CN114437316A - 一种三元聚合物给体材料及其制备与应用 - Google Patents

一种三元聚合物给体材料及其制备与应用 Download PDF

Info

Publication number
CN114437316A
CN114437316A CN202111669331.0A CN202111669331A CN114437316A CN 114437316 A CN114437316 A CN 114437316A CN 202111669331 A CN202111669331 A CN 202111669331A CN 114437316 A CN114437316 A CN 114437316A
Authority
CN
China
Prior art keywords
donor material
terpolymer
catalyst
reaction
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111669331.0A
Other languages
English (en)
Inventor
于伟洋
廖志辉
陆仕荣
陈海燕
肖泽云
阚志鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing Institute of Green and Intelligent Technology of CAS
Priority to CN202111669331.0A priority Critical patent/CN114437316A/zh
Publication of CN114437316A publication Critical patent/CN114437316A/zh
Priority to US18/145,886 priority patent/US20230303764A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1458Heterocyclic containing sulfur as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种三元聚合物给体材料及其制备与应用。所述三元聚合物给体材料由氯化噻吩(BDT‑2Cl),氟化噻吩(BDT‑2F)与溴化噻吩(BDT‑2Br)通过Still交叉偶联反应制得。本发明合成的三元共聚物是一种基于氟氯协同作用的三元聚合物给体材料,通过调控氯化噻吩(BDT‑2Cl)的能有效调控分子能级,表现出梯度性的电压变化,通过氟氯协同作用实现驱动力和能量损失之间的平衡。同时,本发明的三元聚合物给体材料还具有优异的半导体性能、良好的自组装性以及可溶液加工性,在有机太阳能电池等光伏器件领域具有极大的应用价值。

Description

一种三元聚合物给体材料及其制备与应用
技术领域
本发明涉及有机高分子光伏器件或有机半导体薄膜太阳能电池技术领域,具体涉及高分子给体材料技术领域,特别是涉及一种三元聚合物给体材料及其制备与应用。
背景技术
聚合物太阳能电池(PSCs)作为最有前途的清洁能源候选技术之一,因其重量轻、柔性强、溶液可加工、生产成本低等突出优点,近年来备受关注。由于有机光伏材料和器件工程的发展,许多性能优良的高功率转换效率(PCE)聚合物太阳能电池已经问世。在过去的几年中,非富勒烯受体材料表现出很强的捕光能力和较高的光电转换效率,一次又一次带来PCE突破。此外,聚合物给体材料作为活性层家族的重要组成部分,在高性能光伏器件中也起着至关重要的作用。
对于高效的PSCs,聚合物给体材料通常具有以下内在特征:(A)与受体具有互补的光吸收,以实现对光谱的利用最大化;(B)在最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)之间有合适的分子能级与受体的分子能级相匹配,以提供足够的激子解离驱动力和最小的能量损失;(C)与受体具有良好的相容性,以提供更好的界面接触并形成良好的相形貌,确保能为电荷分离提供一条有效的途径。但目前往往面临驱动力过大亦或者能量损失过大的情况,很难实现两者之间的平衡。
基于这些要求,在过去的十年中,在高性能高分子材料的设计和合成过程中常通过引入氟化和氯化策略来调节聚合物给体材料的分子能级、扩展吸收和优化相态。与氟(F)原子不同,氯(Cl)原子有空的3D轨道,可以接受电子对或π-电子来帮助离域电子,因此氯化可以有效地降低能级,甚至比氟化更有效。然而,氯原子具有较大的原子半径,会导致较大的空间位阻,这也可能会破坏共轭聚合物的平面性,从而影响聚合物给体材料的形貌和光伏性能,特别是填充因子(FF)和短路电流密度(JSC)。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种三元聚合物给体材料及其制备与应用,通过氟化和氯化策略进行合理的结构设计,在提升共轭聚合物的开路电压的同时使所述三元聚合物给体材料保持高填充因子和短路电流密度。
为实现上述目的及其他相关目的,本发明第一方面提供一种三元聚合物给体材料,其化学结构式如下所示:
Figure BDA0003452502770000021
其中,x组分占所述给体材料的摩尔比重为90~20%,y组分的占所述给体材料的摩尔比重为10~80%。
进一步,所述聚合物给体材料中x组分、y组分所占摩尔比重分别为90%、10%,或80%、20%,或50%、50%,或20%、80%。上述四种聚合物给体材料分别命名为PM6.1、PM6.2、PM6.5、PM6.8。
本发明第二方面提供根据第一方面所述的三元聚合物给体材料的制备方法,由式(I)所示化合物,式(II)所示化合物与式(III)所示化合物通过Still交叉偶联反应制得,
Figure BDA0003452502770000022
进一步,所述三元聚合物给体材料的制备方法包括如下步骤:
将式(I)所示化合物,式(II)所示化合物与式(III)所示化合物溶于有机溶剂中,加入催化剂,在惰性气体保护条件下加热搅拌反应,反应结束后将反应液分离纯化得所述三元聚合物给体材料。
进一步,化合物(I)、(II)、(III)的摩尔用量比(0.9~0.2):(0.1~0.8):1,优选为0.9:0.1:1、0.8:0.2:1、0.5:0.5:1、0.2:0.8:1。
进一步,所述有机溶剂为无水无氧甲苯、N,N-二甲基甲酰胺、四氢呋喃、无水无氧氯苯中的至少一种,优选为无水无氧甲苯。
进一步,所述催化剂选自钯催化剂,或者所述催化剂选自钯催化剂和磷催化剂的组合,所述钯催化剂选自三(二亚苄基丙酮)二钯、四三苯基膦钯、双(二亚芐基丙酮)钯、双(三苯基膦)二氯化钯中的至少一种,所述磷催化剂选自三(邻甲基苯基)磷。
进一步,所述催化剂的用量为化合物(I)、(II)、(III)总摩尔含量的2%~20%,优选为6~18%。
进一步,当所述催化剂选自钯催化剂时,其用量为化合物(I)、(II)、(III)总摩尔含量的8%~10%。
进一步,当所述催化剂选自钯催化剂和磷催化剂的组合时,钯催化剂的用量为化合物(I)、(II)、(III)总摩尔含量的4%~12%,磷催化剂的用量为化合物(I)、(II)、(III)总摩尔含量的2%~6%。
进一步,加热搅拌反应温度为100~120℃,优选为110℃。
进一步,加热搅拌反应时间≥0.2小时,优选为0.2~5小时。
进一步,当所述催化剂选自钯催化剂时,反应时间为1~5小时;当所述催化剂选自钯催化剂和磷催化剂的组合时,反应时间为0.2~1小时。
进一步,所述三元聚合物给体材料的数均分子量(Mn)为10~50kDa。
不同的反应时间以及不同的催化剂能够获得不同分子量的产物,当所述催化剂选自钯催化剂时,经反应0.5小时,三元聚合物给体材料的数均分子量(Mn)为10kDa;经反应1小时,三元聚合物给体材料的数均分子量(Mn)为15.0kDa;经反应2小时,三元聚合物给体材料的数均分子量(Mn)为30.0kDa;经反应5小时,三元聚合物给体材料的数均分子量(Mn)为50.0kDa。
当所述催化剂选自钯催化剂和磷催化剂的组合时,经反应0.2小时,三元聚合物给体材料的数均分子量(Mn)为5kDa;经反应0.5小时,三元聚合物给体材料的数均分子量(Mn)为15kDa;经反应0.7小时,三元聚合物给体材料的数均分子量(Mn)为30kDa;经反应1小时,三元聚合物给体材料的数均分子量(Mn)为50kDa。
进一步,所述惰性气体选自氮气、氩气中的任意一种。
进一步,反应液分离纯化方法为:反应结束后,停止加热,待反应体系冷却至室温将反应液倒入甲醇,析出固体沉淀,过滤收集沉淀,固体沉淀用索氏提取器依次使用甲醇,丙酮,正己烷抽提,去除小分子量产物,最后用三氯甲烷抽提至索氏提取器内溶液无色,旋蒸除去抽提的三氯甲烷溶剂,得到粗产物,粗产物用硅胶柱层析分离,得到分子量分布均匀的三元聚合物给体材料。
进一步,所述反应液分离纯化方法中,甲醇的用量为反应液体积20倍以上。
进一步,所述反应液分离纯化方法中,固体沉淀用索氏提取器依次使用甲醇,丙酮,正己烷各抽提10~15小时,优选为12小时。
进一步,所述反应液分离纯化方法中,粗产物用100-200目硅胶柱层析,以纯三氯甲烷为淋洗剂。
本发明第三方面提供根据第一方面所述的三元聚合物给体材料、根据第二方面所述的方法制得的三元聚合物给体材料在制备有机高分子光伏器件或有机太阳能电池中的应用。
本发明第四方面提供一种有机太阳能电池器件,包括根据第一方面所述的三元聚合物给体材料或根据第二方面所述的方法制得的三元聚合物给体材料。
进一步,所述有机太阳能电池器件还包括受体材料,所述受体材料选自Y6、N3、BTP-eC9中的任意一种。
进一步,所述有机太阳能电池器件还包括正极材料,所述正极材料选自ITO(氧化铟锡)。
进一步,所述有机太阳能电池器件还包括阳极修饰层(即空穴传输层),所述阳极修饰层材料选自PEDOT:PSS,PEDOT是EDOT(3,4-乙烯二氧噻吩单体)的聚合物即聚(3,4-乙烯二氧噻吩),PSS是聚苯乙烯磺酸盐。
进一步,所述有机太阳能电池器件件还包括阴极修饰层(即电子传输层),所述阴极修饰层材料选自Phen-NaDPO。
进一步,所述有机太阳能电池器件还包括阴极,所述阴极材料选自Ag。
进一步,所述有机太阳能电池器件采用正置器件结构。
如上所述,本发明的三元聚合物给体材料及其制备与应用,具有以下有益效果:
本发明首次通过引入不同含量的氯化噻吩(BDT-2Cl)和氟化噻吩(BDT-2F),采用无规共聚的策略设计合成了一种有梯度的三元共聚物。本发明合成的三元共聚物是一种基于氟氯协同作用的三元聚合物给体材料,通过调控氯化噻吩(BDT-2Cl)的能有效调控分子能级,表现出梯度性的电压变化,通过氟氯协同作用实现驱动力和能量损失之间的平衡。同时,本发明的三元聚合物给体材料还具有优异的半导体性能、良好的自组装性以及可溶液加工性,由其制备的有机太阳能电池光电转换效率显著提升,在有机太阳能电池等光伏器件领域具有极大的应用潜力与价值。
附图说明
图1显示为本发明三元聚合物给体材料的合成路线示意图。
图2显示为本发明中采用的材料Y6、Y6,PEDOT,PSS,Phen-NaDPO的分子结构图。
图3显示为本发明制备的有机太阳能电池器件的结构示意图。
图4显示为本发明实施例2(PM6.1:Y6)、实施例3(PM6.2:Y6)、实施例4(PM6.5:Y6)和实施例5(PM6.8:Y6)中器件在标准测试条件下(AM1.5,100mW/cm2)的电流密度-电压特性(J-V)曲线图。
图5显示为本发明实施例2(PM6.1:Y6)、实施例3(PM6.2:Y6)、实施例4(PM6.5:Y6)和实施例5(PM6.8:Y6)中器件在标准测试条件下(AM1.5,100mW/cm2)的外量子效率(EQE)曲线图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
本发明提供了一种基于氟氯协同作用的三元聚合物给体材料,其化学结构式如下所示:
Figure BDA0003452502770000051
其中,x组分占所述给体材料的摩尔比重为90~20%,y组分的占所述给体材料的摩尔比重为10~80%。
进一步,所述聚合物给体材料中x组分、y组分所占摩尔比重分别为90%、10%,或80%、20%,或50%、50%,或20%、80%。上述四种聚合物给体材料分别命名为PM6.1、PM6.2、PM6.5、PM6.8。
本发明提供的三元聚合物给体材料由式(I)所示化合物,式(II)所示化合物与式(III)所示化合物通过Still交叉偶联反应制得,
Figure BDA0003452502770000061
具体的,本发明的三元聚合物给体材料的制备方法包括如下步骤:
(1)将式(I)所示化合物,式(II)所示化合物与式(III)所示化合物溶于有机溶剂中,加入催化剂,在惰性气体保护条件下加热搅拌反应;
(2)反应液分离纯化:反应结束后,停止加热,待反应体系冷却至室温将反应液倒入甲醇(使用反应液体积20倍以上的甲醇),析出固体沉淀,过滤收集沉淀,固体沉淀用索氏提取器依次使用甲醇,丙酮,正己烷各抽提10~15小时,去除小分子量产物,最后用三氯甲烷抽提至索氏提取器内溶液无色,旋蒸除去抽提的三氯甲烷溶剂,得到粗产物,该粗产物用少量100-200目硅胶柱层析,淋洗剂为纯三氯甲烷,过柱分离,收集流出组分,得到分子量分布均匀的三元聚合物给体材料。
其中,化合物(I)、(II)、(III)的摩尔用量比(0.9~0.2):(0.1~0.8):1。通过控制引入化合物(II)的摩尔比调控其含量,获得一系列聚合物材料PM6.1,PM6.2,PM6.5,PM6.8。其中,制备PM6.1时,化合物(I)、(II)、(III)的摩尔用量比为0.9:0.1:1;制备PM6.2是,化合物(I)、(II)、(III)的摩尔用量比为0.8:0.2:1;制备PM6.5时,化合物(I)、(II)、(III)的摩尔用量比为0.5:0.5:1;制备PM6.8时,化合物(I)、(II)、(III)的摩尔用量比为0.2:0.8:1。
其中,所述有机溶剂为无水无氧甲苯、N,N-二甲基甲酰胺、四氢呋喃、无水无氧氯苯中的至少一种,优选为无水无氧甲苯。
其中,所述催化剂选自钯催化剂,或者所述催化剂选自钯催化剂和磷催化剂的组合,所述钯催化剂选自三(二亚苄基丙酮)二钯、四三苯基膦钯、双(二亚芐基丙酮)钯、双(三苯基膦)二氯化钯中的至少一种,所述磷催化剂选自三(邻甲基苯基)磷。
其中,所述催化剂的用量为化合物(I)、(II)、(III)总摩尔含量的2%~20%,优选为6~18%。更优选地,当所述催化剂选自钯催化剂时,其用量为化合物(I)、(II)、(III)总摩尔含量的8%~10%;当所述催化剂选自钯催化剂和磷催化剂的组合时,钯催化剂的用量为化合物(I)、(II)、(III)总摩尔含量的4%~12%,磷催化剂的用量为化合物(I)、(II)、(III)总摩尔含量的2%~6%。
其中,加热搅拌反应温度为100~120℃,优选为110℃。
其中,加热搅拌反应时间≥0.2小时,优选为0.2~5小时。更优选地,当所述催化剂选自钯催化剂时,反应时间为1~3小时;当所述催化剂选自钯催化剂和磷催化剂的组合时,反应时间为0.5~1小时。
不同的反应时间以及不同的催化剂能够获得不同分子量的产物,当所述催化剂选自钯催化剂时,经反应0.5小时,三元聚合物给体材料的数均分子量(Mn)为10kDa;经反应1小时,三元聚合物给体材料的数均分子量(Mn)为15.0kDa;经反应2小时,三元聚合物给体材料的数均分子量(Mn)为30.0kDa;经反应5小时,三元聚合物给体材料的数均分子量(Mn)为50.0kDa。
当所述催化剂选自钯催化剂和磷催化剂的组合时,经反应0.2小时,三元聚合物给体材料的数均分子量(Mn)为5kDa;经反应0.5小时,三元聚合物给体材料的数均分子量(Mn)为15kDa;经反应0.7小时,三元聚合物给体材料的数均分子量(Mn)为30kDa;经反应1小时,三元聚合物给体材料的数均分子量(Mn)为50kDa。
其中,所述惰性气体选自氮气、氩气中的任意一种。
本发明还提供了将如上所述的三元聚合物给体材料作为活性层给体材料来制备有机太阳能电池器件,具体的,本发明的有机太阳能电池器件优选采用正置器件结构:ITO/PEDOT:PSS/donor:PYSe-2FT/Phen-NaDPO/Ag,其结构如图3所示,其中正极材料选取Indiumtin oxide(ITO)(氧化铟锡),为阳极透明导电玻璃;阳极修饰层(即空穴传输层)选取poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS);活性层给体材料(Donor)选取PM6.1、PM6.2、PM6.5、PM6.8中的任意一种;活性层受体材料为Y6;阴极修饰层(即电子传输层)phenyl(2-naphthyl)diphenylphosphine oxide(Phen-NaDPO,DPO);负极材料(阴极材料)选取Ag。
Y6,PEDOT,PSS,Phen-NaDPO的化学结构式如图2所示。本发明提供的有机太阳能电池器件的制备方法如下:
a)清洗ITO玻璃:使用去离子水、丙酮、异丙醇循环超声清洗ITO玻璃各30分钟,然后在臭氧清洗机中处理30分钟;
b)在ITO玻璃上旋涂空穴传输层PEDOT:PSS,厚度为10~30nm,以下实施例中的的空穴传输层厚度为30nm,随后在空气中进行热退火处理。
c)在充满氮气的手套箱中,在空穴传输层PEDOT:PSS上采用溶液法旋涂活性层混合液donor:Y6,donor与Y6的质量比为1:1.2。具体方式为:将donor:Y6溶于氯苯或者氯仿,浓度为17mg/mL;活性层旋涂厚度为80~300nm,以下实施例中的活性层为150nm。
d)在活性层之上,旋涂Phen-NaDPO异丙醇溶液,制得电子传输层,厚度为10~50nm,以下实施例中的电子传输层厚度为30nm。
e)在Phen-NaDPO电子传输层上蒸镀金属银电极,厚度为90~100nm,以下实施例中的阴极厚度为100nm。
本发明中采用的原料化合物、有机溶剂、催化剂、电极材料、修饰层材料等均可从市场上直接购买得到。
本发明中未详述的方法均为本领域的常规方法。
下面具体的例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行具体的说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
三元聚合物给体材料的制备
根据图1所示的合成路线制备三元聚合物给体材料,过程如下:
(1)Still交叉偶联反应:将式(I)所示化合物,式(II)所示化合物与式(III)所示化合物溶于有机溶剂中,可加入不同的催化剂体系,在氮气保护条件下110℃加热搅拌回流。其中,有机溶剂为无水无氧甲苯;当催化剂体系选用四三苯基磷钯时,其用量为化合物(I)、(II)、(III)总摩尔含量的10%,反应时间为1~3小时;当催化剂体系选用混合催化剂三(邻甲基苯基)磷(摩尔比重为8%)和三(二亚苄基丙酮)二钯(摩尔比重为4%)时,其用量分别为化合物(I)、(II)、(III)总摩尔含量的8%、4%,反应时间0.5~1小时。
(2)反应液分离纯化:反应结束后,停止加热,待反应体系冷却至室温将反应液倒入甲醇(使用反应液体积20倍以上的甲醇),析出固体沉淀,过滤收集沉淀,固体沉淀用索氏提取器依次使用甲醇,丙酮,正己烷抽提12小时,去除小分子量产物,最后用三氯甲烷抽提至索氏提取器内溶液无色,旋蒸除去抽提的三氯甲烷溶剂,得到粗产物,该粗产物用少量100-200目硅胶柱层析,淋洗剂为纯三氯甲烷,过柱分离,收集流出组分,分别得到所述分子量分布均匀的聚合物给体PM6.1,PM6.2,PM6.5,PM6.8。
如表1所示,通过控制引入化合物I和II的摩尔比调控其含量,获得一系列聚合物材料的数均分子量(Mn)约分别PM6.1:(Mn=28.32kDa),PM6.2:(Mn=31.28kDa),PM6.5:(Mn=30.17kDa),PM6.8:(Mn=35.80kDa),其中Mn为高温凝胶色谱(GPC)的测试结果。
表1
给体材料名称 x组分所占比重 y组分所占比重
PM6 100% 0%
PM6.1 90% 10%
PM6.2 80% 20%
PM6.5 50% 50%
PM6.8 20% 80%
PM7 0% 100%
其中聚合物PM6、PM7是从市面直接购买的,其表征数据如下:
PM6:(Mn=29.38kDa)
1H NMR(400MHz,CDCl3),6.95~7.1(d,1H,=CH-),3.5~3.65(m,12H,CH2),2.84~2.99(m,10H,CH2),1.57~1.98(m,12H,CH3),0.66~1.54(m,32H,CH2 and CH3);
元素分析(%)理论值:C=67.27%,H=6.61%,S=20.52%。测试值:C=67.47%,H=6.33%,S=20.92%。
PM7:(Mn=40.23kDa)
1H NMR(400MHz,CDCl3),δ7.45~7.65(s,4H,=CH-),3.5~3.65(m,10H,CH2),2.84~2.99(m,14H,CH2),1.57~1.98(m,16H,CH3),0.66~1.54(m,36H,CH2 and CH3);
元素分析(%)理论值:C=65.54%,H=6.44%,S=19.99%。测试值:C=65.12%,H=6.40%,S=20.16%。
三元聚合物PM6.1,PM6.2,PM6.5,PM6.8的表征数据如下:
PM6.1:(Mn=28.32kDa)
1H NMR(400MHz,CDCl3)δ7.45~7.65(s,1H,=CH-),6.95~7.1(d,9H,=CH-),3.5~3.65(m,15H,CH2),2.84~2.99(m,34H,CH2),1.57~1.98(m,10H,CH3),0.66~1.54(m,40H,CH2 and CH3);
元素分析(%)理论值:C=66.81%,H=6.38%,S=20.86%。测试值:C=66.37%,H=6.25%,S=20.77%。
PM6.2:(Mn=31.28kDa)
1H NMR(400MHz,CDCl3)δ7.45~7.65(s,1H,=CH-),6.95~7.1(d,4H,=CH-),3.5~3.65(m,8H,CH2),2.84~2.99(m,18H,CH2),1.57~1.98(m,5H,CH3),0.66~1.54(m,52H,CH2 and CH3);
元素分析(%)理论值:C=66.62%,H=6.38%,S=20.80%。测试值:C=66.20%,H=6.33%,S=20.92%。
PM6.5:(Mn=30.17kDa)
1H NMR(400MHz,CDCl3)δ7.45~7.65(s,1H,=CH-),6.95~7.1(d,1H,=CH-),3.5~3.65(m,16H,CH2),2.84~2.99(m,33.5H,CH2),1.57~1.98(m,12H,CH3),0.66~1.54(m,38H,CH2 and CH3);
元素分析(%)理论值:C=66.23%,H=6.63%,S=20.50%。测试值:C=66.16%,H=6.83%,S=20.32%。
PM6.8:(Mn=35.80kDa)
1H NMR(400MHz,CDCl3)δ7.45~7.65(s,4H,=CH-),6.95~7.1(d,1H,=CH-),3.5~3.65(m,8H,CH2),2.84~2.99(m,18H,CH2),1.57~1.98(m,6H,CH3),0.66~1.54(m,54H,CH2 and CH3);
元素分析(%)理论值:C=65.57%,H=6.27%,S=20.47%。测试值:C=65.37%,H=6.40%,S=20.81%。
实施例2
PM6.1:Y6有机太阳能电池器件制备
透明衬底层及透明导电电极ITO所组成的基板分别用清洗液、去离子水、丙酮和异丙醇进行超声清洗,清洗后用氮气吹干;将基板放入臭氧清洗机中处理30min后,在空气中旋涂空穴传输层材料PEDOT:PSS(4000rpm,20s),随后在空气中进行热退火处理(150℃,10min),随后将样品传入充满氮气的手套箱中,在PEDOT:PSS空穴传输层上采用旋涂的方法制备活性层(PM6.1:Y6=1:1.2,17mg mL-1,氯仿作为溶剂,转速为3200rpm,0.5%vol的氯萘添加剂(CN)),旋涂完活性层后100℃热退火10分钟;随后在活性层上上旋涂电子传输层DPO(2000rpm,20s),然后在电子传输层上蒸镀Ag电极(100nm),制得PM6.1:Y6有机太阳能电池器件。
实施例3
PM6.2:Y6有机太阳能电池器件制备
透明衬底层及透明导电电极ITO所组成的基板分别用清洗液、去离子水、丙酮和异丙醇进行超声清洗,清洗后用氮气吹干;将基板放入臭氧清洗机中处理30min后,在空气中旋涂空穴传输层材料PEDOT:PSS(4000rpm,20s),随后在空气中进行热退火处理(150℃,10min),随后将样品传入充满氮气的手套箱中,在PEDOT:PSS空穴传输层上采用旋涂的方法制备活性层(PM6.2:Y6=1:1.2,17mg mL-1,氯仿作为溶剂,转速为3200rpm,0.5%vol的氯萘添加剂(CN)),旋涂完活性层后100℃热退火10分钟,然后在电子传输层上蒸镀Ag电极(100nm),制得PM6.2:Y6有机太阳能电池器件。
实施例4
PM6.5:Y6有机太阳能电池器件制备
透明衬底层及透明导电电极ITO所组成的基板分别用清洗液、去离子水、丙酮和异丙醇进行超声清洗,清洗后用氮气吹干;将基板放入臭氧清洗机中处理30min后,在空气中旋涂空穴传输层材料PEDOT:PSS(4000rpm,20s),随后在空气中进行热退火处理(150℃,10min),随后将样品传入充满氮气的手套箱中,在PEDOT:PSS空穴传输层上采用旋涂的方法制备活性层(PM6.5:Y6=1:1.2,17mg mL-1,氯仿作为溶剂,转速为3200rpm,0.5%vol的氯萘添加剂(CN)),旋涂完活性层后100℃热退火10分钟;随后在活性层上上旋涂电子传输层DPO(2000rpm,20s),然后在电子传输层上蒸镀Ag电极(100nm),制得PM6.5:Y6有机太阳能电池器件。
实施例5
PM6.8:Y6有机太阳能电池器件制备
透明衬底层及透明导电电极ITO所组成的基板分别用清洗液、去离子水、丙酮和异丙醇进行超声清洗,清洗后用氮气吹干;将基板放入臭氧清洗机中处理30min后,在空气中旋涂空穴传输层材料PEDOT:PSS(4000rpm,20s),随后在空气中进行热退火处理(150℃,10min),随后将样品传入充满氮气的手套箱中,在PEDOT:PSS空穴传输层上采用旋涂的方法制备活性层(PM6.1:Y6=1:1.2,17mg mL-1,氯仿作为溶剂,转速为3200rpm,0.5%vol的氯萘添加剂(CN)),旋涂完活性层后100℃热退火10分钟;随后在活性层上上旋涂电子传输层DPO(2000rpm,20s),然后在电子传输层上蒸镀Ag电极(100nm),制得PM6.8:Y6有机太阳能电池器件。
实施例6
PM6:Y6有机太阳能电池器件制备
透明衬底层及透明导电电极ITO所组成的基板分别用清洗液、去离子水、丙酮和异丙醇进行超声清洗,清洗后用氮气吹干;将基板放入臭氧清洗机中处理30min后,在空气中旋涂空穴传输层材料PEDOT:PSS(4000rpm,20s),随后在空气中进行热退火处理(150℃,10min),随后将样品传入充满氮气的手套箱中,在PEDOT:PSS空穴传输层上采用旋涂的方法制备活性层(PM6:Y6=1:1.2,17mg mL-1,氯仿作为溶剂,转速为3200rpm,0.5%vol的氯萘添加剂(CN)),旋涂完活性层后100℃热退火10分钟;随后在活性层上上旋涂电子传输层DPO(2000rpm,20s),然后在电子传输层上蒸镀Ag电极(100nm),制得PM6:Y6有机太阳能电池器件。
实施例7
PM7:Y6有机太阳能电池器件制备
透明衬底层及透明导电电极ITO所组成的基板分别用清洗液、去离子水、丙酮和异丙醇进行超声清洗,清洗后用氮气吹干;将基板放入臭氧清洗机中处理30min后,在空气中旋涂空穴传输层材料PEDOT:PSS(4000rpm,20s),随后在空气中进行热退火处理(150℃,10min),随后将样品传入充满氮气的手套箱中,在PEDOT:PSS空穴传输层上采用旋涂的方法制备活性层(PM7:Y6=1:1.2,17mg mL-1,氯仿作为溶剂,转速为3200rpm,0.5%vol的氯萘添加剂(CN)),旋涂完活性层后100℃热退火10分钟;随后在活性层上上旋涂电子传输层DPO(2000rpm,20s),然后在电子传输层上蒸镀Ag电极(100nm),制得PM7:Y6有机太阳能电池器件。
实施例2~7中,活性层的有效厚度通过台阶仪测试,器件的有效面积为0.08636cm2
在标准太阳光(AM 1.5G,光强为100mW cm-2)的辐照条件下,使用计算机控制的Keithley2400数字源表对实施例2~5中的器件性能进行测试,器件的电流密度-电压(J-V)曲线如图4所示,使用外量子效率测试新(北京卓立汉光仪器有限公司,Solar Cell Scan100)测试器件EQE曲线如图5所示。光伏性能各项参数列于表2。
表2.实施例2~7中的有机太阳能电池器件的光伏性能参数
活性层 V<sub>OC</sub>[mV] J<sub>SC</sub>[mA cm<sup>-2</sup>] FF[%] PCE<sub>Max</sub>[%] PCE<sub>Ave</sub>[%] EQE[mA cm<sup>-2</sup>]
PM6.1:Y6 0.843 25.29 71.5 15.27 15.17±0.1 24.62
PM6.2:Y6 0.851 25.78 73.5 16.13 16.03±0.1 25.20
PM6.5:Y6 0.855 24.37 68.6 14.29 14.09±0.2 23.76
PM6.8:Y6 0.865 23.25 58.22 11.71 11.41±0.3 23.27
PM6:Y6 0.842 25.41 72.9 15.56 15.35±0.2 24.92
PM7:Y6 0.885 24.26 54.6 13.36 13.16±0.2 23.91
图5中为实施例2~5的太阳能电池器件的外量子效率(EQE)曲线,在300nm至1000nm有较宽的光电流响应。从图5中可以看出,基于PM6.2:Y6的器件外量子效率略高于基于PM6.1:Y6、PM6.5:Y6和PM6.8:Y6的器件,说明基于PM6.2:Y6的器件收集到的电子数与入射光子数之比高于基于PM6.1:Y6、PM6.5:Y6和PM6.8:Y6的器件。通过对EQE曲线进行积分算得基于PM6.1:Y6、PM6.2:Y6、PM6.5:Y6和PM6.8:Y6的器件后处理器件的JSC值分别为24.62mA·cm-2,25.20mA·cm-2和23.76mA·cm-2,23.27mA·cm-2,与J-V曲线得到的值相比,它们的误差均在5%以内。以上结果表明,通过调控氯化噻吩(BDT-Cl)的含量能有效调控分子能级,最终表现出梯度性的电压变化。在分子量相近的情况下,PM6.2:Y6表现出最优的器件性能16.13%,找到了氟氯协同作用最佳的平衡点,即引入20%的BDT-2Cl与80%的氟化噻吩(2BDT-2F)共同组建的器件电池,实现了驱动力和能量损失之间的平衡。
同时,PM6.2:Y6器件相较于基于商业化材料PM6:Y6和PM7:Y6制得器件光电转换效率均有提升,这显示出了利用氟氯协同作用制备出的聚合物给体材料能够切实提高器件性能,具有很大的商业化应用潜力。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种三元聚合物给体材料,其特征在于,其化学结构式如下所示:
Figure FDA0003452502760000011
其中,x组分占所述给体材料的摩尔比重为90~20%,y组分的占所述给体材料的摩尔比重为10~80%。
2.根据权利要求1所述的三元聚合物给体材料,其特征在于:所述聚合物给体材料中x组分、y组分所占摩尔比重分别为90%、10%,或80%、20%,或50%、50%,或20%、80%。
3.根据权利要求1~2任一项所述的三元聚合物给体材料的制备方法,其特征在于:由式(I)所示化合物,式(II)所示化合物与式(III)所示化合物通过Still交叉偶联反应制得,
Figure FDA0003452502760000012
4.根据权利要求3所述的制备方法,其特征在于,包括如下步骤:将式(I)所示化合物,式(II)所示化合物与式(III)所示化合物溶于有机溶剂中,加入催化剂,在惰性气体保护条件下加热搅拌反应,反应结束后将反应液分离纯化得所述三元聚合物给体材料。
5.根据权利要求4所述的制备方法,其特征在于:化合物(I)、(II)、(III)的摩尔用量比(0.9~0.2):(0.1~0.8):1;
和/或,所述有机溶剂为无水无氧甲苯、N,N-二甲基甲酰胺、四氢呋喃、无水无氧氯苯中的至少一种;
和/或,所述催化剂选自钯催化剂,或者所述催化剂选自钯催化剂和磷催化剂的组合;
和/或,所述催化剂的用量为化合物(I)、(II)、(III)总摩尔含量的2%~20%。
6.根据权利要求4所述的制备方法,其特征在于:加热搅拌反应温度为100~120℃,加热搅拌反应时间≥0.2小时。
7.根据权利要求5所述的制备方法,其特征在于:当所述催化剂选自钯催化剂时,反应时间为1~3小时;当所述催化剂选自钯催化剂和磷催化剂的组合时,反应时间为0.2~1小时。
8.根据权利要求4所述的制备方法,其特征在于:反应液分离纯化方法为:反应结束后,停止加热,待反应体系冷却至室温将反应液倒入甲醇,析出固体沉淀,过滤收集沉淀,固体沉淀用索氏提取器依次使用甲醇,丙酮,正己烷抽提,去除小分子量产物,最后用三氯甲烷抽提至索氏提取器内溶液无色,旋蒸除去抽提的三氯甲烷溶剂,得到粗产物,粗产物用硅胶柱层析分离,得到分子量分布均匀的三元聚合物给体材料。
9.根据权利要求1~2任一项所述的三元聚合物给体材料、根据权利要求3~8任一项所述的方法制得的三元聚合物给体材料在制备有机高分子光伏器件或有机太阳能电池中的应用。
10.一种有机太阳能电池器件,其特征在于:包括根据权利要求1~2任一项所述的三元聚合物给体材料或根据权利要求3~8任一项所述的方法制得的三元聚合物给体材料。
CN202111669331.0A 2021-12-31 2021-12-31 一种三元聚合物给体材料及其制备与应用 Pending CN114437316A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111669331.0A CN114437316A (zh) 2021-12-31 2021-12-31 一种三元聚合物给体材料及其制备与应用
US18/145,886 US20230303764A1 (en) 2021-12-31 2022-12-23 Ternary polymer donor material, preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111669331.0A CN114437316A (zh) 2021-12-31 2021-12-31 一种三元聚合物给体材料及其制备与应用

Publications (1)

Publication Number Publication Date
CN114437316A true CN114437316A (zh) 2022-05-06

Family

ID=81365344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111669331.0A Pending CN114437316A (zh) 2021-12-31 2021-12-31 一种三元聚合物给体材料及其制备与应用

Country Status (2)

Country Link
US (1) US20230303764A1 (zh)
CN (1) CN114437316A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278888A (zh) * 2018-01-10 2020-06-12 香港科技大学 用于光电应用的氯化苯并二噻吩基聚合物
CN113024779A (zh) * 2021-03-05 2021-06-25 中国科学院化学研究所 一类含喹喔啉单元的p-型D-A共聚物在高效有机与钙钛矿太阳电池中的应用
WO2021136435A1 (zh) * 2019-12-30 2021-07-08 国家纳米科学中心 共轭聚合物给体材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278888A (zh) * 2018-01-10 2020-06-12 香港科技大学 用于光电应用的氯化苯并二噻吩基聚合物
WO2021136435A1 (zh) * 2019-12-30 2021-07-08 国家纳米科学中心 共轭聚合物给体材料及其制备方法和应用
CN113024779A (zh) * 2021-03-05 2021-06-25 中国科学院化学研究所 一类含喹喔啉单元的p-型D-A共聚物在高效有机与钙钛矿太阳电池中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIWEI QU ET AL: ""Fine Tuning of Open-Circuit Voltage by Chlorination in Thieno[3, 4-b]thiophene−Benzodithiophene Terpolymers toward Enhanced Solar Energy Conversion"", 《MACROMOLECULES 》, vol. 50, pages 4962, XP055641123, DOI: 10.1021/acs.macromol.7b00785 *

Also Published As

Publication number Publication date
US20230303764A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
Li et al. Enhanced organic photovoltaic performance through modulating vertical composition distribution and promoting crystallinity of the photoactive layer by diphenyl sulfide additives
Hu et al. Towards a bright future: polymer solar cells with power conversion efficiencies over 10%
Huo et al. Organic solar cells based on a 2D benzo [1, 2‐b: 4, 5‐b′] difuran‐conjugated polymer with high‐power conversion efficiency
Sahu et al. Synthesis and applications of novel low bandgap star-burst molecules containing a triphenylamine core and dialkylated diketopyrrolopyrrole arms for organic photovoltaics
US9783634B2 (en) Synthesis of photovoltaic conjugated polymers
Ma et al. A Facile Method to Enhance Photovoltaic Performance of Benzodithiophene‐Isoindigo Polymers by Inserting Bithiophene Spacer
US9214635B2 (en) Anthradithiophene-based semiconducting polymers and methods thereof
Li et al. Fine-tuning HOMO energy levels between PM6 and PBDB-T polymer donors via ternary copolymerization
WO2019006852A1 (en) HOLES TRANSPORT LAYER CONTAINING CONJUGATED ORGANIC POLYMERIC SEMICONDUCTOR MATERIAL AND USE THEREOF
Komiyama et al. Oligothiophene–indandione-linked narrow-band gap molecules: impact of π-conjugated chain length on photovoltaic performance
Do et al. Significance of siloxane functionalized side-chain π-conjugated polymer donor: optimization of active layer morphology toward the stable All-polymer solar cells
Gao et al. Effect of additives on the photovoltaic properties of organic solar cells based on triphenylamine-containing amorphous molecules
Gupta et al. Organophosphorus derivatives as cathode interfacial-layer materials for highly efficient fullerene-free polymer solar cells
CN114262426A (zh) 一种π桥氟取代的硒化聚合物受体材料及其制备与应用
Wang et al. Bis (thieno [3, 2-b] thieno) cyclopentafluorene-based acceptor with efficient and comparable photovoltaic performance under various processing conditions
Gu et al. Cost-effective polymer donors based on pyridine for efficient nonfullerene polymer solar cells
CN103258961B (zh) 具有双疏水性基团的富勒烯衍生物在太阳能电池中的应用
Ghaderian et al. The versatility of polymers in perovskite solar cells
Wang et al. Slight structural disorder in bithiophene-based random terpolymers with improved power conversion efficiency for polymer solar cells
CN114437316A (zh) 一种三元聚合物给体材料及其制备与应用
Guo et al. Wide bandgap random terpolymers for high efficiency halogen-free solvent processed polymer solar cells
Wang et al. Effect of polymer chain regularity on the photovoltaic performance of organic solar cells
Wu et al. Porphyrin–diindenothieno [2, 3‐b] thiophene alternating copolymer—a blue‐light harvester in ternary‐blend polymer solar cells
Chau et al. Complementary absorbing ternary blend containing structural isomeric donor polymers for improving the performance of PC61BM-based indoor photovoltaics
KR101821971B1 (ko) 랜덤 삼원 공중합체 형태의 전자 수용체 고분자, 그의 제조방법 및 이를 포함하는 반전형 고분자 태양전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination