示的电子设备可包括:至少一个处理器101、至少一个存储器102、至少一个网络接口104和其他的用户接口103。电子设备中的各个组件通过总线系统105耦合在一起。可理解,总线系统105用于实现这些组件之间的连接通信。总线系统105除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图4中将各种总线都标为总线系统105。
其中,用户接口103可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)或者触感板等。
可以理解,本实施例中的存储器102可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(RandomAccessMemory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(StaticRAM,SRAM)、动态随机存取存储器(DynamicRAM,DRAM)、同步动态随机存取存储器(SynchronousDRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(DoubleDataRateSDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(SynchlinkDRAM,SLDRAM)和直接内存总线随机存取存储器(DirectRambusRAM,DRRAM)。本文描述的存储器102旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器102存储了如下的元素,可执行单元或者数据结构,或者他们的子集,或者他们的扩展集:操作系统1021和应用程序1022。
其中,操作系统1021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序1022,包含各种应用程序,用于实现各种应用业务。实现本发明实施例方法的程序可以包含在应用程序1022中。
在本发明实施例中,处理器101通过调用存储器102存储的程序或指令,具体的,可以是应用程序1022中存储的程序或指令,处理器101用于执行第一方面所提供的方法步骤。
上述本发明实施例揭示的方法可以应用于处理器101中,或者由处理器101实现。处理器101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器101可以是通用处理器、数字信号处理器、专用集成电路、现成可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器102,处理器101读取存储器102中的信息,结合其硬件完成上述方法的步骤。
另外,结合上述实施例中的激光雷达与里程计联合标定方法,本发明实施例可提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上方法实施例中的任意一种激光雷达与里程计联合标定方法。
应当注意的是,在权利要求中,不应将位于括号之间的任何附图标记理解成对权利要求的限制。词语“包含”不排除存在未列在权利要求中的部件或步骤。位于部件之前的词语“一”或“一个”不排除存在多个这样的部件。本发明可以借助于包括有若干不同部件的硬件以及借助于适当编程的计算机来实现。词语第一、第二、第三等的使用,仅是为了表述方便,而不表示任何顺序。可将这些词语理解为部件名称的一部分。
此外,需要说明的是,在本说明书的描述中,术语“一个实施例”、“一些实施例”、“实施例”、“示例”、“具体示例”或“一些示例”等的描述,是指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已描述了本发明的优选实施例,但本领域的技术人员在得知了基本创造性概念后,则可对这些实施例作出另外的变更和修改。所以,权利要求应该解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种修改和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也应该包含这些修改和变型在内。

Claims (9)

1.一种激光雷达与里程计联合标定方法,其特征在于,所述激光雷达用于采集激光雷达数据以获取移动机器人的环境信息,所述里程计用于采集里程计数据以获取所述移动机器人的行程信息,该方法包括以下步骤:
获取所述移动机器人按照预设路线移动时所述里程计实时采集的里程计数据和所述激光雷达实时采集的激光雷达数据;
基于所述里程计数据确定所述移动机器人在预设时间间隔的姿态变化量,将确定的姿态变化量作为第一姿态变换量;
基于所述激光雷达数据确定激光坐标系在预设时间间隔的姿态变化量,将确定的姿态变化量作为第二姿态变换量;
根据所述第一姿态变换量、所述第二姿态变换量构建残差,通过最小二乘法求解得到所述里程计的内参数校准值和所述激光雷达的外参数校准值;
以所述内参数校准值和所述外参数校准值分别校准所述里程计的内参数和所述激光雷达的外参数。
2.根据权利要求1所述的激光雷达与里程计联合标定方法,其特征在于,所述基于所述里程计数据确定所述移动机器人在预设时间间隔的姿态变化量,将确定的姿态变化量作为第一姿态变换量的步骤包括;
S21、基于所述里程计数据和预先给定的里程计内参数,根据以下公式得到所述移动机器人的左轮角速度ωL和右轮角速度ωR;所述里程计数据包括移动机器人的前进速度检测值v0和旋转角速度检测值ω0,所述里程计内参数包括左右轮半径rL,rR和轮间距b;
Figure FDA0003492842260000011
Figure FDA0003492842260000012
S22、基于所述左轮角速度和右轮角速度、待优化的里程计内参数,根据以下公式计算所述移动机器人当前的前进速度v和旋转角速度ω;
Figure FDA0003492842260000021
S23、基于所述前进速度和所述旋转角速度,通过积分运算得到所述移动机器人的实时姿态;
S24、基于所述移动机器人的实时姿态,根据以下公式确定所述移动机器人在预设时间间隔t∈[tk,tk+1]的姿态变化量;
q=(qx,qy,qθ)∈SE (2)
Figure FDA0003492842260000022
其中,q为机器人相对于固定坐标系的姿态,qx为x坐标,qy为y坐标,qθ为角度,SE(2)表示二维空间的李群;qk和qk+1分别为两个时刻移动机器人的姿态,rk为第一姿态变化量,rL为左轮半径,rR为右轮半径,b为左右轮间距,
Figure FDA0003492842260000023
表示qk的逆,⊙表示SE(2)的运算。
3.根据权利要求1所述的激光雷达与里程计联合标定方法,其特征在于,通过基于激光雷达的定位算法或ICP点云匹配算法确定激光坐标系在预设时间间隔的姿态变化量
Figure FDA0003492842260000024
4.根据权利要求1所述的激光雷达与里程计联合标定方法,其特征在于,所述第一姿态变换量与所述第二姿态变换量的关系表示为:
Figure FDA0003492842260000025
sk=(qk⊙l)-1⊙(qk+1⊙l)=l-1⊙rk(rL,rR,b)⊙l
l=(lx,ly,lθ)∈SE (2)
其中,l为激光雷达外参数,lx为激光坐标系在机器人坐标系中的x坐标,ly为激光坐标系在机器人坐标系中的y坐标,lθ为激光坐标系相对于机器人坐标系的旋转角度,sk为基于第一姿态变换量得到的预设时间间隔的激光坐标系的相对变化量。
5.根据权利要求1所述的激光雷达与里程计联合标定方法,其特征在于,所述第二姿态变换量服从高斯分布。
6.根据权利要求5所述的激光雷达与里程计联合标定方法,其特征在于,构建的残差表达式为:
Figure FDA0003492842260000031
其中,
Figure FDA0003492842260000032
第二姿态变换量,σ为高斯分布的方差。
7.一种移动机器人,其特征在于,该机器人包括处理器、里程计和激光雷达,所述处理器用于执行如上权利要求1至6任一项所述的激光雷达与里程计联合标定方法。
8.一种电子设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上权利要求1至6任一项所述的激光雷达与里程计联合标定方法的步骤。
9.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上权利要求1至6任一项所述的激光雷达与里程计联合标定方法的步骤。
CN202210102237.5A 2022-01-27 2022-01-27 激光雷达与里程计的联合标定方法、机器人、设备和介质 Pending CN114440928A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210102237.5A CN114440928A (zh) 2022-01-27 2022-01-27 激光雷达与里程计的联合标定方法、机器人、设备和介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210102237.5A CN114440928A (zh) 2022-01-27 2022-01-27 激光雷达与里程计的联合标定方法、机器人、设备和介质

Publications (1)

Publication Number Publication Date
CN114440928A true CN114440928A (zh) 2022-05-06

Family

ID=81369531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210102237.5A Pending CN114440928A (zh) 2022-01-27 2022-01-27 激光雷达与里程计的联合标定方法、机器人、设备和介质

Country Status (1)

Country Link
CN (1) CN114440928A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935347A (zh) * 2022-07-25 2022-08-23 季华实验室 一种轮式机器人的里程计校正方法、电子设备及存储介质
CN115235527A (zh) * 2022-07-20 2022-10-25 上海木蚁机器人科技有限公司 传感器外参标定方法、装置以及电子设备
CN115435816A (zh) * 2022-11-07 2022-12-06 山东大学 在线双舵轮agv内外参标定方法、系统、介质及设备
CN115993089A (zh) * 2022-11-10 2023-04-21 山东大学 基于pl-icp的在线四舵轮agv内外参标定方法
CN118089705A (zh) * 2024-04-26 2024-05-28 深圳市普渡科技有限公司 地图更新方法、装置、计算机设备和存储介质
WO2024114330A1 (zh) * 2022-12-02 2024-06-06 速感科技(北京)有限公司 自主移动设备、操作自主移动设备的方法和存储介质

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103488078A (zh) * 2013-07-18 2014-01-01 清华大学 一种提高电力系统闭环辨识准确性的激励信号优化方法
CN104615901A (zh) * 2015-02-16 2015-05-13 中国农业科学院农业质量标准与检测技术研究所 确定多种化学物联合毒性效应系数的方法
CN105719033A (zh) * 2014-12-02 2016-06-29 阿里巴巴集团控股有限公司 用于识别客体风险的方法及装置
CN108068792A (zh) * 2016-11-17 2018-05-25 通用汽车环球科技运作有限责任公司 用于自主车辆的自动协同驾驶控制
CN108470214A (zh) * 2018-03-26 2018-08-31 东北大学 一种基于区间优化算法的有界误差参数估计方法
CN108827306A (zh) * 2018-05-31 2018-11-16 北京林业大学 一种基于多传感器融合的无人机slam导航方法及系统
CN109029433A (zh) * 2018-06-28 2018-12-18 东南大学 一种移动平台上基于视觉和惯导融合slam的标定外参和时序的方法
CN109102537A (zh) * 2018-06-25 2018-12-28 中德人工智能研究院有限公司 一种激光雷达和球幕相机结合的三维建模方法和系统
CN110456330A (zh) * 2019-08-27 2019-11-15 中国人民解放军国防科技大学 一种相机与激光雷达之间外参无目标自动标定方法及系统
CN110687508A (zh) * 2019-10-12 2020-01-14 内蒙古工业大学 微变雷达监测数据的校正方法
CN111207774A (zh) * 2020-01-17 2020-05-29 山东大学 一种用于激光-imu外参标定的方法及系统
CN111258318A (zh) * 2020-01-22 2020-06-09 东风商用车有限公司 一种环卫车自动驾驶系统及其控制方法
CN111521195A (zh) * 2020-04-10 2020-08-11 广州铁路职业技术学院(广州铁路机械学校) 一种智能机器人
CN111650598A (zh) * 2019-02-19 2020-09-11 北京京东尚科信息技术有限公司 一种车载激光扫描系统外参标定方法和装置
CN112097792A (zh) * 2020-08-28 2020-12-18 上海大学 一种阿克曼模型移动机器人里程计标定方法
CN112729344A (zh) * 2020-12-30 2021-04-30 珠海市岭南大数据研究院 无需参照物的传感器外参标定方法
CN112882053A (zh) * 2021-01-21 2021-06-01 清华大学深圳国际研究生院 一种主动标定激光雷达和编码器外参的方法
CN112945266A (zh) * 2019-12-10 2021-06-11 炬星科技(深圳)有限公司 激光导航机器人及其机器人的里程计校准方法
CN113066105A (zh) * 2021-04-02 2021-07-02 北京理工大学 激光雷达和惯性测量单元融合的定位与建图方法及系统
CN113324542A (zh) * 2021-06-07 2021-08-31 北京京东乾石科技有限公司 一种定位方法、装置、设备和存储介质

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103488078A (zh) * 2013-07-18 2014-01-01 清华大学 一种提高电力系统闭环辨识准确性的激励信号优化方法
CN105719033A (zh) * 2014-12-02 2016-06-29 阿里巴巴集团控股有限公司 用于识别客体风险的方法及装置
CN104615901A (zh) * 2015-02-16 2015-05-13 中国农业科学院农业质量标准与检测技术研究所 确定多种化学物联合毒性效应系数的方法
CN108068792A (zh) * 2016-11-17 2018-05-25 通用汽车环球科技运作有限责任公司 用于自主车辆的自动协同驾驶控制
CN108470214A (zh) * 2018-03-26 2018-08-31 东北大学 一种基于区间优化算法的有界误差参数估计方法
CN108827306A (zh) * 2018-05-31 2018-11-16 北京林业大学 一种基于多传感器融合的无人机slam导航方法及系统
CN109102537A (zh) * 2018-06-25 2018-12-28 中德人工智能研究院有限公司 一种激光雷达和球幕相机结合的三维建模方法和系统
CN109029433A (zh) * 2018-06-28 2018-12-18 东南大学 一种移动平台上基于视觉和惯导融合slam的标定外参和时序的方法
CN111650598A (zh) * 2019-02-19 2020-09-11 北京京东尚科信息技术有限公司 一种车载激光扫描系统外参标定方法和装置
CN110456330A (zh) * 2019-08-27 2019-11-15 中国人民解放军国防科技大学 一种相机与激光雷达之间外参无目标自动标定方法及系统
CN110687508A (zh) * 2019-10-12 2020-01-14 内蒙古工业大学 微变雷达监测数据的校正方法
CN112945266A (zh) * 2019-12-10 2021-06-11 炬星科技(深圳)有限公司 激光导航机器人及其机器人的里程计校准方法
CN111207774A (zh) * 2020-01-17 2020-05-29 山东大学 一种用于激光-imu外参标定的方法及系统
CN111258318A (zh) * 2020-01-22 2020-06-09 东风商用车有限公司 一种环卫车自动驾驶系统及其控制方法
CN111521195A (zh) * 2020-04-10 2020-08-11 广州铁路职业技术学院(广州铁路机械学校) 一种智能机器人
CN112097792A (zh) * 2020-08-28 2020-12-18 上海大学 一种阿克曼模型移动机器人里程计标定方法
CN112729344A (zh) * 2020-12-30 2021-04-30 珠海市岭南大数据研究院 无需参照物的传感器外参标定方法
CN112882053A (zh) * 2021-01-21 2021-06-01 清华大学深圳国际研究生院 一种主动标定激光雷达和编码器外参的方法
CN113066105A (zh) * 2021-04-02 2021-07-02 北京理工大学 激光雷达和惯性测量单元融合的定位与建图方法及系统
CN113324542A (zh) * 2021-06-07 2021-08-31 北京京东乾石科技有限公司 一种定位方法、装置、设备和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
何世政: "2D激光和深度相机融合的移动机器人SLAM算法研究", 《中国优秀硕士学位论文全文数据库信息科技辑》, no. 4, pages 136 - 444 *
何梦佳: "基于模糊图像检测的球形机器人多传感器融合室内定位研究", 《中国优秀硕士学位论文全文数据库信息科技辑》, no. 1, pages 138 - 1140 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115235527A (zh) * 2022-07-20 2022-10-25 上海木蚁机器人科技有限公司 传感器外参标定方法、装置以及电子设备
CN114935347A (zh) * 2022-07-25 2022-08-23 季华实验室 一种轮式机器人的里程计校正方法、电子设备及存储介质
CN115435816A (zh) * 2022-11-07 2022-12-06 山东大学 在线双舵轮agv内外参标定方法、系统、介质及设备
CN115993089A (zh) * 2022-11-10 2023-04-21 山东大学 基于pl-icp的在线四舵轮agv内外参标定方法
CN115993089B (zh) * 2022-11-10 2023-08-15 山东大学 基于pl-icp的在线四舵轮agv内外参标定方法
WO2024114330A1 (zh) * 2022-12-02 2024-06-06 速感科技(北京)有限公司 自主移动设备、操作自主移动设备的方法和存储介质
CN118089705A (zh) * 2024-04-26 2024-05-28 深圳市普渡科技有限公司 地图更新方法、装置、计算机设备和存储介质

Similar Documents

Publication Publication Date Title
CN114440928A (zh) 激光雷达与里程计的联合标定方法、机器人、设备和介质
CN108955688B (zh) 双轮差速移动机器人定位方法及系统
Lee et al. Kinematic parameter calibration of a car-like mobile robot to improve odometry accuracy
Jo et al. GPS-bias correction for precise localization of autonomous vehicles
CN107167148A (zh) 同步定位与地图构建方法和设备
CN112882053B (zh) 一种主动标定激光雷达和编码器外参的方法
CN108362288B (zh) 一种基于无迹卡尔曼滤波的偏振光slam方法
CN111360820B (zh) 一种距离空间和图像特征空间融合的混合视觉伺服方法
CN108387236B (zh) 一种基于扩展卡尔曼滤波的偏振光slam方法
CN110579754A (zh) 用于确定车辆的激光雷达与车辆其他的传感器的外参数的方法
CN113835422B (zh) 一种视觉地图构建方法和移动机器人
CN113984044A (zh) 一种基于车载多感知融合的车辆位姿获取方法及装置
Ghosh et al. Multi sensor data fusion for 6D pose estimation and 3D underground mine mapping using autonomous mobile robot
CN111856499B (zh) 基于激光雷达的地图构建方法和装置
CN107782311A (zh) 可移动终端的移动路径规划方法及装置
CN115290071A (zh) 相对定位融合方法、装置、设备及存储介质
Chen et al. 3D LiDAR-GPS/IMU calibration based on hand-eye calibration model for unmanned vehicle
CN111998870B (zh) 一种相机惯导系统的标定方法和装置
Dong et al. Two-axis scanning lidar geometric calibration using intensity imagery and distortion mapping
Font-Llagunes et al. Consistent triangulation for mobile robot localization using discontinuous angular measurements
CN113310505A (zh) 传感器系统的外参标定方法、装置及电子设备
US11992961B2 (en) Pose determination method, robot using the same, and computer readable storage medium
CN115616642A (zh) 一种位置数据的纠正处理方法、装置、设备及存储介质
Sun A comparative study on the monte carlo localization and the odometry localization
Lee et al. Development of advanced grid map building model based on sonar geometric reliability for indoor mobile robot localization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination