CN114411009A - 自润滑耐磨钛基复合材料制件及其制备方法 - Google Patents

自润滑耐磨钛基复合材料制件及其制备方法 Download PDF

Info

Publication number
CN114411009A
CN114411009A CN202111387470.4A CN202111387470A CN114411009A CN 114411009 A CN114411009 A CN 114411009A CN 202111387470 A CN202111387470 A CN 202111387470A CN 114411009 A CN114411009 A CN 114411009A
Authority
CN
China
Prior art keywords
self
lubricating
powder
wear
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111387470.4A
Other languages
English (en)
Inventor
路新
高营
张策
刘鑫
张帅华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202111387470.4A priority Critical patent/CN114411009A/zh
Publication of CN114411009A publication Critical patent/CN114411009A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0057Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on B4C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0089Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种自润滑耐磨钛基复合材料制件及其制备方法,该制件的组织为基体相以及弥散分布在基体相周围的增强相和自润滑相;其中,基体相为α‑Ti,增强相为SiC、B4C、石墨中的至少一种,自润滑相为MoS2、WS2、Ti3SiC2、h‑BN中的至少一种;该制件的摩擦系数为0.15~0.30,硬度为590~1305HV。本发明中的自润滑耐磨钛基复合材料制件晶粒被细化,致密度更高,硬度等力学性能优异,摩擦系数远低于钛合金基体材料,且相同工况下的磨损量更小,耐磨性高,材料的综合性能突出。

Description

自润滑耐磨钛基复合材料制件及其制备方法
技术领域
本发明涉及新材料设计与制备技术领域,具体涉及一种自润滑耐磨钛基复合材料制件及其制备方法。
背景技术
钛及其合金属于轻质高强材料,其密度(4507kg/m3)仅次于镁合金(1738kg/m3)与铝合金(2700kg/m3),低于钢铁(7874kg/m3)、铜合金(8920kg/m3)、钨合金(19250kg/m3)等材料,相同尺寸的零部件其质量更小,且其强度高于镁合金和铝合金。钛及其合金的硬度、韧性高于镁合金和铝合金。钛及其合金的热膨胀系数低,且远低于钢铁、铜合金、铝合金等材料,制备成的零部件尺寸精度高,较大的温差下其尺寸的变化量小。并且钛及其合金无磁性,疲劳性能和抗辐照能力较强。综上所述,除去硬度、耐磨性等性能外,钛及其合金综合性能优异,因此其在航空航天、生物医疗以及先进工程材料方面有着突出的竞争力。多年来国内外对粉末冶金钛合金方法的研究表明,钛及钛合金通过粉末冶金方法制造的配件不仅在航空航天和汽车工业有着广泛的应用前景,而且可以采用由钛及钛合金粉末制备各种用途的成型件,广泛用于食品、化工和医药等许多工业部门。
但钛及其合金的硬度低、耐磨性差,在零部件使用的过程中易磨损,进而导致零部件的咬合失稳,引起仪器设备的响动甚至抖动等。
发明内容
为了解决现有技术中的上述不足,本发明的主要目的在于提供一种自润滑耐磨钛基复合材料制件及其制备方法,该自润滑耐磨钛基复合材料制件晶粒被细化,致密度更高,硬度等力学性能优异,摩擦系数远低于钛合金基体材料,且相同工况下的磨损量更小,耐磨性高,材料的综合性能突出。
为了实现上述目的,根据本发明的第一方面,提供了一种自润滑耐磨钛基复合材料制件。
该自润滑耐磨钛基复合材料制件的组织为基体相以及弥散分布在基体相周围的增强相和自润滑相;
其中,所述基体相为α-Ti;所述增强相为SiC、B4C、石墨中的至少一种,所述自润滑相为MoS2、WS2、Ti3SiC2、h-BN中的至少一种;
所述制件的摩擦系数为0.15~0.30,硬度为590~1305HV。
进一步的,所述制件的磨损体积≤0.065mm3,磨损率为1.0×10-16~1.2×10-12m3/N·m,磨痕宽度为350~1200μm。
进一步的,所述制件的致密度≥99.0%,抗拉强度为650~800MPa,规定塑性延伸强度为550~700MPa,断后伸长率为3.0%~6.0%,断面收缩率为3.0%~7.0%。
进一步的,所述制件的摩擦系数为0.17~0.22,硬度为945~1305HV,磨损体积≤0.047mm3,磨损率为1.45×10-16~1.39×10-12m3/N·m,磨痕宽度为470~590μm,致密度≥99.3%,抗拉强度为680~770MPa,规定塑性延伸强度为550~650MPa,断后伸长率为3.8%~5.0%,断面收缩率为4.0%~5.5%。
进一步的,所述制件由以下粉末制成:按质量百分比计,75.0~95.0%钛基体粉末、1.0~10.0%增强相粉末和4.0~15.0%自润滑相粉末;其中,
所述钛基体粉末为Ti、TC4、TA15或TA17粉末;
所述增强相粉末为SiC、B4C、石墨粉末中的至少一种;优选为SiC与B4C的组合,且二者质量百分比为1:1;
所述自润滑相粉末为MoS2、WS2、Ti3SiC2、h-BN粉末中的至少一种:优选为任意三种或四种自润滑相粉末的互相组合,且任意三种的质量百分比为1:1:1,任意四种的质量百分比为1:1:1:1。
进一步的,所述制件由以下粉末制成:按质量百分比计,79.0~86.0%钛基体粉末、3.0~7.0%增强相粉末和5.0~7.0%自润滑相粉末。
进一步的,所述制件的组织包括:按质量百分比计,75.0~95.0%基体相、1.0~10.0%增强相和4.0~15.0%自润滑相。
进一步的,所述钛基体粉末的粒径为1~60μm;所述增强相粉末和所述自润滑相粉末的粒径均为1~10μm。
为了实现上述目的,根据本发明的第二方面,提供了一种自润滑耐磨钛基复合材料制件的制备方法。
制备上述的自润滑耐磨钛基复合材料制件的方法包括以下步骤:
将钛基体粉末、增强相粉末以及自润滑相粉末混合进行放电等离子烧结,得到所述的自润滑耐磨钛基复合材料制件。
进一步的,所述放电等离子烧结的工艺参数为:升温速率100~120℃/min,烧结温度950~1150℃,烧结压力35~65MPa,保压时间5~15min,真空度10~30Pa。
进一步的,所述混合采用多轴辊磨机或行星式球磨机,球磨转速为50~150r/min,球磨时间12~24h;
进一步的,所述混合采用的球磨介质为钛球、玛瑙球、不锈钢球或氧化锆球。
本发明所制备的自润滑耐磨钛基复合材料制件的结构致密、均匀,致密度可达99.0%以上(99.0%~99.9%),硬度可达590~1305HV(5.5~13.0GPa),抗拉强度可达650~800MPa,规定塑性延伸强度可达550~700MPa,断后伸长率可达3.0%~6.0%,断面收缩率可达3.0%~7.0%,摩擦系数可优化至0.15~0.30,磨损体积降低至0.065mm3以下,磨损率优化至为1.0×10-16~1.2×10-12m3/N·m,磨痕宽度为350~1200μm。
本发明的有益效果:
1、所采用的钛基体粉末、增强相粉末以及自润滑相粉末的成本较低,来源广泛,降低生产成本;并且采用简单、高效、快捷的辊磨或行星式球磨混合,进一步降低生产成本,减少材料的制备工序。
2、采用放电等离子烧结所制备的材料的结构与性能增益效果突出,生产工艺简单且生产周期短;同时,本发明充分利用放电等离子烧结技术升温速率快、保温保压时间短的优势,使自润滑材料在升温与保温过程中的不发生分解,保证MoS2、WS2等二维结构的自润滑材料的化学结构的稳定性、完整性和自润滑作用。
3、制备的自润滑耐磨钛基复合材料制件中增强相与自润滑相呈现弥散均匀分布,晶粒被细化,致密度更高,硬度等力学性能优异,摩擦系数远低于钛合金基体材料,且相同工况下的磨损量更小,耐磨性高,材料的综合性能突出。
4、该自润滑耐磨钛基复合材料制件可用于齿轮件、传动件、组合件等零部件,且在其服役过程中可少量添加润滑液甚至不使用润滑液。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的自润滑耐磨钛基复合材料制件的制备工艺流程图;
图2a为对比例1中制得的TC4材料制件的SEM形貌(金相形貌);
图2b为本发明实施例4中制得的自润滑耐磨钛基复合材料制件的SEM形貌(金相形貌);
图2c为本发明实施例7中制得的自润滑耐磨钛基复合材料制件的SEM形貌(金相形貌);
图2d为本发明实施例9中制得的自润滑耐磨钛基复合材料制件的SEM形貌(金相形貌);
图3为对比例1中制得的TC4材料制件的电子探针(EPMA)结果;其中,图3a为选取的EPMA分析区域;图3b为Ti元素的EPMA结果,Ti元素分布在晶粒内部以及板条之间;图3c为Al元素的EPMA结果,Al元素分布在晶粒内部以及顺着板条形貌的位置,呈现与板条形貌相近的方向;图3d为V元素的EPMA结果,V元素弥散均匀分布在板条形貌中;
图4为本发明实施例4中制得的自润滑耐磨钛基复合材料制件的电子探针(EPMA)结果;其中,图4a为选取的EPMA分析区域;图4b为Si元素的EPMA结果,Si元素分布在增强相的内部;图4c为C元素的EPMA结果,C元素的位置与Si相近,均布在增强相中;图4d为Mo元素的EPMA结果,Mo元素弥散均匀分布在自润滑相周围,区别于Si和C元素的位置;图4e为W元素的EPMA结果,W元素分布在自润滑相内部;图4f为S元素的EPMA结果,S元素均匀弥散分布在自润滑相周围,与W和Mo元素的位置相同;
图5为对比例1中制得的TC4材料制件与本发明实施例制得的自润滑耐磨钛基复合材料制件的摩擦系数对比图;
图6a为对比例1中制得的TC4材料制件的磨痕的SEM形貌;
图6b为本发明实施例4中制得的自润滑耐磨钛基复合材料制件的磨痕的SEM形貌;
图6c为本发明实施例7中制得的自润滑耐磨钛基复合材料制件的磨痕的SEM形貌;
图6d为本发明实施例9中制得的自润滑耐磨钛基复合材料制件的磨痕的SEM形貌。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
目前自润滑耐磨材料的研究集中在Ag、Al、Cu、Fe和Ni等金属材料上,其摩擦系数可分别优化至0.07~0.20、0.008~0.40、0.07~0.40、0.05~0.55和0.08~0.24,调控摩擦系数与耐磨性能的材料包括Ag、Cu、石墨烯、MoS2、WS2等多种材料。而关于以钛材料为基体材料的自润滑耐磨材料的研究较少,仅有极少量研究基于TiAl和TC4材料,其摩擦系数分别优化至0.32~0.55和0.30~0.50。为此,本发明提供了一种自润滑耐磨钛基复合材料制件的制备方法,以期能够提高钛材料作为基体材料的耐磨性,使其具有较好的综合性能。
如图1所示,该自润滑耐磨钛基复合材料制件的制备方法包括以下步骤:
(1)按比例称量钛基体粉末、增强相粉末以及自润滑相粉末,并进行机械混合,得到混合均匀的复合材料粉末。其中,钛基体粉末、增强相粉末和自润滑相粉末占复合材料粉末的质量百分比分别为75.0~95.0%、1.0~10.0%和4.0~15.0%。
钛基体粉末为Ti、TC4、TA15或TA17粉末,粒径为1~60μm。
增强相粉末为SiC、B4C、石墨粉末中的至少一种,采用微米级粉末,粒径为1~10μm。
作为一种优选实施方式,增强相粉末为SiC与B4C的组合,且二者质量百分比为1:1。
自润滑相粉末为MoS2、WS2、Ti3SiC2、h-BN粉末中的至少一种,采用微米级粉末,粒径为1~10μm。
作为一种优选实施方式,自润滑相粉末为MoS2、WS2、Ti3SiC2、h-BN粉末中任意三种或四种的互相组合,且其质量百分比为1:1:1或1:1:1:1。
机械混合采用多轴辊磨机或行星式球磨机,球磨介质为钛球、玛瑙球、不锈钢球或氧化锆球,球磨转速为50~150r/min,球磨时间12~24h,以获得混合均匀的复合材料粉末。
(2)将复合材料粉末置于石墨模具中于放电等离子炉中进行烧结,得到自润滑耐磨钛基复合材料制件。其中,放电等离子烧结的工艺参数为:升温速率100~120℃/min,烧结温度950~1150℃,烧结压力35~65MPa,保压时间5~15min,真空度10~30Pa。
(3)将自润滑耐磨钛基复合材料制件进行机械加工处理,得到所需的自润滑耐磨钛基复合材料零件。
本发明还提供了一种自润滑耐磨钛基复合材料制件,其采用上述的制备工艺制备得到。
当选用上述Ti、TC4、TA15或TA17粉末作为基体材料时,该自润滑耐磨钛基复合材料制件的组织为α-Ti基体相以及弥散分布在基体相周围的增强相和自润滑相;其中,增强相为SiC、B4C、石墨中的至少一种,自润滑相为MoS2、WS2、Ti3SiC2、h-BN中的至少一种。
以下结合具体实施例对本发明中自润滑耐磨钛基复合材料制件及其制备工艺进行详细说明。
实施例1
一种自润滑耐磨钛基复合材料制件,基体粉末为TC4,粒度D50=27.0μm,占比86.0wt.%;增强相粉末为SiC,粒度D50=5.0μm,占比7.0wt.%;自润滑材料为MoS2,粒度D50=2.6μm,占比7.0wt%。首先利用多轴辊磨机进行机械混合,混合介质为氧化锆球,球磨转速为100r/min,球磨时间为24h;随后将机械混合得到的复合材料粉末置于石墨模具中,并放入放电等离子炉中进行烧结,烧结参数为:烧结温度1100℃,烧结压力40MPa,保压时间10min,升温速率100℃/min,真空度20Pa,制得自润滑耐磨钛基复合材料制件。
实施例2~9采用与实施例1相同的制备工艺,所不同之处在于使用的原料粉末及规格、机械混合以及放电等离子烧结工艺参数等,现将实施例1~9自润滑耐磨钛基复合材料制件的制备方法中的各工艺参数进行汇总,详见表1~表3。
表1实施例1~9中原料粉末及其规格汇总
Figure BDA0003367529660000101
表2实施例1~9中机械混合工艺参数汇总
Figure BDA0003367529660000111
表3实施例1~9中放电等离子烧结工艺参数汇总
Figure BDA0003367529660000112
同时,本发明中还对实施例1~9中所得到的自润滑耐磨钛基复合材料制件的力学性能和摩擦磨损性能进行检测,其中,摩擦磨损性能的测试采用球盘式摩擦磨损实验机,并采用行业标准方法进行,结果详见表4和表5。
表4实施例1~9中自润滑耐磨钛基复合材料制件的力学性能汇总
Figure BDA0003367529660000121
表5实施例1~9中自润滑耐磨钛基复合材料制件的摩擦磨损性能汇总
Figure BDA0003367529660000122
结合表4和表5可以得出,本发明实施例中所制备得到的自润滑耐磨钛基复合材料制件的结构致密、均匀,致密度达到99.0%以上(99.0%~99.9%),基本可达全致密状态,硬度可达590~1305HV(5.5~13.0GPa),抗拉强度可达650~800MPa,规定塑性延伸强度可达550~700MPa,断后伸长率可达3.0%~6.0%,断面收缩率可达3.0%~7.0%,摩擦系数可优化至0.15~0.30,磨损体积降低至0.065mm3以下,磨损率优化至为1.0×10-16~1.2×10-12m3/N·m。
以下将通过对比例对本发明实施例中制备得到的自润滑耐磨钛基复合材料制件的力学性能和摩擦磨损性能作详细说明。
对比例1
一种TC4材料制件,无增强材料和自润滑材料,钛基体材料占比100%,钛基体材料粒度D50=27.0μm。首先利用多轴辊磨机进行机械混合,混合介质为氧化锆球,球磨转速为100r/min,球磨时间为24h;随后将TC4粉末置于石墨模具中于放电等离子炉中进行烧结,烧结参数为:烧结温度1100℃,烧结压力35MPa,保压时间5min,升温速率100℃/min,真空度20Pa,得到TC4材料制件。
对比例2
一种钛基复合材料制件,钛基体材料为TC4,粒度D50=27.0μm,占比93.0wt.%;增强材料为SiC,粒度D50=5.0μm,占比7.0wt.%;无自润滑材料。首先利用多轴辊磨机进行机械混合,混合介质为氧化锆球,球磨转速为100r/min,球磨时间为24h;随后将复合材料粉末置于石墨模具中于放电等离子炉中进行烧结,烧结参数为:烧结温度为1100℃,烧结压力为40MPa,保压时间为10min,升温速率为100℃/min,真空度20Pa,得到钛基复合材料制件。
对比例3
一种钛基复合材料制件,钛基体材料为TC4,粒度D50=27.0μm,占比93.0wt.%;无增强材料;自润滑材料为MoS2,粒度D50=2.6μm,占比7.0wt%。首先利用多轴辊磨机进行机械混合,混合介质为氧化锆球,球磨转速为100r/min,球磨时间为24h;随后将复合材料粉末置于石墨模具中于放电等离子炉中进行烧结,烧结参数为:烧结温度为1100℃,烧结压力为40MPa,保压时间为10min,升温速率为100℃/min,真空度20Pa,得到钛基复合材料制件。
同时,本发明还将对比例1~3中所得到的钛基复合材料制件的力学性能和摩擦磨损性能进行检测,结果详见表6和表7。
表6对比例1~3中钛基复合材料制件的力学性能汇总
Figure BDA0003367529660000141
其中,对比例1中烧结后得到的TC4材料制件的金相形貌如图2a所示,结合表6和图2a可以看出,TC4材料制件的致密度较高,可达全致密状态;并且材料的晶粒形貌呈现板条状,材料的晶界清晰可见。
图2b、图2c和图2d分别示出了本发明实施例4、实施例7和实施例9中制得的自润滑耐磨钛基复合材料制件的金相形貌,结合表4可以看出,本发明中自润滑耐磨钛基复合材料制件的致密度较高,未观察到孔洞的存在,可达全致密状态;并且与对比例1中的TC4材料制件相比,本发明实施例中的自润滑耐磨钛基复合材料制件的晶粒被细化,板条与针状形貌均存在,晶界更为清晰;而且所添加的增强相材料和自润滑相材料的形貌能够与基体材料区分并且可以清晰观察出来,分布较为均匀。
对比例1中烧结后得到的TC4材料制件的电子探针(EPMA)结果如图3所示,其中,结合图3a、图3b、图3c和图3d可知,TC4材料制件的Ti、Al、V元素弥散均匀分布,Ti元素分布在晶粒内部以及板条之间;Al元素分布在晶粒内部以及顺着板条形貌的位置,呈现与板条形貌相近的方向;V元素弥散均匀分布在板条形貌中。
图4示出了本发明实施例4中自润滑耐磨钛基复合材料制件的EPMA结果,结合图4a、图4b、图4c、图4d、图4e和图4f可知,Ti、Al、V元素均匀分布在TC4基体的晶粒周围与晶粒内部,所添加的SiC、MoS2、WS2粉末所含元素均可检测到,特别是W、Mo、S三种元素所处的位置相同,说明所添加的自润滑相粉末在放电等离子烧结的过程中未发生分解或未完全分解,依然以化合物的形式存在,即能够起到自润滑的作用。
表7对比例1~3中钛基复合材料制件的摩擦磨损性能汇总
Figure BDA0003367529660000151
一般而言,摩擦系数越小,磨痕宽度越宽,磨损体积越小,磨损率越低,材料的耐磨性越好。
从表7可以看出,对比例1中的TC4材料制件以及对比例2和对比例3中的钛基复合材料制件的摩擦系数均高于0.5;其中,对比例1中TC4材料制件的摩擦系数为0.51,其磨损过程中的初始磨损过程极短,快速进入稳定磨损阶段。图6a示出了对比例1中TC4材料制件的磨痕形貌,其中磨痕的宽度为688.2μm,磨损体积为0.099mm3,磨损率为2.90×10-12m3/N·m,可明显观察到犁沟、划痕、粘着点以及磨屑的存在,不能满足作为自润滑耐磨钛基复合材料制件的使用要求。
本发明的实施例中通过多种钛基体材料、增强材料和自润滑耐磨材料的组合,可制备出摩擦系数低、耐磨性高的自润滑耐磨钛基复合材料制件。并且所制备得到的自润滑耐磨钛基复合材料制件在硬度、摩擦系数、耐磨性等方面远远优于基体材料。结合表5、图5、图6b、图6c以及图6d可以看出,本发明实施例中制得的自润滑耐磨钛基复合材料制件的摩擦系数≤0.33,均小于对比例1至对比例3中制得材料的摩擦系数,并且与对比例1相比,所制得的最优自润滑耐磨钛基复合材料制件的硬度增加200%左右,摩擦系数降低75%左右,磨损体积大幅度降低,耐磨性大幅度提升;与对比例2~3相比,所制得的最优自润滑耐磨钛基复合材料制件的硬度增加100%左右,摩擦系数降低80%左右,磨损体积大幅度降低,耐磨性大幅度提升,满足自润滑与耐磨的要求。
此外,虽然本发明实施例中制得的自润滑耐磨钛基复合材料制件的强度与塑性相对于对比例1中制得的TC4材料制件的强度与塑性有所降低,与对比例2和对比例3中制得的钛基复合材料制件的强度和塑性持平,但也能够满足钛基复合材料的使用要求。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种自润滑耐磨钛基复合材料制件,其特征在于,所述制件的组织为基体相以及弥散分布在基体相周围的增强相和自润滑相;
其中,所述基体相为α-Ti;增强相为SiC、B4C、石墨中的至少一种;所述自润滑相为MoS2、WS2、Ti3SiC2、h-BN中的至少一种;
所述制件的摩擦系数为0.15~0.30,硬度为590~1305HV。
2.根据权利要求1所述的自润滑耐磨钛基复合材料制件,其特征在于,所述制件的磨损体积≤0.065mm3,磨损率为1.0×10-16~1.2×10-12m3/N·m,磨痕宽度为350~1200μm。
3.根据权利要求1或2所述的自润滑耐磨钛基复合材料制件,其特征在于,所述制件的致密度≥99.0%,抗拉强度为650~800MPa,规定塑性延伸强度为550~700MPa,断后伸长率为3.0%~6.0%,断面收缩率为3.0%~7.0%。
4.根据权利要求1所述的自润滑耐磨钛基复合材料制件,其特征在于,所述制件由以下粉末制成:按质量百分比计,75.0~95.0%钛基体粉末、1.0~10.0%增强相粉末和4.0~15.0%自润滑相粉末;其中,
所述钛基体粉末为Ti、TC4、TA15或TA17粉末;
所述增强相粉末为SiC、B4C、石墨粉末中的至少一种;优选为SiC与B4C的组合,且二者质量百分比为1:1;
所述自润滑相粉末为MoS2、WS2、Ti3SiC2、h-BN粉末中的至少一种:优选为任意三种或四种自润滑相粉末的互相组合,且任意三种的质量百分比为1:1:1,任意四种的质量比为1:1:1:1。
5.根据权利要求4所述的自润滑耐磨钛基复合材料制件,其特征在于,所述制件由以下粉末制成:按质量百分比计,79.0~86.0%钛基体粉末、3.0~7.0%增强相粉末和5.0~7.0%自润滑相粉末。
6.根据权利要求4所述的自润滑耐磨钛基复合材料制件,其特征在于,所述钛基体粉末的粒径为1~60μm;所述增强相粉末和所述自润滑相粉末的粒径均为1~10μm。
7.一种制备权利要求1-6任一项所述的自润滑耐磨钛基复合材料制件的方法,其特征在于,包括以下步骤:
将钛基体粉末、增强相粉末以及自润滑相粉末混合进行放电等离子烧结,得到所述的自润滑耐磨钛基复合材料制件。
8.根据权利要求7所述的方法,其特征在于,所述放电等离子烧结的工艺参数为:升温速率100~120℃/min,烧结温度950~1150℃,烧结压力35~65MPa,保压时间5~15min,真空度10~30Pa。
9.根据权利要求7所述的方法,其特征在于,所述混合采用多轴辊磨机或行星式球磨机,球磨转速为50~150r/min,球磨时间12~24h。
10.根据权利要求7所述的方法,其特征在于,所述混合采用的球磨介质为钛球、玛瑙球、不锈钢球或氧化锆球。
CN202111387470.4A 2021-11-22 2021-11-22 自润滑耐磨钛基复合材料制件及其制备方法 Pending CN114411009A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111387470.4A CN114411009A (zh) 2021-11-22 2021-11-22 自润滑耐磨钛基复合材料制件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111387470.4A CN114411009A (zh) 2021-11-22 2021-11-22 自润滑耐磨钛基复合材料制件及其制备方法

Publications (1)

Publication Number Publication Date
CN114411009A true CN114411009A (zh) 2022-04-29

Family

ID=81265241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111387470.4A Pending CN114411009A (zh) 2021-11-22 2021-11-22 自润滑耐磨钛基复合材料制件及其制备方法

Country Status (1)

Country Link
CN (1) CN114411009A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011831A (zh) * 2022-06-02 2022-09-06 北京科技大学广州新材料研究院 一种耐磨钛合金复合材料及其制备方法
CN116144978A (zh) * 2022-12-13 2023-05-23 淮阴工学院 一种原位宽温域耐磨钛合金复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492871A (zh) * 2011-12-19 2012-06-13 武汉理工大学 一种TiAl金属间化合物基固体自润滑复合材料及其制备方法
US20130252859A1 (en) * 2012-03-20 2013-09-26 University Of North Texas Solid lubricating, hard and fracture resistant composites for surface engineering applications
CN105861876A (zh) * 2016-06-03 2016-08-17 武汉理工大学 一种新型TiAl基自润滑复合材料及制备方法
CN108754275A (zh) * 2018-05-30 2018-11-06 燕山大学 一种TiAl基耐高温自润滑复合材料及其制备方法
CN110629097A (zh) * 2019-10-29 2019-12-31 济南大学 一种新型钛铝基自润滑材料及其制备方法
CN111266576A (zh) * 2020-01-15 2020-06-12 河南工程学院 一种tc4基自润滑材料及其制备方法
CN111850337A (zh) * 2020-07-31 2020-10-30 西安建筑科技大学 一种高温高强耐磨自润滑材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492871A (zh) * 2011-12-19 2012-06-13 武汉理工大学 一种TiAl金属间化合物基固体自润滑复合材料及其制备方法
US20130252859A1 (en) * 2012-03-20 2013-09-26 University Of North Texas Solid lubricating, hard and fracture resistant composites for surface engineering applications
CN105861876A (zh) * 2016-06-03 2016-08-17 武汉理工大学 一种新型TiAl基自润滑复合材料及制备方法
CN108754275A (zh) * 2018-05-30 2018-11-06 燕山大学 一种TiAl基耐高温自润滑复合材料及其制备方法
CN110629097A (zh) * 2019-10-29 2019-12-31 济南大学 一种新型钛铝基自润滑材料及其制备方法
CN111266576A (zh) * 2020-01-15 2020-06-12 河南工程学院 一种tc4基自润滑材料及其制备方法
CN111850337A (zh) * 2020-07-31 2020-10-30 西安建筑科技大学 一种高温高强耐磨自润滑材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
王迎军: "《新型材料科学与技术》", 31 October 2016, 华南理工大学出版社 *
薛志勇: "《充芯连铸铜包铝复合材料研究》", 31 December 2016, 科学技术文献出版社 *
谷士强: "《冶金机械安装与维护》", 31 May 1995, 冶金工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011831A (zh) * 2022-06-02 2022-09-06 北京科技大学广州新材料研究院 一种耐磨钛合金复合材料及其制备方法
CN116144978A (zh) * 2022-12-13 2023-05-23 淮阴工学院 一种原位宽温域耐磨钛合金复合材料及其制备方法

Similar Documents

Publication Publication Date Title
Woydt et al. The tribological and mechanical properties of niobium carbides (NbC) bonded with cobalt or Fe3Al
Cheng et al. Tribological properties of nano/ultrafine-grained FeCoCrNiMnAlx high-entropy alloys over a wide range of temperatures
Yan et al. Selective laser melting of WC reinforced maraging steel 300: Microstructure characterization and tribological performance
Bolzoni et al. Understanding the properties of low-cost iron-containing powder metallurgy titanium alloys
Chen et al. Novel cermet material of WC/multi-element alloy
KR101831754B1 (ko) 인성 매트릭스 재료 중에 강화된 인성 코팅 경화 입자
CN107829007B (zh) 一种高熵合金和粉末冶金法制备高熵合金块体的方法
Tian et al. Microstructure and tribological properties of titanium matrix nanocomposites through powder metallurgy using graphene oxide nanosheets enhanced copper powders and spark plasma sintering
Li et al. Microstructure and properties of Ti (C, N)–TiB2–FeCoCrNiAl high-entropy alloys composite cermets
WO2004029313A1 (ja) 高硬度・高強度で強靭なナノ結晶金属バルク材及びその製造方法
CN114411009A (zh) 自润滑耐磨钛基复合材料制件及其制备方法
CN111286664A (zh) 一种以高熵合金为粘结相的超细碳化钨硬质合金及其制备方法
CN105063394B (zh) 一种钛或钛合金材料的制备方法
Luo et al. Recent advances in the design and fabrication of strong and ductile (tensile) titanium metal matrix composites
Xia et al. Cobalt-doped Ti–48Al–2Cr–2Nb alloy fabricated by cold compaction and pressureless sintering
Bao et al. High strength conductive bulk Cu-based alloy/metallic glass composites fabricated by spark plasma sintering
Lin et al. Improvement in densification process and properties of Ti (C, N)-based cermets with vanadium carbide addition
CN114411013B (zh) 自润滑耐磨钛基复合材料制件及其制备方法
CN109576546A (zh) 一种高强韧性无磁Ti(C,N)基金属陶瓷的制备方法
Liu et al. Microstructure and mechanical behavior of spark plasma sintered TiB2/Fe-15Cr-8Al-20Mn composites
WO2013058338A1 (ja) ニッケル基金属間化合物複合焼結材料およびその製造方法
Zhang et al. Effect of interstitial carbides on tribological properties of Co21Cr21Fe21Ni21V14. 5C1. 5 high entropy alloy at elevated temperature
Suwanpreecha et al. fatigue properties of Ti-6Al-4V alloys fabricated by metal injection moulding
Rajadurai et al. Effect of various sintering methods on microstructures and mechanical properties of titanium and its alloy (Ti–Al–V–X): A review
JP6667264B2 (ja) 高剛性鉄基焼結合金の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220429