CN114425334B - CeO2微米花负载的Ru纳米颗粒复合物及其制法 - Google Patents

CeO2微米花负载的Ru纳米颗粒复合物及其制法 Download PDF

Info

Publication number
CN114425334B
CN114425334B CN202011128415.9A CN202011128415A CN114425334B CN 114425334 B CN114425334 B CN 114425334B CN 202011128415 A CN202011128415 A CN 202011128415A CN 114425334 B CN114425334 B CN 114425334B
Authority
CN
China
Prior art keywords
ceo
preparation
composite
deionized water
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011128415.9A
Other languages
English (en)
Other versions
CN114425334A (zh
Inventor
吴兴才
王伟
陶友荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202011128415.9A priority Critical patent/CN114425334B/zh
Publication of CN114425334A publication Critical patent/CN114425334A/zh
Application granted granted Critical
Publication of CN114425334B publication Critical patent/CN114425334B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • B01J35/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water

Abstract

该发明专利名称为:“CeO2微米花负载的Ru纳米颗粒复合物及其制法”,所属领域:电催化剂与制备。通过两步法制备Ru/CeO2(3wt%)复合物,Ru在复合物中质量分数为3wt%:首先,制备CeO2微米花前驱体,其次将适量的CeO2前驱体配成悬浊液,然后添加适量的Ru3+离子溶液,使Ru在Ru/CeO2复合物中质量分数为3wt%,用NaBH4还原Ru3+为金属纳米颗粒,经洗涤烘干处理,成为Ru/CeO2复合物。该复合物是很好的碱性电解水析氢催化剂,性能超过商用Pt/C(20wt%),具有很好的应用前景。本发明公开了这种材料及其制法。

Description

CeO2微米花负载的Ru纳米颗粒复合物及其制法
技术领域
本发明涉及CeO2微米花负载的Ru纳米颗粒复合材料及其制法。具体地说,两步法制备出CeO2微米花上负载Ru纳米颗粒的复合材料Ru/CeO2(3wt%),Ru在复合物中质量分数为3wt%,在碱性条件下具有良好的电催化析氢作用。
背景技术
目前,Pt基材料被认为是最好的析氢电催化剂,由于Pt具有最优的H吸附能。但是,因为Pt的储量较低、价格昂贵,从而限制了Pt基催化剂的商业化[参见:(a)Li,Y.;Zhang,H.;Xu,T.Adv.Funct.Mater.2015,25,1737-1744.(b)Cao,B.;Veith,G.M.;Neuefeind,J.C.J.Am.Chem.Soc.2014,45,19186-19190.(c)Yan,Y.;Xia,B.Y.;Xu,Z.C.;Wang,Xi.ACSCatal.2014,4,1693-1705.]。因此,发展高效稳定的非Pt基催化剂成为了一项重要任务。Ru作为一种比Pt便宜的贵金属,也具有一定的HER性能。Qiao等人发现H2O在Ru(111)上解离成H和OH所要跨越的动力学势垒比Pt(111)要小,这与实验中Ru在碱性溶液中HER性能高于Pt的结论一致[参见:Zheng,Y.;Jiao,Y.;Zhu,Y.H.;Li,L.H.;Han,Y.;Chen,Y.;Jaroniec,M.;Qiao,S.Z.J.Am.Chem.Soc.2016,138,16174-16181.]。另外,Wu等人研究了二维超薄Ru纳米片,可以高效的进行析氢反应,由于二维纳米片层能够最大陬度的暴露出Ru原子,提供更多的活性位点,进而加速电荷转移,提高催化反应速率[参见:Kong,X.;Xu,K.;Zhang,C.;Dai,J.;Oliaee,S.N.;Li,L.;Zeng,X.;Wu,C.;Peng,Z.ACS Catal.,2016,6,1487-1492.]。尽管这些研究明确碱性条件下Ru有比Pt具有更好的HER活性,但是,他们所需要的Ru载量仍然很多,毕竟Ru也是一种贵金属,所以,如何降低Ru的载量同时又能表现出良好的催化活性,成为了Ru基HER催化剂的一大难题。本发明通过CeO2微米花作为载体负载少量金属Ru,当Ru的负载量达催化剂总质量的3%时(即Ru/CeO2(3wt%)),这种催化剂在碱性条件下的析氢(HER)性能优于商业Pt/C(20%)并表现良好的稳定性。
发明内容
本发明的目的是提供CeO2微米花负载的Ru纳米颗粒复合物及其制备方法。
本发明的技术方案如下:
一种CeO2微米花负载的Ru纳米颗粒复合物(Ru/CeO2),Ru在复合物中质量分数仅为3wt%。
制备方法分两步进行:(1)CeO2微米花载体的制备:称取一定量的Ce3+的可溶性盐和0.75g的NH4HCO3分别溶解在200ml的去离子水中,溶解的过程保持温度为0℃,然后将0℃的NH4HCO3溶液迅速地转移到Ce3+的溶液中,0℃恒温搅拌30min,最后将反应得到的悬浊物放入冰箱冷藏室里老化15h。老化后的前驱体悬浊液被过滤并且用去离子水和无水乙醇分别洗涤几次,然后,放入80℃烘箱中干燥。最后,将干燥物置于马弗炉中,在空气气氛下,450℃锻烧4h,得到CeO2样品;(2)Ru/CeO2(3wt%)复合物的制备:称取0.03g上述合成的CeO2粉末于圆底烧瓶中,加入10mL乙醇和25mL去离子水,搅拌形成均匀的悬浊液,然后向体系中注入0.2mL,10mg/mL的Ru3+溶液,30℃条件下,继续搅拌12h。接着,向上述体系中缓慢滴入1mLNaBH4水溶液(NaBH4∶Ru=3∶1mol/mol),滴加完毕后继续搅拌反应1h。最后,用去离子水和乙醇多次离心洗涤,收集后的产物在60℃真空烘箱中干燥2h,并标记为Ru/CeO2(3wt%)。
本发明的Ru/CeO2复合物经XRD测定,呈现了明显的CeO2立方萤石结构的衍射峰以及微弱的金属Ru特征衍射峰(图1)。
CeO2载体为立方萤石结构,微花由纳米片自组装而成,直径约为2.5-3.0μm(SEM,图2)。Ru纳米颗粒可以附着在CeO2纳米片上,粒径约为5-10nm(SEM,图2)。TEM也能观察到Ru颗粒分散在CeO2的纳米片上(图3a),HRTEM检测到晶格条纹间距为0.207nm,归属于六方晶系金属Ru(101)晶面(图3b)。CeO2纳米片是由尺寸约为5nm的微晶组成,清晰的晶格条纹(间距为0.312nm)归属于立方萤石结构CeO2(111)晶面(图3b)。
从电化学极化曲线(LSV,图4A))中可以看出,Ru/CeO2(3wt%)复合物具有较低的电催化析氢(HER)过电势,并且活性优于商业Pt/C(20wt%)催化剂,同时,Ru/CeO2(3wt%)复合物也具有良好的稳定性(见图4B),因此,Ru/CeO2(3wt%)复合物在电催化析氢方面有很好的应用前景。
本发明的制备Ru/CeO2(3wt%)复合物,方法原料简单易得、条件简便易行。
附图说明
图1为本发明Ru/CeO2(3wt%)复合物的XRD图;
图2为本发明Ru/CeO2(3wt%)复合物的SEM照片:(a)低倍像,(b)高倍像;
图3为本发明Ru/CeO2(3wt%)复合物的(a)TEM照片和(b)HRTEM图;
图4为本发明Ru/CeO2(3wt%)复合物与相关材料的HER活性图(LSV)和稳定性图。(A)HER活性图:(a)Pt/C(20wt%),(b)Ru/CeO2(3wt%),(c)Ru+CeO2,(d)Ru,(e)CeO2;(B)Ru/CeO2(3wt%)的稳定性图。
具体实施方式
实施例1.Ru/CeO2(3wt%)复合材料的制备
整个制备方法分两步:
(1)CeO2微米花载体的制备:称取1.3205g Ce(NO3)3·6H2O和0.75g的NH4HCO3分别溶解在200ml的去离子水中,溶解的过程保持温度为0℃,然后将0℃的NH4HCO3溶液迅速地转移到金属硝酸盐溶液中,0℃恒温搅拌30min,最后将反应得到的悬浊物放入冰箱冷藏室里老化15h。老化后的前驱体悬浊液被过滤并且用去离子水和无水乙醇分别洗涤三次,然后,放入80℃烘箱中干燥12h。最后,将干燥物置于马弗炉中,在空气气氛下,450℃锻烧4h,得到CeO2样品。
(2)Ru/CeO2(3wt%)复合物的制备:称取0.03g上述合成的CeO2粉末于圆底烧瓶中,加入10mL乙醇和25mL去离子水,搅拌形成均匀的悬浊液,然后向体系中注入0.2mL,10mg/mL的RuCl3溶液,30℃条件下,继续搅拌12h。接着,向上述体系中缓慢滴入1mL NaBH4水溶液(NaBH4∶Ru=3∶1mol/mol),滴加完毕后继续搅拌反应1h。最后,用去离子水和乙醇多次离心洗涤,收集后的产物在60℃真空烘箱中干燥2h,得到Ru/CeO2(3wt%)。
实施例2.Ru/CeO2(3wt%)复合材料的制备
整个制备方法分两步:
(1)CeO2微米花载体的制备:称取1.0531g CeCl3·6H2O(或1.1066g CeCl3·7H2O)和0.75g的NH4HCO3分别溶解在200ml的去离子水中,溶解的过程保持温度为0℃,然后将0℃的NH4HCO3溶液迅速地转移到金属硝酸盐溶液中,0℃恒温搅拌30min,最后将反应得到的悬浊物放入冰箱冷藏室里老化15h。,其余操作同实例1(1)。
(2)Ru/CeO2(3wt%)复合物的制备:操作同实例1(2)。
实施例3.Ru/CeO2(3wt%)复合材料的制备
整个制备方法分两步:
(1)CeO2微米花载体的制备:操作同实例1(1)。
(2)Ru/CeO2(3wt%)复合物的制备:称取0.03g上述合成的CeO2粉末于圆底烧瓶中,加入10mL乙醇和25mL去离子水,搅拌形成均匀的悬浊液,然后向体系中注入0.2mL,10mg/mL的Ru(NO3)3溶液,30℃条件下,继续搅拌12h。其余操作同实例1(2)。
实施例4.Ru/CeO2(3wt%)复合材料的制备
整个制备方法分两步:
(1)CeO2微米花载体的制备:操作同实例2(1)。
(2)Ru/CeO2(3wt%)复合物的制备:操作同实例3(2)。

Claims (1)

1.一种CeO2微米花负载的Ru纳米颗粒复合物在电催化分解水析氢中的应用,其特征在于:所述复合物中CeO2微米花直径2.5-3.0μm,花瓣由CeO2纳米片组成,Ru纳米颗粒附着在CeO2纳米片上,Ru纳米颗粒的粒径为5-10nm,Ru在复合物中质量分数为3wt%;所述复合物的制备方法为:
(1)CeO2微米花的制备:称取一定量的Ce3+的可溶性盐和0.75g的NH4HCO3分别溶解在200ml的去离子水中,溶解的过程保持温度为0℃,然后将0℃的NH4HCO3溶液迅速地转移到Ce3+溶液中,0℃恒温搅拌30min,将反应得到的悬浊物放入冰箱冷藏室里老化15h,老化后的前驱体悬浊液被过滤并且用去离子水和无水乙醇分别洗涤几次,放入80℃烘箱中干燥,最后,将干燥物置于马弗炉中,在空气气氛下,450℃锻烧4h,得到CeO2微米花;
(2)CeO2微米花负载Ru纳米颗粒复合物的制备:称取0.03g上述合成的CeO2微米花于圆底烧瓶中,加入10mL乙醇和25mL去离子水,搅拌形成均匀的悬浊液,然后向其中注入0.2mL,10mg/mL的Ru3+溶液,30℃条件下,继续搅拌12h,再缓慢滴入1mL NaBH4水溶液,NaBH4∶Ru=3mol∶1mol,滴加完毕后继续搅拌反应1h,最后,用去离子水和乙醇多次离心洗涤,收集后的产物在60℃真空烘箱中干燥2h,得到CeO2微米花负载Ru纳米颗粒复合物。
CN202011128415.9A 2020-10-15 2020-10-15 CeO2微米花负载的Ru纳米颗粒复合物及其制法 Active CN114425334B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011128415.9A CN114425334B (zh) 2020-10-15 2020-10-15 CeO2微米花负载的Ru纳米颗粒复合物及其制法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011128415.9A CN114425334B (zh) 2020-10-15 2020-10-15 CeO2微米花负载的Ru纳米颗粒复合物及其制法

Publications (2)

Publication Number Publication Date
CN114425334A CN114425334A (zh) 2022-05-03
CN114425334B true CN114425334B (zh) 2024-02-02

Family

ID=81309776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011128415.9A Active CN114425334B (zh) 2020-10-15 2020-10-15 CeO2微米花负载的Ru纳米颗粒复合物及其制法

Country Status (1)

Country Link
CN (1) CN114425334B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103991891A (zh) * 2014-05-08 2014-08-20 华东理工大学 片状纳米氧化铈的制备方法
CN109967072A (zh) * 2019-03-06 2019-07-05 华南理工大学 一种木质素基纳米花多孔碳载体负载Ru基催化剂及其制备方法和在木质素解聚中的应用
CN110255598A (zh) * 2019-06-28 2019-09-20 华南理工大学 一种花状微球碳酸铈和二氧化铈的制备方法
CN111167440A (zh) * 2020-01-07 2020-05-19 郑州大学 一种氨硼烷水解析氢用催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103991891A (zh) * 2014-05-08 2014-08-20 华东理工大学 片状纳米氧化铈的制备方法
CN109967072A (zh) * 2019-03-06 2019-07-05 华南理工大学 一种木质素基纳米花多孔碳载体负载Ru基催化剂及其制备方法和在木质素解聚中的应用
CN110255598A (zh) * 2019-06-28 2019-09-20 华南理工大学 一种花状微球碳酸铈和二氧化铈的制备方法
CN111167440A (zh) * 2020-01-07 2020-05-19 郑州大学 一种氨硼烷水解析氢用催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ceria-supported ruthenium clusters transforming from isolated single atoms for hydrogen production via decomposition of ammonia;Xiu-Cui Hu et al;《Applied Catalysis B: Environmental》;20191116;第268卷;第2页左栏第2段、第2页第2节 *

Also Published As

Publication number Publication date
CN114425334A (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
Alex et al. Competing effect of Co3+ reducibility and oxygen-deficient defects toward high oxygen evolution activity in Co3O4 systems in alkaline medium
Song et al. Metal/metal oxide nanostructures derived from metal–organic frameworks
Li et al. Preparation of CoB/ZIF-8 supported catalyst by single step reduction and its activity in hydrogen production
Yu et al. General approach for MOF-derived porous spinel AFe2O4 hollow structures and their superior lithium storage properties
Zeng et al. Core–shell CdS@ ZIF-8 structures for improved selectivity in photocatalytic H 2 generation from formic acid
Gao et al. CrPd nanoparticles on NH2-functionalized metal-organic framework as a synergistic catalyst for efficient hydrogen evolution from formic acid
Mu et al. Characterizations of Nb-doped WO 3 nanomaterials and their enhanced photocatalytic performance
Zahmakiran et al. Zeolite-confined ruthenium (0) nanoclusters catalyst: record catalytic activity, reusability, and lifetime in hydrogen generation from the hydrolysis of sodium borohydride
Xu et al. Stringing MOF-derived nanocages: a strategy for the enhanced oxygen evolution reaction
Li et al. Microwave-assisted hydrothermal synthesis of cube-like Ag-Ag 2 MoO 4 with visible-light photocatalytic activity
Song et al. Surfactant-free synthesis of reduced graphene oxide supported porous PtAu alloyed nanoflowers with improved catalytic activity
Liu et al. Double shelled hollow nanospheres with dual noble metal nanoparticle encapsulation for enhanced catalytic application
Liu et al. Au/LaVO 4 nanocomposite: preparation, characterization, and catalytic activity for CO oxidation
Jin et al. Construction of ultrafine TiO2 nanoparticle and SnNb2O6 nanosheet 0D/2D heterojunctions with abundant interfaces and significantly improved photocatalytic activity
KR20170081299A (ko) 나노카본, 나노- 또는 마이크로 구조 및 하소 히드로탈시드 쉘을 포함하는 다기능성의 안정한 나노-구조체
Xie et al. Hierarchical TiO 2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities
Li et al. Ru–Ni/Al 2 O 3 bimetallic catalysts with high catalytic activity for N-propylcarbazole hydrogenation
Yao et al. Co-CeO x nanoparticles anchored on a nitrogen-doped carbon nanosheet: a synergistic effect for highly efficient hydrolysis of sodium borohydride
Dou et al. Shaggy-like Ru-clusters decorated core-shell metal-organic framework-derived CoOx@ NPC as high-efficiency catalyst for NaBH4 hydrolysis
Zhou et al. Pd and Au@ Pd nanodendrites: a one-pot synthesis and their superior catalytic properties
Feng et al. Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane
Yousaf et al. Synergistic effect of interfacial phenomenon on enhancing catalytic performance of Pd loaded MnO x–CeO 2–C hetero-nanostructure for hydrogenation and electrochemical reactions
Yu et al. Silica aerogel-supported cobalt nanocomposites as efficient catalysts toward hydrogen generation from aqueous ammonia borane
US20140031195A1 (en) Anionic gold-hydroxo complex solution and process for producing material loaded with gold nanoparticles
JP2016006003A (ja) 金属酸化物ナノワイヤーの製造方法およびナノワイヤー

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant