CN114411066A - 一种高强塑积低碳中锰系trip钢及其制备方法 - Google Patents

一种高强塑积低碳中锰系trip钢及其制备方法 Download PDF

Info

Publication number
CN114411066A
CN114411066A CN202210076244.2A CN202210076244A CN114411066A CN 114411066 A CN114411066 A CN 114411066A CN 202210076244 A CN202210076244 A CN 202210076244A CN 114411066 A CN114411066 A CN 114411066A
Authority
CN
China
Prior art keywords
steel
rolling
strength
manganese
trip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210076244.2A
Other languages
English (en)
Inventor
李志超
李心景
吴警
李倩男
孙颖
孙梦柯
李辉平
贺连芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN202210076244.2A priority Critical patent/CN114411066A/zh
Publication of CN114411066A publication Critical patent/CN114411066A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种高强塑积低碳中锰系TRIP钢及其制备方法,属于材料热处理领域。该钢化学组分的质量百分含量为:C:0.15~0.20%,Mn:8.0~8.5%,Al:2.5~3.0%,S:<0.01%,P:<0.01%,其余为Fe及不可避免的杂质;通过多道次的热轧和冷轧以及临界淬火热处理,可以有效细化材料的晶粒尺寸,提高实验钢的综合力学性能,此外还可以得到适当稳定的残余奥氏体,促进变形过程中的TRIP效应,进一步提高试验钢的综合力学性能。通过本申请得到的低碳中锰系TRIP钢,抗拉强度为1156±20MPa,延伸率为51.5±2%,强塑积为59534±40MPa·%。

Description

一种高强塑积低碳中锰系TRIP钢及其制备方法
技术领域
本申请属于材料热处理领域,具体涉及一种高强塑积低碳中锰系TRIP钢及其制备方法。
背景技术
当前,随着世界汽车行业的飞速发展,其对汽车轻量化、安全、环保、燃油经济性等方面的要求越来越高,轻量化高强度钢的需求正在逐步加大;中锰相变诱导塑性(TRIP)钢作为未来轻量化汽车钢的发展方向之一,拥有卓越的强度和塑性的综合性能,而它的强度和塑性主要来源于拉伸变形过程中的TRIP效应。TRIP效应使得钢材中的奥氏体在塑性变形过程中发生马氏体的形核和长大,并产生局部硬化,有效地抵抗局部应力集中,使相变均匀扩散到整个材料以提高钢板的强度和塑性。TRIP钢用作汽车钢板可减轻车重,降低油耗,同时TRIP钢在撞击后发生塑性变形时能够吸收更多的能量,这可以提高汽车的安全系数。TRIP钢未来的发展目标为在不牺牲成形性能的基础上实现超高的抗拉强度,这也成为了国内外金属材料领域普遍关注的科研方向。
中锰TRIP钢的常用的热处理工艺为奥氏体逆相变(ART)处理,这一热处理方式需要消耗数小时的时间,这意味着热处理过程中消耗的能源和人工成本也会大幅增加,这在工业生产中很难实现,因此,需要一种耗时短、高效率制备高强塑积低碳中锰系TRIP钢及其制备方法。
发明内容
本申请提供一种高强塑积低碳中锰系TRIP钢及其制备方法,通过合理设计钢的成分,经热轧-空冷-冷轧-临界淬火工艺热处理,目的是通过多道次热轧和冷轧挤压钢板细化晶粒并结合适当的热处理工艺,得到适当稳定的残余奥氏体,制成具有高强塑积的低碳中锰系TRIP钢。
在本申请的一些实施例中,一种高强塑积低碳中锰系TRIP钢的制备方法,其化学成分质量百分含量为C:0.15~0.20%,Mn:8.0~8.5%,Al:2.5~3.0%,S:<0.01%,P:<0.01%,其余为Fe及不可避免的杂质;
所述TRIP钢利用临界淬火工艺制备,具体包括以下步骤:
(1)按上述化学成分称取各原料进行冶炼,浇铸成40kg的铸锭,铸锭经1200℃保温2小时后,将其熔铸成200mm直径的圆柱形钢锭;
(2)将步骤(1)得到的钢锭在1200~1250℃保温2小时,随后热轧成约4mm厚的钢板,钢板热轧后空冷至室温然后进行冷轧,最终钢板轧至1mm厚;
(3)对步骤(2)得到的钢板进行热处理,热处理方式为临界淬火,即将钢板在临界温度Ac1和Ac3之间的700℃保温5分钟,随后在水中冷却,得到所述高强塑积低碳中锰系TRIP钢。
在本申请的一些实施例中,所述步骤(2)中的热轧的初锻温度为1150℃,终轧温度为850℃。
在本申请的一些实施例中,所述步骤(2)中的热轧和冷轧均为多道次。
在本申请的一些实施例中,所述步骤(2)中的多道次热轧工艺具体为:将钢锭加热到1200℃后保温2h,随后经过6个道次热轧,初轧温度不低于1150℃,终轧温度高于850℃;每道次轧制温度分别为1160℃、1060℃、990℃、950℃、920℃、870℃,每道次出口厚度分别为20mm、14mm、10mm、7.5mm、5.5mm、4mm。
在本申请的一些实施例中,所述步骤(2)中的多道次冷轧工艺具体为:将热轧板在650℃保温1h后淬火,随后在200℃保温20min后回火;用体积比为4∶1的水和盐酸的酸洗液对热处理后的热轧钢板进行酸洗,随后再进行冷轧,将4mm的热轧板在冷轧机组中经多个道次轧制,最终将钢板轧至1mm厚的冷轧板。
在本申请的一些实施例中,所述步骤(3)中经临界淬火后,冷轧钢中出现了粒状奥氏体、板条状奥氏体、块状奥氏体和等轴状奥氏体交替出现的特殊微观组织。其中,奥氏体晶粒长度为3~6μm、7~8μm、9~10μm和大于10μm的奥氏体所占比例分别是53.7%、18.7%、21.4%和3.9%。而且富集在晶粒较短的奥氏体中C、Mn元素浓度要明显高于晶粒较长的奥氏体。
在本申请的一些实施例中,上述制备方法制备得到的TRIP钢,其抗拉强度为1156±20MPa,延伸率为51.5±2%,强塑积为59534±40MPa·%。
本申请的方法是通过多道次的热轧和冷轧以及临界淬火热处理,有效细化材料内部的晶粒尺寸,提高实验钢的综合力学性能,此外还可以得到适当稳定的残余奥氏体,促进变形过程中的TRIP效应,进一步提高试验钢的综合力学性能。
本申请的高强塑积低碳中锰系TRIP钢成分设计合理,在添加C的基础上,还加入了少量的合金元素Mn和Al。其中,C元素的作用主要是提高残余奥氏体的稳定性,Al元素能够提高钢的固溶强化能力,利于残余奥氏体的富碳,同时有利于实验钢的轻量化,Mn元素会增加残余奥氏体的稳定性,提高钢的热加工性能和强度。
附图说明
图1为本申请实施例中的试验钢轧制方案图;
图2为本申请实施例中的实验钢热处理工艺方案图;
表2为热轧实验钢中具体轧制工艺方案;
图3为实施例1实验钢临界淬火后拉伸变形前的电子探针检测(EMPA)图;
图4为实施例1实验钢临界淬火后拉伸变形前的X射线衍射图;
图5为实施例1实验钢的应力-应变曲线图;
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中采用的轧机来自东北大学轧制技术及连轧自动化国家重点实验室(RAL)的Φ450mm热轧机组。
本申请中进行室温单向拉伸的设备是东北大学ATM实验室从日本株式会社岛津制作所购买的100kN电子万能试验机,型号规格为AG-Xplus100kN。
本申请中观测金相组织的设备为OLYMPUS-GSX500光学显微镜。
本申请中观测微观组织的设备为JEOL JXA-8530F场发射电子探针。
本申请中残余奥氏体体积分数的测定设备为Smartlab X射线衍射仪。
本申请中采用的是井式盐浴炉,临界区退火用的是氯化钠,贝氏体保温时用的是亚硝酸钠与硝酸钾组成的硝酸盐。
本申请中,将临界淬火后的试样加工成尺寸如图2所示的拉伸试样,再进行热处理,用砂纸进行打磨,随后进行拉伸实验,拉伸速度为3mm/min直至拉断,整个过程由计算机程序自动控制。
在临界淬火热处理后的试样上切取部分试样,用砂纸磨光,在美国标乐ElectroMet 4电解,电解抛光液为900ml的酒精、60ml高氯酸和30ml蒸馏水的混合溶液,抛光电压设置为5V,抛光时间为40s,抛光完成后用酒精进行冲洗并且用吹风机吹干。
用4%的硝酸酒精对试样进行腐蚀,腐蚀时间为4s,腐蚀完成后用酒精进行冲洗。
实施例1
本实施例中的高强塑积低碳中锰系TRIP钢,其化学组分的质量百分含量为:C:0.15~0.20%,Mn:8.0~8.5%,Al:2.5~3.0%,S:<0.01%,P:<0.01%,余量为Fe和不可避免的杂质;
其制备方法如下:
(1)按上述化学成分进行冶炼,浇铸成40kg的铸锭,铸锭经1200℃保温2小时后,将其熔铸成200mm直径的圆柱形钢锭;
(2)将步骤(1)得到的钢锭在1200~1250℃保温2小时,随后热轧成约4mm厚的钢板。(终轧温度为850℃),钢锭热轧后空冷至室温然后进行冷轧,最终钢板轧至1mm厚;具体参数按照表1执行;
(3)对步骤(2)得到的钢板进行热处理,热处理方式为临界淬火,即将钢板在临界温度Ac1和Ac3之间的700℃保温5分钟,随后在水中冷却,得到强塑积为59534±40MPa·%的高强塑积低碳中锰系TRIP钢。
钢板试样在临界淬火热处理后的扫描电子显微镜(SEM)结果如图4所示,X射线衍射结果如图5中所示,该钢屈服强度为1050MPa,抗拉强度为1156MPa,延伸率为51.5%,强塑积为59534MPa·%。
表1
Figure BDA0003482466660000041
表2
Figure BDA0003482466660000051
表2为未进行本申请热处理工艺的TRIP钢与实施例1的TRIP钢的力学性能对比表,由该表可知,由于实施例1中的钢通过多道次的热轧和冷轧以及临界淬火热处理,有效细化了材料的晶粒尺寸,提高实验钢的综合力学性能,得到适当稳定的残余奥氏体,促进变形过程中的TRIP效应,进一步提高试验钢的综合力学性能,延伸率和强塑积得到极大的提高。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (9)

1.一种高强塑积低碳中锰系TRIP钢的制备方法,其特征在于,所述TRIP钢的化学成分质量百分含量为C:0.15~0.20%,Mn:8.0~8.5%,Al:2.5~3.0%,S:<0.01%,P:<0.01%,其余为Fe及不可避免的杂质;
所述TRIP钢利用临界淬火工艺制备,具体包括以下步骤:
(1)按上述化学成分称取各原料进行冶炼,浇铸成40kg的铸锭,铸锭经1200℃保温2小时后,将其熔铸成200mm直径的圆柱形钢锭;
(2)将步骤(1)得到的钢锭在1200~1250℃保温2小时,随后热轧成约4mm厚的钢板,钢板热轧后空冷至室温然后进行冷轧,最终钢板轧至1mm厚;
(3)对步骤(2)得到的钢板进行热处理,热处理方式为临界淬火,即将钢板在临界温度Ac1和Ac3之间的700℃保温5分钟,随后在水中冷却,得到所述高强塑积低碳中锰系TRIP钢。
2.根据权利要求1所述的一种高强塑积低碳中锰系TRIP钢的制备方法,其特征在于,所述步骤(2)中的热轧的初锻温度为1150℃,终轧温度为850℃。
3.根据权利要求1所述的一种高强塑积低碳中锰系TRIP钢的制备方法,其特征在于,所述步骤(2)中的热轧和冷轧均为多道次。
4.根据权利要求3所述的一种高强塑积低碳中锰系TRIP钢的制备方法,其特征在于,所述步骤(2)中的多道次热轧工艺具体为:将钢锭加热到1200℃后保温2h,随后经过6个道次热轧,初轧温度不低于1150℃,终轧温度高于850℃。
5.根据权利要求4所述的一种高强塑积低碳中锰系TRIP钢的制备方法,其特征在于,每道次轧制温度分别为1160℃、1060℃、990℃、950℃、920℃、870℃,每道次出口厚度分别为20mm、14mm、10mm、7.5mm、5.5mm、4mm。
6.根据权利要求1所述的一种高强塑积低碳中锰系TRIP钢的制备方法,其特征在于,所述步骤(2)中将热轧后的钢板在650℃保温1h后淬火,随后在200℃保温20min后回火;用水和盐酸体积比为4∶1的酸洗液对热处理后的热轧钢板进行酸洗,随后再进行冷轧,将4mm的热轧板在冷轧机组中经多个道次轧制,最终将钢板轧至1mm厚的冷轧板。
7.根据权利要求1-5任一项所述的一种高强塑积低碳中锰系TRIP钢的制备方法,其特征在于,所述步骤(3)中经临界淬火后,冷轧钢中出现了粒状奥氏体、板条状奥氏体、块状奥氏体和等轴状奥氏体交替出现的特殊微观组织,其中,奥氏体晶粒长度为3~6μm、7~8μm、9~10μm和大于10μm的奥氏体所占比例分别是53.7%、18.7%、21.4%和3.9%。而且富集在晶粒较短的奥氏体中C、Mn元素浓度要明显高于晶粒较长的奥氏体。
8.根据权利要求7所述的一种高强塑积低碳中锰系TRIP钢的制备方法,其特征在于,上述制备方法制备得到的TRIP钢,其抗拉强度为1156±20MPa,延伸率为51.5±2%,强塑积为59534±40MPa·%。
9.根据权利要求1-8任一项所述的一种高强塑积低碳中锰系TRIP钢的制备方法制备得到的TRIP钢。
CN202210076244.2A 2022-01-21 2022-01-21 一种高强塑积低碳中锰系trip钢及其制备方法 Pending CN114411066A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210076244.2A CN114411066A (zh) 2022-01-21 2022-01-21 一种高强塑积低碳中锰系trip钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210076244.2A CN114411066A (zh) 2022-01-21 2022-01-21 一种高强塑积低碳中锰系trip钢及其制备方法

Publications (1)

Publication Number Publication Date
CN114411066A true CN114411066A (zh) 2022-04-29

Family

ID=81276069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210076244.2A Pending CN114411066A (zh) 2022-01-21 2022-01-21 一种高强塑积低碳中锰系trip钢及其制备方法

Country Status (1)

Country Link
CN (1) CN114411066A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695765A (zh) * 2013-12-11 2014-04-02 蔡志辉 一种高强度高塑性冷轧中锰钢及其制备方法
CN110438315A (zh) * 2019-09-06 2019-11-12 安徽工业大学 一种改善Fe-Mn-Al-C系TRIP钢力学性能的热处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695765A (zh) * 2013-12-11 2014-04-02 蔡志辉 一种高强度高塑性冷轧中锰钢及其制备方法
CN110438315A (zh) * 2019-09-06 2019-11-12 安徽工业大学 一种改善Fe-Mn-Al-C系TRIP钢力学性能的热处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蔡志辉: "高强塑性中锰钢的组织演变及力学性能的研究", 《中国博士学位论文全文数据库》 *

Similar Documents

Publication Publication Date Title
CN112410681B (zh) 一种高强塑积中锰钢及其制备方法
Kumar et al. Formation of ultrafine grained microstructure in the austenitic stainless steel and its impact on tensile properties
CN107119234B (zh) 一种因瓦合金带材的细晶强化方法
CN105349925B (zh) 一种Al‑Mg系合金的液氮温区冷加工工艺
CN103695765A (zh) 一种高强度高塑性冷轧中锰钢及其制备方法
CN104404367B (zh) 一种高强度高塑性冷轧低碳钢及其制备方法
CN106498288A (zh) 一种含Ti耐海水腐蚀钢带及其制备方法
WO2024119783A1 (zh) V系550MPa级建筑结构用抗震耐候钢板及其制备方法
CN108998734A (zh) 一种超高强塑性冷轧Mn-Al系TRIP钢板及其快速退火制备方法
JP2001234240A (ja) 複相組織鋼の組織制御方法
CN109778075B (zh) 一种高屈强比且连续屈服的中锰钢材料的制备方法
CN108624820B (zh) 强塑积大于45 GPa·%的汽车用高强韧钢及制备方法
Dobrzański et al. Hot-working of advanced highmanganese austenitic steels
Mandal et al. Phase transformation and mechanical behaviour of thermo-mechanically controlled processed high-strength multiphase steel
Dobrzański et al. Hot-working behaviour of high-manganese austenitic steels
CN114086080B (zh) 一种双相异构轻质高强钢及制备方法
CN114411066A (zh) 一种高强塑积低碳中锰系trip钢及其制备方法
CN114231853B (zh) 一种强塑积大于98GPa%的TWIP钢及制备方法
CN116555672A (zh) 一种高强韧性中锰钢板材及其制备方法
CN113957347B (zh) 590MPa级厚规格冷冲压用桥壳钢及其制备方法
CN115710668A (zh) 一种强塑积48GPa%级中锰钢成分设计及制备方法
CN108728752B (zh) 一种低密度冷轧中锰钢板及其制备方法
CN112853224A (zh) 一种高强高塑性低碳中锰trip钢及其制备方法
Chang et al. Effect of ferritic hot rolling process on microstructure and properties of IF steel
Pant et al. Influence of Cryo-cross Rolling and Post-Rolled Annealing on Microstructure and High Cycle Fatigue Properties of Al-5052 Alloy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220429

RJ01 Rejection of invention patent application after publication