CN114414592A - 基于非线性全息热像的玻璃气泡检测装置和方法 - Google Patents

基于非线性全息热像的玻璃气泡检测装置和方法 Download PDF

Info

Publication number
CN114414592A
CN114414592A CN202210059790.5A CN202210059790A CN114414592A CN 114414592 A CN114414592 A CN 114414592A CN 202210059790 A CN202210059790 A CN 202210059790A CN 114414592 A CN114414592 A CN 114414592A
Authority
CN
China
Prior art keywords
optical glass
photoelectric detector
thermal image
laser
nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210059790.5A
Other languages
English (en)
Other versions
CN114414592B (zh
Inventor
焦兆阳
王宏昌
华翔
刘文凤
孙明营
刘诚
朱健强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN202210059790.5A priority Critical patent/CN114414592B/zh
Publication of CN114414592A publication Critical patent/CN114414592A/zh
Application granted granted Critical
Publication of CN114414592B publication Critical patent/CN114414592B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Holo Graphy (AREA)

Abstract

一种基于非线性全息热像的光学玻璃气泡检测装置和方法,包括激光器,沿该激光器输出的激光方向依次是空间滤波器、准直透镜、非线性介质、光电探测器,所述的光电探测器的输出端与所述的计算机的输入端相连。本发明能对光学玻璃的气泡进行实时、高效、精密的检测。

Description

基于非线性全息热像的玻璃气泡检测装置和方法
技术领域
本发明涉及光学玻璃加工技术领域,具体为一种基于非线性全息热像的玻璃气泡检测装置和方法。
背景技术
光学玻璃可以做成棱镜、透镜、滤光片等各种光学元件,在成像领域、高功率激光装置等领域内有着不可替代的重要应用。受制于加工工艺的局限性,光学玻璃会引入气泡。这些气泡直接影响着由光学玻璃构成的光学仪器的表现。因此,光学玻璃的气泡度是重要的质量指标。
现有的光学玻璃气泡的光学检测方法,多是人工将光学玻璃对准光源,通过肉眼或借助光电探测器对其进行检测、分辨。然而,这些方法对操作人员的经验提出了较高要求,并且光学玻璃中的气泡对光束更多的是产生相位上的调制,人眼或光电探测器难以实现高对比度的分辨。尤其对于较小的气泡,检测效率与检测精度较低。一些基于显微技术检测方法可以对光学玻璃进行足够精密的检测。但是,高倍数的显微镜意味着较短的物距,因此显微方法在想要实现精密检测的时候,无法对厚光学玻璃进行有效的检测。还有一些基于干涉或衍射的检测方法,但是,这些方法引入了过多高质量要求的光学元件,对环境稳定性也提出了极高的要求,从而极大提高了检测成本。因此,如何对光学玻璃气泡进行易于实现、结构简单、高效率、高对比度的检测,是玻璃制造业的需求之一。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种基于非线性全息热像的玻璃气泡检测装置和方法。该方法通过对待测光学玻璃的热像面的光场信息进行采集,能对光学玻璃的气泡进行实时、高效、精密的检测。
本发明的技术解决方案如下:
一种基于非线性全息热像的光学玻璃气泡检测装置,其特点在于,包括激光器,沿该激光器输出的激光方向依次是空间滤波器、准直透镜、非线性介质、光电探测器,所述的光电探测器的输出端与所述的计算机的输入端相连。
利用上述基于非线性全息热像的光学玻璃气泡检测装置对光学玻璃气泡检测方法,其特点在于,该方法包括下列步骤:
1)在一个平台上设置所述的装置,依次激光器、空间滤波器、准直透镜、非线性介质、光电探测器和计算机,将所述的待测光学玻璃置于所述的准直透镜和所述的非线性介质之间,调整所述的空间滤波器、准直透镜、待测光学玻璃、非线性介质和光电探测器,使所述的激光器输出的激光通过所述的空间滤波器之后的光束被焦距为f的准直透镜准直为平行光束,准直之后的平行光束照射所述的待测光学玻璃,所述的光电探测器放置在光学玻璃的热像面处,即所述的待测光学玻璃与所述的非线性介质的距离为d1,所述的非线性介质与所述的光电探测器之间的距离为d2,且d1=d2,即所述的光电探测器位于待测光学玻璃的全息热像面处,所述的光电探测器的输出端与所述的计算机的输入端相连;
2)所述的光电探测器探测全息热像面的光场分布,输入所述的计算机;
3)所述的计算机输出全息热像面的光场分布,即得知所述的待测光学玻璃中的气泡信息。
所述的空间滤波器同准直透镜构成扩束系统,使得通过准直透镜之后的光束为平行光束。
所述的空间滤波器,将激光器出射的激光的高频成分滤去,从而获得一个均匀的光场。
所述的空间滤波器和准直透镜构成的扩束系统,可以是扩束器等可以将激光器出射激光调制为平行光束的器件。
所述的光电探测器放置在待测光学玻璃的热像面处。
所述的热像面是待测光学玻璃4的共轭面。具体体现在,光学玻璃到非线性介质前表面的距离等于非线性介质后表面到热像面的距离,即d1=d2
所述的基于非线性全息热像,其产生过程如下:
经过扩束器滤波的平行光束,经过带气泡的光学玻璃的调制,在自由空间中传输到非线性介质处。这一过程的传输可以用如下偏微分方程描述:
Figure BDA0003477745990000021
其中,A是光场的复振幅。k1是自由空间中的波数。光束在非线性介质中的传播,可以用如下非线性薛定谔方程描述:
Figure BDA0003477745990000022
其中,
Figure BDA0003477745990000023
k2是非线性介质中的波数。B0=k2n2|E0|2/n0。n0和n2是自由空间中和非线性介质中的本底折射率。光束离开非线性介质后,到热像面的传输为在自由空间中的传输,同样可以用如下偏微分方程描述:
Figure BDA0003477745990000024
传输到热像面,即可以得到待测光学玻璃的热像。
基于非线性全息热像的光学玻璃气泡检测方法,其原理如下:
光束经过光学玻璃的气泡调制,产生的衍射可以看做信号光。其他部分可以看做背景光。在热像形成的过程中,由于非线性克尔效应,非线性介质的折射率会发生变化。这样,非线性介质相当于全息记录了信号光和背景光的干涉信号。在背景光进一步的照射之下,在下游共轭面的位置,将对记录的气泡信息进行复现。这个位置就是热像位置。因此,观察热像面的光场分布,即可以得知光学玻璃中的气泡信息。
本发明与以前的方法相比的技术优势在于:
传统的光学玻璃气泡的检测方法,多是人工将光学玻璃对准光源,通过肉眼或借助光电探测器对其进行检测、分辨。然而,这些方法对操作人员的经验操作提出了较高要求,并且,对于较小的气泡,无法进行有效的分辨。同时,光学玻璃中的气泡,更多对光束产生的是相位上的调制,因而检测的对比度较低。本发明利用非线性全息热像来实现对气泡的检测,相比于人工检测的方法,热像将光学玻璃的气泡信息转化成热像的强振幅信息,从而极大提高了检测对比度。相比于传统的基于干涉或衍射的检测方法,本发明检测装置结构简单,只需要一块非线性克尔介质和光电探测器,就可以实现对玻璃气泡的实时检测。
附图说明
图1为本发明光学玻璃气泡检测装置的示意图。
图2为待测光学玻璃的气泡分布。
图3为待测光学玻璃的全息热像。
具体实施方式
下面结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
实施例:
请参阅图1,图1为本发明光学玻璃气泡检测装置的示意图。由图可见,本发明基于非线性全息热像的光学玻璃气泡检测装置,包括激光器1,沿该激光器1输出的激光方向依次是空间滤波器2、准直透镜3、非线性介质5、光电探测器6,所述的光电探测器6的输出端与所述的计算机7的输入端相连。
利用上述基于非线性全息热像的光学玻璃气泡检测装置对光学玻璃气泡检测方法,包括下列步骤:
1)在一个平台上设置所述的装置,依次包括激光器1、空间滤波器2、准直透镜3、非线性介质5、光电探测器6和计算机7,将所述的待测光学玻璃4置于所述的准直透镜3和所述的非线性介质5之间,调整所述的空间滤波器2、准直透镜3、待测光学玻璃4、非线性介质5和光电探测器6,使所述的激光器1输出的激光通过所述的空间滤波器2之后的光束被焦距为f的准直透镜3准直为平行光束,准直之后的平行光束照射所述的待测光学玻璃4,所述的光电探测器6放置在光学玻璃的热像面处,即所述的待测光学玻璃4与所述的非线性介质5的距离为d1,所述的非线性介质5与所述的光电探测器6之间的距离为d2,且d1=d2,即所述的光电探测器6位于待测光学玻璃4的全息热像面处,所述的光电探测器6的输出端与所述的计算机7的输入端相连;
2)所述的光电探测器6探测全息热像面的光场分布,输入所述的计算机6;
3)计算机6输出全息热像面的光场分布,即得知所述的待测光学玻璃4中的气泡信息。
在本实施例中:
所述的激光器1为波长为532nm的激光器。
所述的空间滤波器2是由显微物镜和针孔构成的空间滤波器。
所述的非线性介质3为铌酸锶钡晶体(SBN:61)。可以通过电压来控制SBN:61的非线性克尔效应的强弱。
所述的光电探测器6为电荷耦合元件(CCD)。
所述的计算机7的目的是存储CCD记录的热像面的强度信息。
请参阅附图。附图为本发明实现光学玻璃气泡检测的装置示意图。
本实施例包括激光器1、空间滤波器2、准直透镜3、待测光学玻璃4、非线性介质5、光电探测器6、计算机7。上述各部分的位置关系及光路原理解释如下:
激光器1输出光前进方向上是空间滤波器2,通过空间滤波器2之后的光束被焦距为f的准直透镜3准直为平行光束,准直之后的平行光束照射待测光学玻璃4。光束经过待测光学玻璃4后,传播d1的距离后照射到非线性介质5处。由于光克尔效应,在非线性介质之后距离为d2的位置会产生全息热像。在这里放置光电探测器6。光电探测器6和计算机7相连。在本实施例中,d1=d2=0.8m。
读取光电探测器6的数据,即待测光学玻璃的热像。
图2为光学玻璃中的气泡分布。其中,红色圆圈圈起来的部分为随机设置的气泡。气泡1为长条形的气泡,长度为600微米,宽度为200微米。气泡2,3,4为随机三个位置的,半径为100微米、200微米、300微米的气泡。图2为这些气泡的相位信息,而在实际情况下,这些相位信息难以被肉眼或光电探测器所直接探测。
图3为该待测光学玻璃的全息热像的光场。
对热像进行分析,可以看到,图3中全息热像的光场分布情况即对应了光学玻璃内的气泡分布情况。

Claims (2)

1.一种基于非线性全息热像的光学玻璃气泡检测装置,其特征在于,包括激光器(1),沿该激光器(1)输出的激光方向依次是空间滤波器(2)、准直透镜(3)、非线性介质(5)、光电探测器(6),所述的光电探测器(6)的输出端与所述的计算机(7)的输入端相连。
2.利用权利要求1所述的基于非线性全息热像的光学玻璃气泡检测装置对光学玻璃气泡检测方法,其特征在于,该方法包括下列步骤:
1)在一个平台上设置所述的装置,依次包括激光器(1)、空间滤波器(2)、准直透镜(3)、非线性介质(5)、光电探测器(6)和计算机(7),将所述的待测光学玻璃(4)置于所述的准直透镜(3)和所述的非线性介质(5)之间,调整所述的空间滤波器(2)、准直透镜(3)、待测光学玻璃(4)、非线性介质(5)和光电探测器(6),使所述的激光器(1)输出的激光通过所述的空间滤波器(2)之后的光束被焦距为f的准直透镜(3)准直为平行光束,准直之后的平行光束照射所述的待测光学玻璃(4),所述的光电探测器(6)放置在光学玻璃的热像面处,即所述的待测光学玻璃(4)与所述的非线性介质(5)的距离为d1,所述的非线性介质(5)与所述的光电探测器(6)之间的距离为d2,且d1=d2,即所述的光电探测器(6)位于待测光学玻璃(4)的全息热像面处,所述的光电探测器(6)的输出端与所述的计算机(7)的输入端相连;
2)所述的光电探测器(6)探测全息热像面的光场分布,输入所述的计算机(6);
3)所述的计算机(6)输出全息热像面的光场分布,即得知所述的待测光学玻璃(4)中的气泡信息。
CN202210059790.5A 2022-01-19 2022-01-19 基于非线性全息热像的玻璃气泡检测装置和方法 Active CN114414592B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210059790.5A CN114414592B (zh) 2022-01-19 2022-01-19 基于非线性全息热像的玻璃气泡检测装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210059790.5A CN114414592B (zh) 2022-01-19 2022-01-19 基于非线性全息热像的玻璃气泡检测装置和方法

Publications (2)

Publication Number Publication Date
CN114414592A true CN114414592A (zh) 2022-04-29
CN114414592B CN114414592B (zh) 2024-04-12

Family

ID=81275427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210059790.5A Active CN114414592B (zh) 2022-01-19 2022-01-19 基于非线性全息热像的玻璃气泡检测装置和方法

Country Status (1)

Country Link
CN (1) CN114414592B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276361A (ja) * 2009-05-26 2010-12-09 Sumitomo Electric Ind Ltd 異状検査装置
JP2012098181A (ja) * 2010-11-02 2012-05-24 Sumitomo Electric Ind Ltd 検出装置及び検出方法
JP2015014527A (ja) * 2013-07-05 2015-01-22 住友電気工業株式会社 異状検出装置及び異状検出方法
JP2017203658A (ja) * 2016-05-10 2017-11-16 住友電気工業株式会社 検査方法及び光学測定装置
CN111289479A (zh) * 2020-03-09 2020-06-16 中国科学院上海光学精密机械研究所 基于非线性热像反演的相位缺陷检测装置和方法
CN111323386A (zh) * 2018-12-14 2020-06-23 波音公司 光学检测方法和光学检测装置
CN112352150A (zh) * 2018-04-27 2021-02-09 爱思开海力士有限公司 使用电晕放电源的场偏置非线性光学计量
CN113514462A (zh) * 2021-04-26 2021-10-19 浙江师范大学 一种用于捕捉产物微分散射截面的精细结构的装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276361A (ja) * 2009-05-26 2010-12-09 Sumitomo Electric Ind Ltd 異状検査装置
JP2012098181A (ja) * 2010-11-02 2012-05-24 Sumitomo Electric Ind Ltd 検出装置及び検出方法
JP2015014527A (ja) * 2013-07-05 2015-01-22 住友電気工業株式会社 異状検出装置及び異状検出方法
JP2017203658A (ja) * 2016-05-10 2017-11-16 住友電気工業株式会社 検査方法及び光学測定装置
CN112352150A (zh) * 2018-04-27 2021-02-09 爱思开海力士有限公司 使用电晕放电源的场偏置非线性光学计量
CN111323386A (zh) * 2018-12-14 2020-06-23 波音公司 光学检测方法和光学检测装置
CN111289479A (zh) * 2020-03-09 2020-06-16 中国科学院上海光学精密机械研究所 基于非线性热像反演的相位缺陷检测装置和方法
CN113514462A (zh) * 2021-04-26 2021-10-19 浙江师范大学 一种用于捕捉产物微分散射截面的精细结构的装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WITHGAINYANLI ZHANG 等: "Study on impact of spatial filter on a hot image through medium with gain", 《OPTIK》, 31 August 2015 (2015-08-31), pages 1209 *

Also Published As

Publication number Publication date
CN114414592B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
US10180564B2 (en) Methods and systems for transport-of-intensity imaging
US5828459A (en) Apparatus and method for scanning laser microscopy
CN109445089B (zh) 一种基于高速波前调制的多模光纤三维成像装置及方法
CN103149827B (zh) 消除单光束同轴数字全息直流项和共轭像的方法
CN206095943U (zh) 一种结构光照明的双光子荧光显微系统
WO2010065651A1 (en) Reconstruction of nonlinear wave propagation
JP2018502638A (ja) レンズなし内視鏡イメージング向けの、光パルスの搬送・制御用装置
WO2013153371A1 (en) Laser focusing method and apparatus with control system for correction of the optical aberration
CN113624453B (zh) 基于超快显微成像的大口径光学元件高速检测系统
CN114967104B (zh) 一种基于光场调控的传像束大视场三维成像装置及其方法
Lin et al. Tunable time-resolved tick-tock pulsed digital holographic microscopy for ultrafast events
CN111289479B (zh) 基于非线性热像反演的相位缺陷检测装置和方法
CN114414592B (zh) 基于非线性全息热像的玻璃气泡检测装置和方法
CN114460045B (zh) 散射介质光学传输矩阵的测量方法
An et al. Direct observation of axial dynamics of particle manipulation with Weber self-accelerating beams
WO2023130636A1 (zh) 基于单轴晶体的相衬显微模块、设备及方法
Barré et al. Tomographic refractive index profiling of direct laser written waveguides
CN105929526B (zh) 一种体全息还原扫描光束的sted超分辨显微系统及显微方法
KR101329474B1 (ko) 전기광학 변조기를 이용한 공간적 위상 변조기 및 이를 이용한 공초점 현미경
CN115266642A (zh) 一种测量强散射介质非线性折射率系数的谱域z扫描方法
KR102272366B1 (ko) 위상 정보 추출과 입체 영상 구성 방법 및 장치
CN116577334B (zh) 基于矢量偏振光束的差分暗场共焦显微测量装置与方法
CN113409980B (zh) 一种动态多焦点光镊的产生装置及使用方法
CN221040527U (zh) 光学装置及飞秒激光直写系统
Milster et al. Optical data storage readout with quadrant pupil detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant