CN114395017A - Preparation method and application of SARS-CoV-2 virus-like particle - Google Patents

Preparation method and application of SARS-CoV-2 virus-like particle Download PDF

Info

Publication number
CN114395017A
CN114395017A CN202111271508.1A CN202111271508A CN114395017A CN 114395017 A CN114395017 A CN 114395017A CN 202111271508 A CN202111271508 A CN 202111271508A CN 114395017 A CN114395017 A CN 114395017A
Authority
CN
China
Prior art keywords
cov
sars
plasmid
virus
fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111271508.1A
Other languages
Chinese (zh)
Other versions
CN114395017B (en
Inventor
戴俊彪
马英新
毛国斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN202111271508.1A priority Critical patent/CN114395017B/en
Priority to PCT/CN2021/138037 priority patent/WO2023070873A1/en
Publication of CN114395017A publication Critical patent/CN114395017A/en
Application granted granted Critical
Publication of CN114395017B publication Critical patent/CN114395017B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20023Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention relates to a composition for preparing SARS-CoV-2 virus-like particles, comprising either or both of a first plasmid comprising a Stru Δ S fragment, and a third plasmid selected from a second plasmid comprising an S fragment, comprising a packaging signal fragment of SARS-CoV-2 virus; the preparation method of the composition comprises the steps of splitting the Stru delta S fragment, the S fragment and/or the ORF1ab packaging signal fragment into short DNA fragments with homologous sequences between adjacent fragments, and carrying out homologous recombination with a linearized plasmid vector in a yeast cell. The invention also relates to a method for preparing SARS-CoV-2 virus-like particles by using the composition, the prepared SARS-CoV-2 virus-like particles, and the application of the composition in preparing vaccine for preventing or treating SARS-CoV-2 virus infection and in vitro research for SARS-CoV-2 virus infected cells.

Description

Preparation method and application of SARS-CoV-2 virus-like particle
Technical Field
The invention relates to the technical field of molecular biology, in particular to a preparation method and application of SARS-CoV-2 virus-like particles.
Background
A virus-like particle (VLP) is a highly structured protein particle that is self-assembled from single or multiple structural proteins of a virus. VLPs do not achieve replicative reproduction within the host, but they contain some or all of the protein and still give rise well to a strong immune response by the host. Thus, VLPs may serve as a potentially highly effective vaccine formulation. In general, all VLPs can form unique structures, which are covered with repetitive protein structures, and their strong immunogenicity makes them useful as vaccines. VLPs are of great interest in vaccine research, and currently marketed or under development, among VLP vaccines, the human VLP vaccine is mainly HBV vaccine, HPV vaccine and HEV vaccine, while the veterinary VLP vaccine is used for prevention of porcine circovirus type 2. The human VLP vaccine under research also relates to various viruses including influenza virus, AIDS virus, Ebola virus and the like, and the veterinary VLP vaccine under research also comprises foot-and-mouth disease virus, porcine parvovirus vaccine, classical swine fever virus and the like. However, most of VLPs currently contain only a part or all of structural proteins, and research on non-structural proteins, accessory proteins, and the like is limited, and immune responses caused as vaccines are limited.
The novel coronavirus (SARS-CoV-2) is a single-stranded RNA virus, has high virus variation capacity, and the variant strain has high virus infectivity, so that the development of the vaccine is particularly important. Although SARS-CoV-2 vaccines based on various technologies have entered the clinical stage, SARS-CoV-2VLP based vaccines have been less studied. One of the key reasons is the lack of a simple, highly efficient platform for the synthesis and preparation of SARS-CoV-2 VLP.
Disclosure of Invention
In view of the technical problems, the invention provides a method for de novo artificial synthesis and preparation of SARS-CoV-2VLP, comprising the steps of splitting SARS-CoV-2 genome into a plurality of fragments, synthesizing the fragments and assembling the fragments on a carrier, and transfecting a packaging cell to obtain the VLP.
The first aspect of the present invention provides a composition for preparing SARS-CoV-2 virus-like particles, comprising the following (a), and further comprising any one or any two selected from the following (b) and (c):
(a) a first plasmid comprising a Stru Δ S fragment, said Δ S fragment comprising a nucleic acid sequence encoding at least one structural protein of SARS-CoV-2 virus or a mutant thereof and/or at least one accessory protein or a mutant thereof, and said Δ S fragment not comprising a nucleic acid sequence encoding an S protein of SARS-CoV-2 virus or a mutant thereof;
(b) a second plasmid comprising an S fragment comprising a nucleic acid sequence encoding an S protein of SARS-CoV-2 virus or a mutant thereof;
(c) a third plasmid comprising a packaging signal fragment of SARS-CoV-2 virus, said packaging signal fragment comprising a packaging signal sequence of SARS-CoV-2 virus.
In some embodiments, the mutation of the mutant of the S protein relative to the S protein of the SARS-CoV-2 virus comprises N331Q, N501Y, D614G, and/or P681H.
In some embodiments, the Stru Δ S fragment comprises any one of:
(1) nucleic acid sequences encoding all structural proteins and all accessory proteins of the SARS-CoV-2 virus except the S protein;
(2) at least one of the structural and accessory proteins has a mutation relative to wild-type SARS-CoV-2 virus compared to (1); and
(3) in comparison with (1), any one of the structural protein and the accessory protein is deleted.
In some embodiments, the packaging signal sequence is nucleotide 19900-20000 of NCBI sequence No. NC-045512.2 or nucleotide 19773-20335 of NCBI sequence No. NC-045512.2.
In some embodiments, the packaging signal fragment comprises ORF1ab of the SARS-CoV-2 viral genome.
Another aspect of the present invention provides a method for preparing the above composition, comprising preparing the first plasmid, the second plasmid and/or the third plasmid by the following methods, respectively:
(1) splitting the Stru delta S fragment, the S fragment and/or the ORF1ab packaging signal fragment into short DNA fragments with homologous sequences between adjacent fragments respectively;
(2) transferring the DNA short fragment and the linearized plasmid vector obtained in the step (1) into a yeast cell, and performing homologous recombination to respectively obtain a first plasmid, a second plasmid and/or a third plasmid.
In another aspect of the present invention, there is provided a method for preparing SARS-CoV-2 virus-like particles, comprising: transfecting a packaging cell with the composition of any one of the above to obtain SARS-CoV-2 virus-like particles.
In some embodiments, the method of making, further comprises making the first plasmid, the second plasmid, and/or the third plasmid by:
(1) splitting the Stru delta S fragment, the S fragment and/or the packaging signal fragment into short DNA fragments with homologous sequences between adjacent fragments respectively;
(2) transferring the DNA short fragment and the linearized plasmid vector obtained in the step (1) into a yeast cell, and performing homologous recombination to respectively obtain a first plasmid, a second plasmid and/or a third plasmid.
In some embodiments, the method of making further comprises separately amplifying the first, second, and/or third plasmids in e.
Another aspect of the present invention provides SARS-CoV-2 virus-like particles prepared by the above-described preparation method.
Another aspect of the present invention provides the use of SARS-CoV-2 virus-like particles prepared from the above composition or prepared by the above preparation method in the preparation of a vaccine for preventing or treating SARS-CoV-2 virus infection.
Another aspect of the present invention provides the use of the SARS-CoV-2 virus-like particle prepared from the above composition or by the above preparation method in vitro studies for SARS-CoV-2 virus infected cells.
The study of SARS-CoV-2 virus infected cell can be the study of VLP interaction with cell, the study of virus infection process to cell and/or the study of virus component effect.
Compared with the prior art, the invention has the following advantages and effects:
A. the invention uses the mammal cell eukaryotic expression system to express the structural protein, non-structural protein and auxiliary protein of SARS-CoV-2 to assemble VLP, which can be used in vaccine, and the vaccine preparation method does not involve live virus. Compared with inactivated virus vaccines and attenuated live vaccines, the method has better safety; the method is more immunogenic than polypeptide or nucleic acid vaccines.
B. The invention adopts a method of splitting virus genome, firstly synthesizes small fragment genes, and then assembles the genome through a yeast homologous recombination system, and the method is simple, convenient, rapid and high in efficiency.
C. The VLP has complete virus particle morphology including structural protein, non-structural protein and the like by utilizing a genome splitting strategy, has strong immunogenicity, and is expected to be developed into an efficient vaccine with cross protection efficacy.
Drawings
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings, wherein like elements are numbered alike, and wherein:
FIG. 1 shows the production of SARS-CoV-2 pseudovirus. (A) Full-length SARS-CoV-2 genome and split part protocol, including SARS-CoV-2S, ORF1ab and Stru Δ S genome. (B) The isolated SARS-CoV-2 genome was assembled in yeast to construct plasmids SARS-CoV-2S, ORF1ab and Stru Δ S. (C) SARS-CoV-2 pseudovirus was obtained by co-transfection of plasmids SARS-CoV-2S, ORF1ab and Stru. DELTA.S. The SARS-CoV-2 pseudovirus cannot produce progeny virus after infecting 293T/hACE2 cells.
FIG. 2 shows the construction and characterization of SARS-CoV-2 pseudovirus. (A) Confocal microscopy images of 293T cells co-transfected with plasmids SARS-CoV-2S, ORF1ab-mCherry and Stru. DELTA.S-EGFP 24 hours post-transfection. (B) SARS-CoV-2S and N proteins were detected in cell lysates (top) and SARS-CoV-2 pseudovirus (bottom) by Western blotting. GAPDH was used as a loading control for western blots. (C) Morphology and size of SARS-CoV-2 pseudoviruses and VLPs detected by TEM. Scale bar: 20 nm. Confocal microscopy images (D) and protocol (E) of SARS-CoV-2 pseudovirus obtained by co-transfection of plasmids SARS-CoV-2S, ORF1ab-mCherry and Stru. DELTA.S-EGFP for 293T/hACE2 cell infection.
Fig. 3 shows the analysis and verification of the Packaging Signal (PS). (A) The sequences of the ORF1b regions of SARS-CoV-2, SARS-CoV and bat SARS-CoV were analyzed using Biopython software (nt 19500-. The secondary structure of the same location in these three SARS-associated viruses was predicted by RNAstructure Web Server using default parameters and analyzed by Vienna RNA Web Server. Two identical RNA stem loops (SL1 and SL2) are indicated with rectangular boxes. (B) RT-PCR analysis of the PS583 gene in lysates of cells transfected with the plasmid EGFP-PS 583. Red arrows indicate the expected amplification sequence. nRT: non-reverse transcribed group. (C) The EGFP, SARS-CoV-2S and N proteins were detected by Western blotting in cell lysates (left) and VLP (EGFP-PS583) (right). GAPDH was used as a loading control for Western blotting and RT-PCR. Confocal microscopy imaging 48 hours after infection of 293T/hACE2 cells with VLP (EGFP-PS583) (D) and protocol (E). As controls, 293T cells were infected with VLP (EGFP-PS583) and 293T/hACE2 cells were infected with VLP (EGFP). .
FIG. 4 shows functional verification of different SARS-CoV-2 proteins. (A) Statistical analysis of DiO-labeled SARS-CoV-2 VLPs in the cytoplasm to test the effect of SARS-CoV-2S mutations on the ability of viral infection. (B) Confocal microscopy images of 293T/hACE2 cells after infection with VLP (EGFP-PS583), VLP (Δ N-EGFP-PS583) or VLP (EGFP) were observed for intracellular green fluorescence 48 hours after infection. (C) Detection of S and N proteins in different types of VLPs was by western blot. The morphology and size of the VLPs was observed by TEM. Scale bar: 20 nm.
FIG. 5 shows (A) a scheme for dual fluorescent labeling of VLPs (QD-DiO). (B) The morphology and size of VLPs (QD-DiO) were characterized by TEM, with white arrows indicating QDs. Scale bar: 20 nm. (C) Co-localization of DiO and QD signals in VLPs (QD-DiO). (D) Dynamic process of VLP (QD-DiO) entry into 293T/hACE2 cells. (E) Differential Interference Contrast (DIC) images of 293T/hACE2 cells. The black line indicates the track of the virus. (F, G) analysis of the mean velocity (F) and MSD plot (G) of the viral particles shown in (D). (H) Dynamic process of RNA-QD and Env-DiO dissociation of VLP (QD-DiO) in 293T/hACE2 cells in real time. (I-K) traces (I), mean velocities (J) and MSD plots (K) for RNA-QD and Env-DiO.
FIG. 6 shows the construction and characterization of SARS-CoV-2S plasmid. (A) RT-PCR analysis of SARS-CoV-2S protein coding gene in cell lysate. Red arrows indicate the expected amplification sequence. nRT: non-reverse transcribed group. (B) SARS-CoV-2S protein was detected in cell lysates by Western blotting, and GAPDH was used as a loading control for Western blotting and RT-PCR.
FIG. 7 shows the construction and characterization of the SARS-CoV-2 Stru. DELTA.S-EGFP plasmid. (A) Schematic representation of Stru. DELTA.S-EGFP construction. (B) RT-PCR analysis of SARS-CoV-2ORF3a and the N protein encoding gene in cell lysates, red arrows indicate the expected amplification sequence, GAPDH was used as loading control, nRT: non-reverse transcribed group. (C) Fluorescence imaging of the SARS-CoV-2 Stru. delta. S-EGFP plasmid transfected 293T cells 24 h. (D) Cell lysates (left) and VLPs (right) were assayed for N protein by western blotting, GAPDH was used as a loading control. (E) The morphology and size of SARS-CoV-2VLP (Stru. DELTA.S) was examined by transmission electron microscopy. Scale bar: 20 nm.
FIG. 8 shows the construction and characterization of SARS-CoV-2ORF1ab-mCherry plasmid. (A) ORF1ab-mCherry construction scheme. (B) RT-PCR analysis of SARS-CoV-2NSP1 and NSP16 encoding genes in cell lysates, red arrows indicate the expected amplification sequence, GAPDH was used as a loading control, nRT: non-reverse transcribed group. (C) Fluorescence imaging of the SARS-CoV-2ORF1ab-mCherry plasmid transfected 293T cells 24h later.
FIG. 9 shows the construction and characterization of SARS-CoV-2VLP (Stru. DELTA.S-S). (A) Fluorescence imaging of 293T cells 24h after co-transfection of SARS-CoV-2 Stru. delta. S-EGFP and the S plasmid. (B) Cell lysates (top) and VLP (Stru. DELTA.S-S) (bottom) were assayed for N protein by Western blotting, and GAPDH was used as a loading control. (C) The morphology and size of SARS-CoV-2VLP (Stru. DELTA.S-S) was examined by transmission electron microscopy. Scale bar: 20 nm.
FIG. 10 shows the construction and characterization of SARS-CoV-2VLP (Stru. DELTA.S-ORF 1 ab). (A) Fluorescence imaging of 293T cells 24 hours after co-transfection of SARS-CoV-2 Stru. delta. S-EGFP and ORF1ab-mCherry plasmid. (B) The N proteins of cell lysates (top) and VLP (Stru. DELTA.S-ORF 1ab) (bottom) were detected by Western blotting, and GAPDH was used as a loading control. (C) The morphology and size of SARS-CoV-2VLP (Stru. DELTA.S-ORF 1ab) was examined by transmission electron microscopy. Scale bar: 20 nm.
FIG. 11 shows the verification of the biological safety of pseudoSARS-CoV-2 virus. (A) Expression of the hACE2 receptor on 293T/hACE2 cells was constructed by Western blot detection. (B) Cell lysates (left) and supernatants (right) were assayed for S and N proteins by western blotting. (C) 293T/hACE2 cells were infected 48 hours after co-transfection with VLP or plasmid SARS-CoV-2S, ORF1ab-mCherry and Stru. DELTA.S-EGFP, and GAPDH was used as a loading control. (C) 293T/hACE2 cell image 72 hours after infection with wild type SARS-CoV-2 virus and SARS-CoV-2 VLP.
Figure 12 shows RNA structure prediction based on alignment of consensus sequences. Multiple alignment LocARNA uses default parameters to predict the consensus structure of the bat SARS-like coronavirus PS (MG772933.1: 19773-.
Fig. 13 shows the analysis and verification of the packaging signal. (A) PS101 gene was detected in cell lysates by RT-PCR, red arrows indicate the expected amplification sequence, GAPDH was used as loading control, nRT: non-reverse transcribed group. (B) Cell lysates (left) and VLPs (right) were assayed by western blotting for S, N protein and EGFP, GAPDH as loading controls. (C) Fluorescence imaging 48 hours after infection of 293T/hACE2 cells with VLP (EGFP-PS101) and VLP (EGFP).
FIG. 14 shows the construction and characterization of SARS-CoV-2S (N331Q). (A) Schematic representation of the construction of SARS-CoV-2S (N331Q). (B) RT-PCR analysis of the SARS-CoV-2S (N331Q) encoding gene in cell lysates, red arrows indicate the expected amplification sequence, nRT: there is no reverse transcription. (C) SARS-CoV-2S (N331Q) protein was detected in cell lysates by Western blotting, and GAPDH was used as a loading control for Western blotting and RT-PCR.
FIG. 15 shows the construction and characterization of SARS-CoV-2S (N501Y). (A) Schematic representation of the construction of SARS-CoV-2S (N501Y). (B) RT-PCR analysis of the SARS-CoV-2S (N501Y) encoding gene in cell lysates, red arrows indicate the expected amplicon, nRT: non-reverse transcribed group. (C) SARS-CoV-2S (N501Y) protein was detected in cell lysates by Western blotting, and GAPDH was used as a loading control for Western blotting and RT-PCR.
FIG. 16 shows the construction and characterization of SARS-CoV-2S (D614G). (A) Schematic representation of the construction of SARS-CoV-2S (D614G). (B) RT-PCR analysis of the SARS-CoV-2S (D614G) encoding gene in cell lysates, red arrows indicate the expected amplification sequence, nRT: non-reverse transcribed group. (C) SARS-CoV-2S (D614G) protein was detected in cell lysates by Western blotting, and GAPDH was used as a loading control for Western blotting and RT-PCR.
FIG. 17 shows the construction and characterization of SARS-CoV-2S (P681H). (A) Schematic representation of the construction of SARS-CoV-2S (P681H). (B) RT-PCR analysis of the SARS-CoV-2S (P681H) encoding gene in cell lysates, red arrows indicate the expected amplification sequence, nRT: non-reverse transcribed group. (C) SARS-CoV-2S (P681H) protein was detected in cell lysates by Western blotting, and GAPDH was used as a loading control for Western blotting and RT-PCR.
FIG. 18 shows the construction and characterization of SARS-CoV-2VLP with S protein mutation. VLP (N331Q) (a), VLP (N501Y) (B), VLP (D614G) (B) and VLP (P681H) (D) were detected by western blot. The morphology and size of SARS-CoV-2VLP was examined by transmission electron microscopy. Scale bar: 20 nm.
FIG. 19 shows the construction and characterization of the SARS-CoV-2 Stru. DELTA.S-EGFP/. DELTA.N plasmid. (A) The SARS-CoV-2Stru delta S-EGFP/delta N plasmid construction is shown schematically. (B) RT-PCR analysis of SARS-CoV-2ORF3a and the N protein coding gene in cell lysates, red arrows indicate the expected amplification sequence, nRT: non-reverse transcribed group. (C) SARS-CoV-2N protein was detected in cell lysates by Western blotting, and GAPDH was used as a loading control for Western blotting and RT-PCR.
FIG. 20 shows the construction and characterization of the SARS-CoV-2 Stru. DELTA.S-EGFP/Δ E plasmid. (A) The SARS-CoV-2Stru delta S-EGFP/delta E plasmid construction is shown schematically. (B) RT-PCR analysis of the genes encoding SARS-CoV-2ORF3a, E and N proteins in cell lysates, red arrows indicate the expected amplification sequence, nRT: non-reverse transcribed group. (C) SARS-CoV-2N protein was detected in cell lysates by Western blotting, and GAPDH was used as a loading control for Western blotting and RT-PCR.
FIG. 21 shows the construction and characterization of SARS-CoV-2VLP (VLP/. DELTA.E) with E protein deleted. (A) The morphology and size of VLP/Δ E was examined by transmission electron microscopy. Scale bar: 20 nm. (B) Confocal microscopy images 48 hours after VLP/Δ E infection of 293T/hACE2 cells.
FIG. 22 shows the construction and characterization of SARS-CoV-2 Stru. DELTA.S-EGFP/. DELTA.M plasmid. (A) The SARS-CoV-2Stru delta S-EGFP/delta M plasmid construction is shown schematically. (B) RT-PCR analysis of the SARS-CoV-2ORF3a, M and N protein encoding genes in cell lysates, red arrows indicate the expected amplification sequence, nRT: non-reverse transcribed group. (C) SARS-CoV-2N protein was detected in cell lysates by Western blotting, and GAPDH was used as a loading control for Western blotting and RT-PCR.
FIG. 23 shows the construction and characterization of M protein deleted SARS-CoV-2VLP (VLP/. DELTA.E). (A) The morphology and size of VLP/Δ M was examined by transmission electron microscopy. Scale bar: 20 nm. (B) Confocal microscopy images 48 hours after VLP/Δ M infection of 293T/hACE2 cells.
FIG. 24 shows the construction and characterization of the SARS-CoV-2 Stru. DELTA.S-EGFP/Δ ORF10 plasmid. (A) The SARS-CoV-2Stru delta S-EGFP/delta ORF10 plasmid construction is shown schematically. (B) RT-PCR analysis of the genes encoding the SARS-CoV-2ORF3a, N and ORF10 proteins in cell lysates, red arrows indicate the expected amplified sequences, nRT: non-reverse transcribed group. (C) SARS-CoV-2N protein was detected in cell lysates by Western blotting, and GAPDH was used as a loading control for Western blotting and RT-PCR.
FIG. 25 shows the characterization of protein-deleted SARS-CoV-2 VLP. (A) Schematic of plasmid construction for protein-deficient SARS-CoV-2 VLP. (B) Fluorescence co-localization results of protein-deficient SARS-CoV-2 VLPs (DiO and QDs).
Detailed Description
Unless otherwise indicated, terms used in the present invention have meanings commonly understood in the art and can be understood by referring to standard texts, references, documents known to those skilled in the art. The definitions and explanations provided herein are intended to clarify their particular use within the scope of the present invention. All references cited herein are incorporated by reference in their entirety.
Without wishing to be bound by any particular theory, the explanation of the relevant theory or mechanism in the present invention is only for aiding the understanding of the invention and should not be seen as limiting the protected scheme of the present invention.
As used herein, the terms "comprising," "including," or other forms of terms having similar meanings to the terms, "including," "comprising," or "having," etc., are to be construed to cover the listed elements but do not exclude the presence of other elements; these terms also include the case where only the listed elements are made up. The term "consisting of … …" means consisting of only the recited elements. The term "consisting essentially of … …" means that elements that do not have a significant impact on the solution involved are not excluded.
The terms "a", "an" or "the" herein include both the singular and the plural, unless specifically stated otherwise. The meaning of the term "at least one" or other similar expressions is equivalent to the meaning of "one or more" or "one or more".
Recitation of ranges of values herein, such as ranges of temperature, time, composition or concentration, or other ranges of values, are intended to include the endpoints of the range, all intermediate ranges, sub-ranges (e.g., ranges between an intermediate value and an endpoint), and all individual values, particularly intermediate ranges, sub-ranges and individual integer values, which are integer values. Also, any intermediate ranges, subranges, and all individual values recited in the numerical ranges may be excluded from the numerical ranges.
As used herein, "about" means a range of 20%, ± 18%, ± 15%, ± 12%, ± 10%, ± 9%, ± 8%, ± 7%, ± 6%, ± 5%, ± 4%, ± 3%, ± 2%, ± 1%, or ± 0.5% of the stated value, the stated range including the endpoints of the range and any number within the stated range.
The term "and/or" as used herein shall be understood to mean any one, any two, any three, or any combination of more of the elements joined by the term.
In the present invention, the terms "nucleic acid sequence" and "nucleotide sequence" are used interchangeably and refer to a sequence consisting of a base, a sugar and a phosphate backbone linked together. The nucleic acid sequences of the invention may be deoxyribonucleic acid sequences (DNA) or ribonucleic acid sequences (RNA) and may include natural or non-natural bases, which may be single-or double-stranded, and may be coding or non-coding sequences.
In the present invention, when a gene or a protein encoded by a gene is expressed, the "vector" may be a plasmid, and in some cases, the terms "vector" and "plasmid" may be used interchangeably.
In the present invention, unless otherwise specified, the description of the nucleic acid sequence is usually from the 5 'end to the 3' end, and the description of the amino acid sequence is usually from the N-terminus to the C-terminus.
The method of the invention may be carried out in vitro or in vivo.
Reverse genetics is one of the major means of virus rescue (rescuing) or VLP production, of which the acquisition of the viral genome is the most important step. Nuclease ligation is the main method for obtaining viral genome, but the method has complex reaction process and low efficiency, and meanwhile, the viral full-length genome has large toxicity when transforming large intestine. The in-vivo homologous recombination method of yeast is a method for realizing the assembly of a plurality of DNA fragments with homologous series existing mutually by utilizing an efficient homologous recombination system in a yeast cell. The invention separates and assembles SARS-CoV-2 genome into three plasmids by unique genome splitting design and genome synthesis and yeast in vivo homologous recombination assembly technology, and obtains SARS-CoV-2VLP with high structural integrity by cell transfection, thereby providing a good tool platform for further vaccine development.
Specifically, the present invention provides three fragments of SARS-CoV-2 genome, each fragment being assembled into a plasmid, resulting in three plasmids in total, and using any one, any two or three of these three plasmids to co-transfect a packaging cell, a VLP of SARS-CoV-2 can be obtained.
The SARS-CoV-2 can be wild type SARS-CoV-2or any mutant thereof. The genome of wild-type SARS-CoV-2 can be determined from NCBI sequence number NC-045512.2.
The three fragments are an S fragment comprising the coding sequence of the S protein of SARS-CoV-2, a Stru. delta.S fragment comprising the coding sequences of all structural proteins and all auxiliary proteins except the S protein, and a packaging signal fragment comprising a packaging signal sequence, respectively.
The overall structural proteins of SARS-CoV-2 include the S protein (spike glycoprotein), the E protein (small envelope protein), the M protein (membrane glycoprotein), and the N protein (nucleocapsid protein). All helper proteins for SARS-CoV-2 include proteins encoded by ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8 and ORF 10.
The S protein (spike glycoprotein) encoded by the S fragment may be a wild-type S protein or a mutant thereof. In some embodiments, the S protein mutant has a mutation relative to the wild type S protein selected from any one or more of N331Q, N501Y, D614G and P681H. The wild-type S protein sequence may be the protein sequence encoded by nucleotides 21563-25384 of NCBI sequence No. NC-045512.2 or determined by NCBI sequence No. YP-009724390.1. In some embodiments, the sequence encoding the S protein contained in the S fragment is nucleotide 21563-25384 of NCBI sequence number NC-045512.2.
The Stru Δ S fragment encodes any one or any several of the structural proteins and accessory proteins, such as any one, any two or three of the E protein (small envelope protein), the M protein (membrane glycoprotein), the N protein (nucleocapsid protein), and/or any one or any several of the accessory proteins, which independently may be wild-type or mutants thereof. Although most preferably, the Stru Δ S fragments of the invention encode all structural proteins and accessory proteins other than S protein, in some embodiments of the invention, the protein encoded by the Stru Δ S fragments may also further lack one or more structural proteins, and/or lack one or more accessory proteins, as compared to the most preferred protocol, e.g., the protein encoded by the Stru Δ S fragments may not comprise any one, any two or three of E protein (small envelope protein), M protein (membrane glycoprotein), N protein (nucleocapsid protein), and/or may not comprise any one or more of accessory proteins, as compared to the most preferred protocol. The wild-type structural protein and/or auxiliary protein refers to the structural protein and/or auxiliary protein of wild-type SARS-CoV-2. In some embodiments, the nucleic acid encoding the structural and accessory proteins contained in the Stru Δ S fragment is nucleotide 25393 and 29674 of NCBI sequence No. NC-045512.2.
The packaging signal fragment at least comprises the packaging signal sequence of SARS-CoV-2, and can also comprise other sequences in the ORF1ab sequence of SARS-CoV-2. In some embodiments, the packaging signal sequence is nucleotide 19900-20000 of NCBI sequence No. NC-045512.2 or nucleotide 19773-20335 of NCBI sequence No. NC-045512.2. In some embodiments, the packaging signal fragment may comprise the full length of ORF1ab or a fragment thereof, i.e., the full length of ORF1ab of SARS-CoV-2or a fragment thereof. Any one or any several of the full length or fragments of ORF1ab may be wild-type or a mutant thereof. In some embodiments of the invention, the fragment of ORF1ab may lack one or more of the ORFs in ORF1ab sequence, but at least comprise a packaging signal sequence. The ORF in the wild-type ORF1ab sequence refers to the ORF in the ORF1ab sequence of wild-type SARS-CoV-2. In some embodiments, ORF1ab is nucleotide 266-.
As used herein, the term "wild-type" may apply to a gene, protein or virus strain, and generally refers to one that has been isolated from a naturally occurring source. A wild type is typically the gene, protein or virus strain most frequently observed in a population and is therefore designated as "wild type". The term "mutant" refers to a gene having an insertion, substitution or deletion of one or more nucleotides or amino acids in the nucleic acid sequence of the gene, the amino acid sequence of the protein or the genomic sequence of the virus strain, when compared to the wild-type gene, protein or virus strain. A "mutant" usually still has the essential functional properties of the wild type, but may have altered relative levels of the functional properties compared to the wild type, e.g.an increased or decreased activity of the protein or of a protein encoded by the gene. It will be understood that "mutants" may also be naturally occurring, for example where a virus is subject to natural variation, resulting in the production of naturally occurring mutants of the virus, and that "wild type" may refer to the earliest occurring naturally occurring in the same gene, protein or strain of virus. In the present invention, the genome of wild-type SARS-CoV-2 can be determined from NCBI sequence No. NC-045512.2, and each structural protein, accessory protein, and/or each ORF in ORF1ab of the wild-type can be encoded or determined from the genome sequence shown in NCBI sequence No. NC-045512.2. SARS-CoV-2 produces a virus by natural variation during the existence and spread of the virus in nature, and the genes and proteins encoded by the genes contained in the viral genome can be referred to as "mutants". The "mutants" in the present invention also include those obtained by artificially modifying naturally occurring wild-type SARS-CoV-2 and naturally mutated SARS-CoV-2, and mutants of the genome, any of the genes and any of the proteins thereof.
In the present invention, each of the S fragment, the Stru. DELTA.S fragment and the ORF1ab fragment is assembled into a plasmid for expressing the genes in these fragments or the proteins encoded thereby. In some embodiments, the plasmid containing the Stru Δ S fragment is referred to as a first plasmid, the plasmid containing the S fragment is referred to as a second plasmid, and the plasmid containing the packaging signal fragment is referred to as a third plasmid. The numbering of plasmids is merely for the purpose of differentiation and does not imply a particular sequence structure among the plasmids.
The primary plasmid vectors used to prepare the first, second and third plasmids may be the same or different, e.g., three may be the same primary plasmid vector, or three different primary plasmid vectors may be used, or two may be the same but different from the other. The initial plasmid vector used to prepare the first, second, or third plasmid may be any suitable vector common in the art, such as any suitable vector common in the art that can shuttle between yeast and bacteria and can transfect a packaging cell, including but not limited to pEASY-T1, pRS415, pJS356, pEGFP-N1, and the like.
The sequences encoding the structural and/or accessory proteins contained in the first plasmid, the sequence encoding the S protein in the second plasmid and/or the packaging signal sequence in the third plasmid or the full length of ORF1ab or fragments thereof may be operably linked to the expression regulatory sequence. The expression regulatory sequence is a sequence having a regulatory effect on the expression and/or translation of a fragment contained in a plasmid, and includes, but is not limited to, a5 'untranslated region (5' UTR), a 3 'untranslated region (3' UTR), a promoter, an enhancer, a terminator, a selection marker gene, a post-transcriptional regulatory element, an Internal Ribosome Entry Site (IRES), a cleavable sequence and/or a polyadenylation signal (polyA), and the like.
Promoters that can be used include, but are not limited to, promoters from viruses or mammals (including humans), and the like. Promoters may be constitutive or inducible. Examples of viral promoters include, but are not limited to, Cytomegalovirus (CMV) immediate early promoter, RSV promoter, chicken β -actin (CBA) promoter, CMV early enhancer/chicken β -actin (CAG) promoter, simian virus 40(SV40) promoter, and the like. Examples of mammalian promoters include, but are not limited to, the human elongation factor 1a (EF1a) promoter, the human ubiquitin c (ucb) promoter, the mouse phosphoglycerate kinase (PGK) promoter, RNA polymerase type III promoters (e.g., U6 and H1), and the like. Examples of constitutive promoters include, but are not limited to, the retroviral Rous Sarcoma Virus (RSV) LTR promoter, the Cytomegalovirus (CMV) promoter, the SV40 promoter, the dihydrofolate reductase promoter, the β -actin promoter, and the phosphoglycerate kinase (PGK) promoter, and the EF1a promoter. Examples of inducible promoters include, but are not limited to, the zinc-inducible ovine Metallothionein (MT) promoter, the dexamethasone (Dex) -inducible Mouse Mammary Tumor Virus (MMTV) promoter, the T7 polymerase promoter system, and the like.
Examples of the posttranscriptional regulatory element that can be used include viral posttranscriptional regulatory elements such as woodchuck hepatitis virus posttranscriptional regulatory element (WPRE), Hepatitis B Virus Posttranscriptional Regulatory Element (HBVPRE), and RNA Transport Element (RTE).
Selectable markers that can be used include, but are not limited to, for example, drug resistance selectable markers. Such a selectable marker gene may encode factors necessary for the survival or growth of cells grown in the selection medium. Host cells that are not transformed with a vector comprising a selection gene will not survive in culture. Proteins that confer resistance to antibiotics or other toxins, examples of which include, but are not limited to, ampicillin, hygromycin, neomycin, methotrexate, kanamycin, gentamicin, Zeocin, or tetracycline, complement the defect of auxotrophy, or supply key nutrients withheld from the culture medium may be selected as selectable markers. The selectable marker may also be a fluorescent protein, such as mCherry, GFP, BFP, EGFP, and the like.
The cleavable sequence can be any sequence that is capable of self-cleavage upon expression or can be cleaved by other means (e.g., by a particular enzyme). The cleavable sequence may be a sequence capable of self-cleavage upon expression. Such sequences are well known to those skilled in the art, for example, ribozyme sequences having self-cleaving function, such as cleavage type ribozyme sequences. A cleavage type ribozyme catalyzes self-cleavage of self RNA at a specific site. A nicking ribozyme includes, but is not limited to, a hammerhead ribozyme, a hairpin ribozyme, an HDV ribozyme, or an RNaseP. The cleavable sequence may also be a sequence that can be cleaved by other means, such as by a particular enzyme. Such sequences are well known to those skilled in the art, e.g., tRNA sequences. the tRNA sequence can be cut off the additional sequence at the 5 'end of the tRNA under the action of tRNA 5' maturase (RZaseP) or the sequence at the 3 'end of the tRNA under the action of 3' endonuclease RZase F. Thus, the cleavable sequence may be a tRNA sequence that can be cleaved by RZaseP for the 5 'additional sequence, or may be a tRNA sequence that can be cleaved by rzaase F for the 3' sequence. Any tRNA that is capable of being cleaved at maturity can be used in the invention.
The polyadenylation signal sequence may be located in a transcription termination region, such as the 3' untranslated region, examples of which include, but are not limited to, bovine growth hormone (bGH) poly (a), SV40 polyA, Thymidine Kinase (TK) poly (a) sequences, and the like.
The 5 'untranslated region (5' UTR), the 3 'untranslated region (3' UTR) can use any suitable viral 5 'UTR and 3' UTR, such as the 5 'UTR and 3' UTR of SARS-CoV-2.
In some embodiments, the nucleic acid encoding the structural and/or accessory proteins in the first plasmid is operably linked to a5 'promoter, a 5' UTR, and a 3 'UTR, a polyA, and optionally a cleavable sequence at the 3' end. In some embodiments, the nucleic acid encoding the S protein in the second plasmid is operably linked to a promoter at the 5 'end and a polyA at the 3' end. In some embodiments, the sequence of ORF1ab from SARS-CoV-2 in the third plasmid is operably linked to the 5 'promoter, the 5' UTR, and the 3 'UTR, the polyA, and the optional cleavable sequence at the 3' end.
In the present invention, the Stru Δ S fragment, S fragment or ORF1ab fragment can be assembled into the first plasmid, the second plasmid or the third plasmid by a Transformation-mediated recombination (TAR) cloning method. The TAR clone is synthesized by splicing a large-fragment target DNA by using a recombination system in a yeast body, and the specific method comprises the following steps: a plurality of fragments of a target DNA having homologous ends and a linearized TAR vector are transfected into a yeast together, and homologous recombination is performed between the vector and a homologous sequence of the target DNA fragment and between homologous sequences of different target DNA fragments by using an efficient recombination system in a yeast cell, so that a vector with the target DNA can be generated. In the present invention, TAR cloning can be carried out using an S fragment, a Stru. DELTA.S fragment or an ORF1ab fragment as a target DNA. The TAR vector may be a plasmid vector. Specifically, the target DNA is split into a plurality of DNA fragments, adjacent DNA fragments have homologous sequences (also called homology arms, overlapping sequences or overlapping fragments) between them, the DNA fragments at both ends of the target DNA have homologous sequences with both ends of the linearized vector, respectively, and these DNA fragments and the linearized vector are transferred into yeast together, so that they undergo homologous recombination in the yeast to assemble a vector containing the target DNA. The term "adjacent" means that the two DNA fragments are adjacent in position on the DNA of interest. The length of each of the resolved DNA fragments is typically 2-5kb, for example, the lower and upper limits of the length range of each of the resolved DNA fragments may be about 2kb, about 2.1kb, about 2.2kb, about 2.3kb, about 2.4kb, about 2.5kb, about 2.6kb, about 2.7kb, about 2.8kb, about 2.9kb, about 3kb, about 3.1kb, about 3.2kb, about 3.3kb, about 3.4kb, about 3.5kb, about 3.6kb, about 3.7kb, about 3.8kb, about 3.9kb, about 4kb, about 4.1kb, about 4.2kb, about 4.3kb, about 4.4kb, about 4.5kb, about 4.6kb, about 4.7kb, about 4.8kb, about 4.9kb, about 5, about 3-4kb, more preferably about 3kb, respectively. The length of the homologous sequence is usually 50-300bp, preferably 100-250bp, more preferably 150-200 bp.
In some embodiments, the Stru Δ S fragment can be split into 3 DNA fragments. In some embodiments, the S fragment can be split into 2 DNA fragments. In some embodiments, the ORF1ab fragment can be split into 2 DNA fragments.
The resolved DNA fragments can be synthesized by methods known in the art, such as in vitro synthesis, and the synthesized DNA fragments can be single-stranded or double-stranded fragments.
It is understood that the Stru. DELTA.S fragment, S fragment, or ORF1ab fragment of the invention may contain only the gene of SARS-CoV-2 to be expressed, no other sequences (e.g., coding sequence or expression control sequence), and may also contain the gene of SARS-CoV-2 to be expressed and one, two or more of the aforementioned expression control sequences. The expression control sequence may be added to the vector by any means, for example, the expression control sequence may be contained in the Stru. DELTA.S fragment, the S fragment and/or the ORF1ab fragment, split into a plurality of DNA fragments containing homology arms together with the gene of SARS-CoV-2 expressed in these fragments, and assembled into a plasmid by yeast homologous recombination (TAR). The aforementioned expression regulatory sequence may also be previously added to a plasmid vector, and the DNA fragment with the homology arm, which is separated from the Stru. DELTA.S fragment, S fragment or ORF1ab fragment, is subjected to homologous recombination in yeast, in which case the Stru. DELTA.S fragment, S fragment or ORF1ab fragment contains only the gene of SARS-CoV-2 to be expressed, and does not contain the expression regulatory sequence. In other embodiments, some of the regulatory sequences are contained in the Stru. DELTA.S fragment, the S fragment, and/or the ORF1ab fragment, are split into multiple DNA fragments containing homology arms together with the gene of SARS-CoV-2 expressed in these fragments, and are assembled into a plasmid by yeast homologous recombination (TAR), and other expression regulatory sequences are previously added to the plasmid vector.
Methods for homologous recombination of DNA fragments and linearized vectors in yeast are well known to those skilled in the art, and for example, one specific example is: firstly, preparing yeast competence, selecting yeast strains from a plate, inoculating the yeast strains to 5mL of yeast extract peptone glucose medium (YPD), and culturing overnight; an appropriate amount of the suspension was taken out from the expanded and shaken solution, inoculated again into 5mL of YPD, and cultured at 30 ℃ and 200rpm until OD6000.4 to 0.6. Cleaning bacteriaTaking 150ng of DNA fragments to be connected and 100ng of linearized vector, mixing uniformly, and adding competent yeast cells; subsequently, primers are designed from about 100bp at two ends of the homologous arm for amplification, yeast is selected for monoclonal overnight culture, and junction PCR is carried out according to the treatment of a PCR program; after the verification is correct, selecting thalli from the flat plate, inoculating the thalli into 5mL of liquid SC-LEU culture medium, culturing overnight, and collecting the thalli; finally, resuspend the cells and extract the yeast total DNA for use.
The vector containing the target DNA assembled in the yeast can be extracted from the yeast by a conventional plasmid extraction method to obtain a first plasmid, a second plasmid or a third plasmid, and then the first plasmid, the second plasmid or the third plasmid can be selectively transferred into escherichia coli for amplification; or the total yeast DNA can be directly extracted, and the total yeast DNA is used for transforming and amplifying escherichia coli to obtain the first plasmid, the second plasmid or the third plasmid. Methods for obtaining and amplifying recombinant plasmids from yeast are well known in the art, and for example, yeast total DNA can be transferred into E.coli, monoclonal selected, verified to be correct, amplified in large quantities and extracted, and the plasmids stored for use. As a specific example, firstly, selecting an EPI300 monoclonal and inoculating the monoclonal to 5mL of LB liquid medium, culturing overnight, transfecting total DNA of yeast by adopting an electrotransfer mode, coating a transfer bacterial liquid on a resistant plate, selecting the monoclonal, and carrying out junction PCR according to the treatment of a PCR program; then selecting the bacteria with correct verification to extract plasmids, carrying out enzyme digestion verification, and carrying out sequencing verification after the enzyme digestion verification is correct; after the correctness is verified, the escherichia coli is amplified in a large quantity, plasmids are extracted, and the plasmids are stored for later use. In the present invention, the virus-like particles of SARS-CoV-2 can be obtained by transfecting a packaging cell with any two or three plasmids selected from the group consisting of the first plasmid, the second plasmid and the third plasmid, allowing them to be expressed and assembled in the packaging cell. In some embodiments, plasmids that can be used to transfect packaging cells include a first plasmid and either or both of a second plasmid and a third plasmid.
Before transfection, the expression of the plasmid may be verified, for example, any kind of plasmid may be transfected into mammalian cells (e.g., 293T cells) separately, intracellular RNA and protein may be extracted after cell lysis and detected separately, for example, by RT-PCR and Western blot, or by a method of selective labeling, for example, fluorescent protein imaging.
In the present invention, the terms "virus-like particle (VLP)", "pseudovirus", "recombinant virus" and "recombinant virus particle (rVP)" are used interchangeably and refer to a virus particle obtained by a process comprising at least one recombinant DNA technology step, wherein at least one component comprised in the viral genome is expressed and assembled by genetic engineering methods. The "virus-like particle" of the present invention may contain no viral genome, or contain a gene that does not encode a viral protein, and thus is non-replicative and non-infectious, and the "recombinant viral particle" in the present invention refers to a viral particle obtained by transfecting a packaging cell with any two or three of the first plasmid, the second plasmid, and the third plasmid, which may or may not contain a nucleic acid substance therein. When the plasmid having the packaging signal is included in the plasmid used for transfecting the packaging cell, the nucleic acid substance is contained in the obtained viral particle, and when the plasmid having the packaging signal is not included in the plasmid used for transfecting the packaging cell, the nucleic acid substance is not contained in the obtained viral particle. For example, in the present invention, rSAR2-CoV-2 and SAR2-CoV-2 VLPs can be used interchangeably.
"transfection" as used herein refers to the transfer of a polynucleotide, such as a nucleic acid molecule, plasmid, etc., from outside a cell into a cell such that the polynucleotide functions within the cell. Methods of transfection are well known to those skilled in the art, for example calcium phosphate or liposome-mediated transfection. As known to those skilled in the art, liposomes that can be used include lipofectamine 8000 and the like. In some embodiments, the transfection method comprises growing 293T to a density of about 80%, transfecting 293T cells with plasmid mixed with lipofectamine 8000 in DMEM supplemented with 10% FBS; after 6h, the medium was changed to DMEM, and the supernatant was collected after 48 h.
Packaging cells for the production of recombinant viral particles are well known to those skilled in the art and, for example, packaging cells that may be used include, but are not limited to, mammalian (including human) cells, insect cells, plant cells, microorganisms, or yeast, such as cells of the HEK293 series (e.g., HEK293A, HEK293T, or HEK293FT), a549 cells, or Vero cells, and the like.
Media and culture methods for producing recombinant viral particles are known to those skilled in the art, and can be used with commercially available or customized media, or further supplemented with one or more cell culture components known in the art, including but not limited to glucose, vitamins, amino acids, and or growth factors, to increase the titer of recombinant viral particles in the production culture. Recombinant viral vector production cultures can be grown under conditions appropriate for the particular host cell (i.e., packaging cell) used. After production of the recombinant viral vector, if desired, the viral particles can be purified from the cell lysate or viral supernatant using a variety of conventional methods, including ultrafiltration methods, e.g., using nitrocellulose filters; adsorption methods, such as the use of calcium phosphate or ion exchange are well known for adsorption of viruses or impurities, followed by elution with a salt solution; chromatography such as sephadex chromatography, ion exchange chromatography, affinity chromatography, and the like; centrifugation, such as differential centrifugation, CsCl or sucrose density gradient centrifugation; precipitation methods, such as polyethylene glycol precipitation (e.g., using PEG2000), isoelectric point precipitation or neutral salt precipitation. The above purification methods may also be used in combination. In some embodiments, as an example of the purification method, preparing 10% (w/v) concentration of PEG20000 solution, mixing PEG20000 and cultured virus supernatant solution at a volume ratio of 1:1, standing at 4 ℃ for 16h for concentration, centrifuging to collect the precipitate, and then resuspending with opti-MEM for use, the method can be used in experiments such as infection of VLP; as another example of the purification method, the collected virus culture supernatant was passed through a 20% (w/v) sucrose solution and ultracentrifuged at 30000rpm for 4h to primarily purify VLP, which can be used for characterization of RNA, protein, VLP morphology, etc.
The recombinant virus particles of the present invention can be used as an active ingredient in pharmaceutical compositions or vaccines to treat diseases caused by SARS-CoV-2. The term "vaccine" refers to a formulation comprising the recombinant viral particles. The dosage of the recombinant viral particles comprised in the vaccine can be adjusted by the skilled person, e.g. according to the disease condition, the subject and the schedule of treatment. The vaccine typically comprises a therapeutically effective amount of recombinant viral particles. As used herein, "treating" or "treatment" refers to preventing or ameliorating (e.g., reducing, alleviating or curing) at least one symptom associated with a disease state. A "therapeutically effective amount" as referred to herein is an amount sufficient to prevent or alleviate (e.g., reduce, alleviate or cure) at least one symptom associated with a disease state. The dosage of the pharmaceutical composition or vaccine can be conveniently determined by one skilled in the art, e.g. by first identifying a dose effective to elicit a prophylactic or therapeutic immune response, e.g. by measuring the serum titer of virus-specific immunoglobulin or by measuring the inhibition ratio of the antibody in a serum sample or a urine sample or mucosal secretion.
The pharmaceutical composition or vaccine of the invention may comprise the recombinant viral particles of the invention and a pharmaceutically acceptable carrier or excipient. Pharmaceutically acceptable carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, sterile isotonic aqueous buffer, and combinations thereof. The pharmaceutical composition or vaccine of the invention may comprise adjuvants, which are well known to those skilled in the art. Exemplary adjuvants include complete Freund's adjuvant, incomplete Freund's adjuvant, aluminum hydroxide adjuvant, BCG, and the like.
The pharmaceutical composition or vaccine of the invention should be suitable for administration to a subject, e.g., be sterile, non-particulate and/or non-pyrogenic. The pharmaceutical composition or vaccine may be formulated in solid form, such as lyophilized powder, liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation or powder, etc., which may be used to formulate an injection.
Methods of administration of the pharmaceutical compositions or vaccines of the present invention include, but are not limited to, parenteral (e.g., intradermal, intramuscular, intravenous and subcutaneous), epidural, and mucosal (e.g., intranasal and oral or pulmonary routes or by suppositories). Administration may be systemic or topical.
The recombinant virus particles of the invention can also be used in vitro research of SARS-CoV-2 virus infected cells, for example, in vitro drug screening, such as in vitro screening of drugs capable of inhibiting SARS-CoV-2 virus infected cells; development of antibodies, e.g., antibodies can be prepared with the recombinant viral particles as immunogens or antibody neutralization activity can be detected; it can also be used for developing virus vaccine, for example, vaccine can be developed conveniently and rapidly aiming at new virus mutant, especially new virus mutant with mutant S protein.
In some embodiments, the principles of genome resolution, synthesis, and assembly are shown in figure 1. Firstly, splitting a genome ORF1ab into 6 fragments with the size of 3-5kb, splitting an S protein gene into 2 fragments, and splitting other structural proteins or auxiliary protein genes into 3 fragments; then, synthesizing each fragment in vitro and assembling into three fragments of ORF1ab, S and Stru delta S by yeast homologous recombination technology; constructing the three fragments on corresponding vectors, and transferring the three fragments into escherichia coli to obtain plasmids; finally, the plasmid is transfected into mammalian cells to obtain VLPs. The characterization of the various VLPs is shown in fig. 3-4.
In some embodiments, the invention provides a method for de novo artificial synthesis and preparation of SARS-CoV-2VLP, comprising:
the first step is as follows: SARS-CoV-2 genome resolution, synthesis and assembly
(1) Splitting the SARS-CoV-2 genome into three parts of ORF1ab, Stru delta S and S, wherein the ORF1ab sequence is 266 to 21555, and comprises the sequences of all non-structural proteins; the Stru Δ S sequence from 25393 to 29674, comprising the sequences of all structural and accessory proteins except the S protein; the S sequence is from 21563 to 25384, and comprises the sequence of the S protein (the specific sequence is shown in the attachment);
(2) ORF1ab was split into 6 fragments of about 3kb, Stru. DELTA.S into 3 fragments of about 3kb, S into 2 fragments of 3kb, each fragment was synthesized in vitro, and overlapping fragments were designed on adjacent fragments.
(3) And (3) carrying out yeast homologous recombination on the fragments split in the last step by using a yeast in-vivo platform, assembling the fragments into three complete fragments of ORF1ab, Stru delta S and S by using an overlap between adjacent fragments through a homologous recombination method, and simultaneously respectively assembling the fragments onto plasmid vectors pJS356 and pEASY-T-CAG to obtain three plasmids SARS-CoV-2ORF1ab, SARS-CoV-2Stru delta S and SARS-CoV-2S. Wherein 5 ' UTR, 3' UTR and PolyA tail are respectively added at two ends of ORF1ab and Stru delta S coding sequence, and CMV enhancer is added at 5 ' of each sequence; adding a polyA tail to the 3' end of the S protein coding sequence; and 5' plus an enhancer of CAG;
the specific operation steps of yeast homologous recombination are as follows: firstly, preparing yeast competence, selecting yeast strains from a plate, inoculating the yeast strains to 5mL of yeast extract peptone glucose medium (YPD), and culturing overnight; an appropriate amount of the suspension was taken out from the expanded and shaken solution, inoculated again into 5mL of YPD, and cultured at 30 ℃ and 200rpm until OD6000.4 to 0.6. Cleaning thallus, taking 150ng of DNA fragment (about 3kb) to be connected and 100ng of linearized vector, mixing uniformly, and adding competent yeast cells; subsequently, primers are designed from about 100bp at two ends of the homologous arm for amplification, yeast is selected for monoclonal overnight culture, and junction PCR is carried out according to the treatment of a PCR program; after the verification is correct, selecting thalli from the flat plate, inoculating the thalli into 5mL of liquid SC-LEU culture medium, culturing overnight, and collecting the thalli; finally, resuspending the thalli and extracting total DNA of the yeast for later use;
(4) transferring the yeast total DNA into escherichia coli, selecting monoclone, amplifying in large quantity and extracting plasmid after verification is correct, and storing the plasmid for later use;
the specific operation steps are as follows: firstly, selecting an EPI300 monoclonal and inoculating the monoclonal to a 5mL LB liquid culture medium, culturing overnight, transfecting total DNA of yeast by adopting an electrotransformation mode, coating a transfer bacterial liquid on a resistant plate, selecting the monoclonal, and carrying out junction PCR according to the treatment of a PCR program; then selecting the bacteria with correct verification to extract plasmids, carrying out enzyme digestion verification, and carrying out sequencing verification after the enzyme digestion verification is correct; after the correctness is verified, the escherichia coli is amplified in a large quantity, plasmids are extracted, and the plasmids are stored for later use.
The second step is that: SARS-CoV-2VLP expression and preparation method
(1) The three plasmids constructed by splitting SARS-CoV-2 genome are verified separately. Firstly, independently transfecting 293T cells with three plasmids, then cracking the cells, respectively extracting RNA and protein in the cells, and respectively carrying out RT-PCR (reverse transcription-polymerase chain reaction) and western blot verification; meanwhile, the verification of plasmid expression is realized by a fluorescence imaging method of EGFP in SARS-CoV-2Stru delta S and mCherry in SARS-CoV-2ORF1 ab.
(2)293T is grown to a density of about 80%, and is transfected with SARS-CoV-2Stru delta S, SARS-CoV-2Stru delta S and SARS-CoV-2ORF1ab, SARS-CoV-2Stru delta S, SARS-CoV-2S and SARS-CoV-2ORF1ab, respectively, and the culture medium is opti-MEM; after 6h, the medium was changed to DMEM, and the supernatant was collected after 48 h.
(3) Preparing 10% (w/v) PEG20000 solution, mixing PEG20000 and virus supernatant solution at a volume ratio of 1:1, standing at 4 deg.C for 16h for concentration, centrifuging to collect precipitate, and then resuspending with opti-MEM for use. The collected supernatant was ultracentrifuged at 30000rpm for 4h through a 20% (w/v) sucrose solution to primarily purify VLP, which is mainly used for characterization of RNA, protein and VLP morphology.
In some embodiments, plasmid cotransformation to make VLPs and validation thereof, comprises any of the following steps:
(1) preparation of VLP of Stru Δ S by Single-transfer of plasmid of Stru Δ S into 293T cells
293T was plated on 100mm cell culture dishes to a cell density of about 90%, 15. mu.g of SARS-CoV-2 Stru. DELTA.S was transfected in each dish with the transfection reagent lipo8000, and the medium was changed after 6 h. And collecting supernatant after 48 hours to obtain VLP. Cell in the culture dish is cracked to carry out RT-PCR and western blot to verify the expression of the plasmid in 293T cells; verifying the expression of the plasmid by adopting a fluorescence imaging method, analyzing N protein in the VLP by adopting western blot, and verifying the size and the shape of the VLP by adopting a transmission electron microscope characterization method;
(2) preparation of VLP of Stru Δ S + S by Co-transferring plasmid of Stru Δ S and S into 293T cell
293T was plated on 100mm cell culture dishes to a cell density of about 90%, 15. mu.g of SARS-CoV-2 Stru. delta.S and 15. mu.g of SARS-CoV-2S were transfected into each dish with the transfection reagent lipo8000, and the medium was changed after 6 hours; and collecting supernatant liquid after 72h, namely the VLP of Stru delta S + S. Verifying the expression of the plasmid by adopting a fluorescence imaging method, and analyzing the intracellular expression and S protein and N protein in VLP (VLP) by adopting western blot; verifying the size and the appearance of VLP by adopting a transmission electron microscope characterization method;
(3) preparation of VLP of Stru. DELTA.S + ORF1ab by co-transformation of the plasmid of Stru. DELTA.S and ORF1ab into 293T cells
293T was plated on 100mm cell culture dishes to a cell density of about 90%, 15. mu.g of SARS-CoV-2 Stru. DELTA.S and 15. mu.g of SARS-CoV-2ORF1ab were transfected into each dish with the transfection reagent lipo8000, and the medium was changed after 6 h. And collecting supernatant liquid after 48h, namely VLP of Stru delta S + ORF1 ab. Verifying the expression of the plasmid by adopting a fluorescence imaging method, analyzing the intracellular expression and N protein in VLP (VLP) by adopting western blot, and verifying the size and the shape of VLP (VLP) by adopting a transmission electron microscope characterization method;
(4) VLP of Stru Δ S + S + ORF1ab was prepared by co-transferring the plasmid of Stru Δ S, S and ORF1ab into 293T cells
293T was plated on 100mm cell culture dishes to a cell density of about 90%, 15. mu.g of SARS-CoV-2 Stru. DELTA.S, 15. mu.g of SARS-CoV-2S and 15. mu.g of SARS-CoV-2ORF1ab were transfected into each dish with the transfection reagent lipo8000, and the medium was changed after 6 hours; collecting supernatant solution after 48h, namely VLP of Stru delta S + S + ORF1 ab; verifying the expression of the plasmid by adopting a fluorescence imaging method, analyzing the intracellular expression and S protein and N protein in VLP by adopting western blot, and verifying the size and the shape of VLP by adopting a transmission electron microscope characterization method;
(5) the Stru. DELTA.S, ORF1ab and SMutationsThe plasmid is co-transferred into 293T cells to prepare Stru delta S + SMutations+ ORF1ab VLP
Firstly, single-site mutation is carried out on an S protein plasmid (namely SARS-CoV-2S) by a PCR method, in this case, N331Q, N501Y, D614G and P681H are taken as examples; and (3) transfecting 293T cells with each S mutant plasmid, cracking the cells, and verifying the expression of the S mutant plasmids by adopting an RT-PCR method. Then, S mutant VLPs were prepared, and 293T cells were plated on 100mm cell culture dishes for each S protein mutation to a cell density of about 90%, and 15. mu.g of SARS-CoV-2 Stru. delta.S, 15. mu.g of SARS-CoV-2S were transfected in each dish using the transfection reagent lipo8000MutationsWith 15 μ g of plasmid of SARS-CoV-2ORF1ab, the medium was changed after 6 h; collecting supernatant after 48h, namely Stru delta S + SMutations+ VLP of ORF1 ab; the expression of the plasmid is verified by adopting a fluorescence imaging method, the intracellular expression and S protein and N protein in VLP are analyzed by adopting western blot, and the size and the shape of VLP are verified by adopting a transmission electron microscope characterization method.
The technical solution of the present invention will be described in further detail below by way of examples with reference to the accompanying drawings, but the present invention is not limited to the following examples. Unless otherwise indicated, the nucleotide numbering of the SARS-CoV-2 genome and parts thereof as described herein and in the examples below is based on NCBI sequence number NC-045512.2, and the amino acid position numbering of the S protein and its mutants is based on the amino acid sequence of the S protein, i.e., amino acid 1 of the S protein.
Example 1: materials and methods
Plasmid: three plasmids, SARS-CoV-2S, ORF1ab-mCherry and Stru. DELTA.S-EGFP, were constructed based on the TAR system in yeast to prepare virus particles of SARS-CoV-2. . The cDNA sequence of SARS-CoV-2S glycoprotein with promoter and poly (A) signal was assembled and cloned into pEASY-T1 vector by homologous recombination in yeast to form plasmid pEASY-T-S (also referred to as SARS-CoV-2S plasmid or S plasmid in the following examples), by adding CAG promoter at the 5 'end of the codon optimized cDNA sequence encoding SARS-CoV-2S glycoprotein and bGH poly (A) signal at the 3' end, splitting the sequence with promoter and poly (A) signal into two fragments with overlapping sequences (SEQ ID NO:1, SEQ ID NO: 2). The CMV promoter, 5 ' UTR, 3' UTR, HDV, SV40 polyA and mCherry encoding genes were added to the 5 ' end of ORF1ab of SARS-CoV-2, and the sequence thus obtained was divided into six fragments with overlapping sequences (SEQ ID NOS: 3-8), and these overlapping fragments were assembled and cloned into pJS356 vector (obtained by adding ori2-oriV elements for inducing high expression of low-copy plasmids and SopA, SopB, Repe and SopC functional elements for high expression in Escherichia coli on the basis of pR415 plasmid) in yeast to form plasmid pJS356-ORF1 ab-mChery (in the following examples, SARS-CoV-2ORF1ab plasmid, SARS-CoV-2ORF1 ab-mChery plasmid, ORF1 ab-mChery plasmid or ORF1ab plasmid). The CMV promoter, the T7 promoter, the 5 ' UTR, and the 3' UTR, HDV, SV40 polyA and EGFP-encoding genes were added to the 3' end of the DNA sequences encoding all structural proteins (except spike proteins) and all auxiliary proteins (including ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF10), and the sequences thus obtained were split into three fragments with overlapping sequences (SEQ ID NO:9-11), which were assembled in yeast and cloned into pJS356 vector to form plasmid pJS356-Stru Δ S-EGFP (in the following examples, SARS-CoV-2Stru Δ S-EGFP, Stru Δ S-EGFP plasmid or Stru Δ S plasmid). The obtained plasmid was verified by digestion and sequencing.
The DNA sequence of the packaging signal (PS for short) of SARS-CoV-2 genomic RNA (nt 19900-20000 or 19773-20335) obtained by the bioassay was inserted into the 3' non-coding region of the EGFP gene in pEGFP-N1 vector to construct plasmid pEGFP-N1-PS101 or pEGFP-N1-PS 583. PS101(nt 19900-20000) or PS583(nt 19773-20335) was amplified from plasmid pJS356-ORF1 ab-mCherry. Plasmid pEGFP-N1 was treated with Not I restriction endonuclease and the PS-containing fragment was inserted to produce pEGFP-N1-PS101 or pEGFP-N1-PS 583.
Site-directed mutagenesis: the S protein gene mutant is constructed by using SARS-CoV-2S plasmid as template, including four kinds of plasmids including SARS-CoV-2S (N331Q), SARS-CoV-2S (N501Y), SARS-CoV-2S (D614G) and SARS-CoV-2S (P681H). 15-20 bases near the target mutation site were selected as the forward primer, and the complementary sequence was selected as the reverse primer, which is shown in Table 1. After site-directed mutagenesis PCR, the template strand was digested with the restriction enzyme DpnI. The product was directly transformed into E.coli DH5 alpha competent cells, and single clones were selected and sequenced.
Prediction of ORF1b RNA secondary structure: the sequences in the ORF1b region of SARS-CoV-2, SARS-CoV and bat SARS-CoV were selected from the reference genome using Biopython (nt 19500-. Secondary structure is predicted by RNA structure web server with default parameters and visually analyzed by Vienna RNA web server.
Multiple sequence alignment and prediction of similar structures: we predicted and compared the conserved RNA stem loop at the 3' end of ORF1b 3, which is the predicted packaging signal in SARS-associated virus. The LocARNA web server was used to compare SARS-CoV-2(NC-045512.2: 19773-.
Cell construction and culture: this study constructed 293T cells (293T/hACE2) stably expressing human ACE 2. The receptor hACE2 was generated by transfecting 293T cells with the hACE2 plasmid and screened at 2. mu.g/mL puromycin. Expression of hACE2 cells was detected by western blotting. 293T cells were cultured in DMEM medium supplemented with 10% FBS, 1% penicillin and streptomycin, and cultured at 37 ℃ under 5% CO2An incubator. 293T/hACE2 cells were cultured in DMEM medium supplemented with 10% FBS, 1% penicillin and streptomycin, and 2. mu.g/mL puromycin at 37 ℃ and 5% CO2An incubator.
Construction of VLPs: to obtain VLPs, the plasmid SARS-CoV-2S (10. mu.g), ORF1ab-mCherry (10. mu.g) and Stru. delta. S-EGFP (10. mu.g) were mixed with lipofectamine 8000, transfected into 293T cells, and cultured in DMEM medium containing 10% FBS for 48 hours. To form VLPs (EGFP-PS101) or VLPs (EGFP-PS583) assembled with the packaging signal, pEGFP-N1-PS101 (1. mu.g) or pEGFP-N1-PS583 (1. mu.g) was co-transfected into 293T cells for 48 hours together with SARS-CoV-2S (10. mu.g) and Stru. delta.S (10. mu.g) plasmids.
VLP purification: the culture supernatant was collected 48 hours after transfection and filtered through a 0.45 μm filter. The culture supernatant was added to a 20% sucrose pad and ultracentrifuged at 30000rpm for 3 hours using a SW32 rotor. The purified VLPs were used for transmission electron microscopy. For western blot analysis, the culture supernatant was added on top of 20% to 40% density gradient sucrose and ultracentrifuged at 30000rpm for 4 hours using a SW41 rotor. VLPs were collected for fluorescence imaging using PEG20000 concentration.
RNA extraction and RT-PCR: total RNA from cell culture supernatant was isolated by the FastPure cell/tissue Total RNA kit V2 and transcribed to cDNA at 48 hours according to the kit instructions. Using the cDNA as a template, specific primers listed in Table 1 were designed to amplify the coding region of SARS-CoV-2S, N, NSP1, NSP16 or ORF3a, and the PCR products were verified by electrophoresis in 1% agarose gel.
Western blot analysis: cells or VLPs were lysed on ice for five minutes with RIPA buffer containing protease inhibitor and PMSF and centrifuged at 13000g for 5 minutes to remove large cell debris. Protein lysates were boiled at 100 ℃ for 10 min, separated on 4-20% acrylamide gels, and transferred to nitrocellulose membranes. The nitrocellulose membrane was blocked with TBST buffer containing 1% Tween-20 and 5% cow's milk, overnight at 4 degrees, and then incubated with IRDye 680RD goat anti-mouse antibody or IRDye 800CW goat anti-rabbit antibody. The analysis results were obtained by a ChemiDoc MP imaging system.
Transmission electron microscope: the VLPs were attached to a carbon-coated copper mesh for 10 minutes and stained with 2% (w/v) phosphotungstic acid (pH 7.1) for 1 minute, and the samples were observed with a 200kV transmission electron microscope.
Preparing a quantum dot nano beacon: tellurium powder (20mg) and sodium borohydride (11mg) were added to a round-bottomed flask containing 1mL of ultrapure water, and the mixture was stirred for 5 hours under oxygen-free and ice-bath conditions to obtain sodium tellurihydride. To prepare the cadmium precursor, cadmium chloride, zinc chloride and N-acetyl-L-cysteine were mixed in a 1:1:4 ratio and the pH was adjusted to 9.0 by NaOH. BHQ2 and phosphorothioate co-modified DNA, cadmium precursor and sodium hydrogen telluride were mixed and transferred to a stainless steel autoclave lined with tetrafluoroethylene. The mixture was heated to 200 ℃ for 36 minutes to obtain BHQ2-DNA functionalized CdTe Zn2+QDs, quantum dots purified by centrifugation at 8000rpm for 10 minutes using an Amicon Ultra-4 centrifugal filtration device (50 kDa). Functional CdTe Zn to BHQ2-DNA2+QDs were annealed at 95 degrees for 10 minutes and at room temperature for 30 minutes to form stem-loop structures.
Fluorescent labeling of VLPs: to construct fluorescently labeled VLPs, 40 μ L of annealed quantum dot nanobeams (10 μ M) were added to the culture medium 6 hours after transfection of the SARS-CoV-2 plasmid to label the viral genome, and the nanobeams were labeled in the VLPs during the viral self-assembly phase. To 2mL of the collected virus solution, 0.5. mu.L of DiO (1mM) was added and incubated at 37 ℃ for 1 hour to label the viral envelope.
Viral infection and fluorescence imaging: 293T/hACE2 cells were seeded in confocal culture dishes and cultured in DMEM containing 10% FBS, 1% penicillin and streptomycin and 2. mu.g/mL puromycin. The fluorescently labeled VLPs were incubated with the host cell 293T/hACE2 at 4 ℃ for 30 minutes and the medium was replaced with fresh medium to remove unbound particles. The confocal culture dish was sealed with a sealing film and then transferred to 37 5% CO2An incubator. Imaging was performed by an UltraView Vox confocal laser scanning system at 488nm and 561nm excitation.
Example 2 results and discussion
Results
Construction and characterization of SARS-CoV-2VLP
To assemble SARS-CoV-2 VLPs with infectious capacity, we split the full cDNA length of the SARS-CoV-2 genome into three parts: SARS-CoV-2ORF1ab (nucleotide position: 266-. Using chemically synthesized virus genome DNA fragments to assemble in yeast to construct plasmids respectively containing SARS-CoV-2ORF1ab, SARS-CoV-2S and SARS-CoV-2Stru delta S; the constructed plasmids were co-transfected into 293T cells to generate SARS-CoV-2VLP (FIG. 1B). In 293T cells, the DNA fragment is translated and viral proteins are expressed; SARS-CoV-2ORF1ab RNA comprising a Packaging Signal (PS) sequence is assembled with a structural protein to form a SARS-CoV-2 VLP; infectivity of SARS-CoV-2VLP is mediated by binding of the spike protein to the host cell surface hACE2 receptor. Cells that have been infected with SARS-CoV-2VLP do not produce progeny virus when only the packaging sequence genes are assembled in the virion, but not all the structural protein genes (FIG. 1C). Therefore, our SARS-CoV-2VLP construction strategy is expected to provide a safe and universal platform for virology research.
SARS-CoV-2 spike glycoprotein (S) acts as a receptor binding site and can mediate membrane fusion and viral entry. We assembled and optimized the S protein coding sequence and expressed the S protein in mammalian cells. The results of transfecting the SARS-CoV-2S plasmid into 293T cells and analyzing the S gene by RT-PCR are shown in FIG. 6A. The expressed SARS-CoV-2S protein was verified by Western blotting and showed two major bands, a full-length protein of 180kDa and a cleaved protein of 110kDa (FIG. 6B).
SARS-CoV-2 Stru. delta.S gene sequence and EGFP are fused to construct plasmid, named SARS-CoV-2 Stru. delta.S-EGFP (FIG. 7A); at the same time, we constructed expression vectors for structural proteins (E, envelope; M, membrane; N, nucleocapsid) and accessory proteins. To verify the activity of the SARS-CoV-2 Stru. delta. S-EGFP plasmid, ORF3a and the N gene were analyzed by RT-PCR in 293T cells (FIG. 7B); EGFP expression was observed 24 hours after plasmid transfection (FIG. 7C) and expression of SARS-CoV-2N protein was determined by Western blotting (FIG. 7D). The structural proteins can assemble into virus-like particle VLPs (Stru Δ S); we collected the medium 48 hours after transfection and transferred to a supercentrifuge tube (bottom 20% sucrose pad) to isolate VLPs. Confirmation of the presence of SARS-CoV-2N protein in VLP (Stru. DELTA.S) by Western blotting (FIG. 7D); the morphological size of VLPs (Stru Δ S) was then observed by TEM and we found that the estimated diameter of the spherical particles without spike protein was 75 ± 14nm (n ═ 30, fig. 7E).
We constructed the plasmid by fusing SARS-CoV-2ORF1ab gene sequence and mCherry sequence, and the polyprotein 1a (pp1a) and pp1ab expressed by the plasmid could be self-cleaved into 16 non-structural proteins (NSP) by virus protease (FIG. 8A). The activity of SARS-CoV-2ORF1ab-mCherry plasmid was assessed by RT-PCR, while mCherry signal was observed within 48 hours post-transfection using confocal microscopy (FIGS. 8B and 8C).
The assembly and secretion of VLPs (Stru. DELTA.S-S) is dependent on the co-expression of the SARS-CoV-2S plasmid and the Stru. DELTA.S-EGFP plasmid; 24h after transfection, fluorescence of EGFP was detected by confocal microscopy and SARS-CoV-2S and N proteins were detected by Western blotting, indicating that SARS-CoV-2S and Stru. DELTA.S-EGFP RNA can be expressed in transfected cells (FIGS. 9A and 9B). To characterize their morphology and size, transmission electron microscopy was performed under TEM after negative staining of VLPs (Stru Δ S-S) (fig. 9C); observations indicated that VLPs (Stru Δ S-S) are spherical particles with spike proteins, with an average size estimated at 74 ± 16nm (n ═ 30, no spikes contained). At the same time, we also performed western blot analysis of structural proteins of the assembled VLP (Stru. DELTA.S-S) and also obtained a band of the expected molecular weight (FIG. 9B).
VLP (Stru. DELTA.S-ORF 1ab) was produced by cotransfection of 293T cells with a SARS-CoV-2 Stru. DELTA.S-EGFP plasmid and an ORF1ab-mCherry plasmid; imaging the cells at 24 hours post-transfection, significant fluorescence was observed (fig. 10A); meanwhile, expression of SARS-CoV-2N protein in transfected cells was detected by Western blotting (FIG. 10B). Next, transmission electron microscopy was performed to analyze the morphological characteristics of VLP (Stru. DELTA.S-ORF 1 ab). The diameter of the globular particles without spike protein was approximately 79 ± 13nm (n ═ 30, fig. 10C). The SARS-CoV-2N protein of VLP (Stru. DELTA.S-ORF 1ab) was determined by Western blotting (FIG. 10B).
To prepare SARS-CoV-2VLP, three plasmids were co-transfected into 239T cells. Within 24 hours after transfection, EGFP and mCherry signals were observed, indicating that the plasmid was replicated and transcribed in the cells (fig. 2A). To detect the expression of SARS-CoV-2S and N proteins, 48 hours after transfection, cell lysate was collected for Western blot analysis. Meanwhile, in order to analyze the morphological characterization of the virus particles, transmission electron microscope observation is carried out; transmission electron microscopy images showed circular viral particles with a typical sharp coronal aspect, and the particles were approximately 76 ± 12nm in diameter (n ═ 30, no spikes included). SARS-CoV-2 VLPs and other VLPs appear to have similar shapes and sizes (FIG. 2C). The SARS-CoV-2S and N proteins in the virions were analyzed by Western blotting to give the expected bands (FIG. 2B).
To avoid potential bio-safety issues, rescued virus-like particles were safety tested in the BSL-3 laboratory. The 293T/hACE2 cell strain constructed by the method has susceptibility to SARS-CoV-2 infection; the expression of the hACE2 receptor by the cells was verified by western blotting (FIG. 11A). 293T/hACE2 cells were de-infected with SARS-CoV-2VLP to test whether the infected cells produced progeny virus. Whether the virus structural protein is expressed in the cells and assembled into progeny virus is detected by western blotting, and the result shows that no corresponding band can be observed. The results indicate that SARS-CoV-2VLP cannot replicate, express structural proteins, and thus cannot assemble in host cells to produce progeny virus. Since SARS-CoV-2VLP is unable to replicate, representative images of 293T/hACE2 cells infected with SARS-CoV-2VLP and wild type SARS-CoV-2 virus showed significant differences in virus titer (FIG. 11C). Therefore, the SARS-CoV-2VLP constructed by the method can be used as a safe and proper model to research the life cycle and the infection mechanism of SARS-CoV-2 virus, is expected to further understand the life cycle of the virus, and provides a certain theoretical basis for the development of antiviral drugs and vaccines.
To further explore the assembly of viral genomic RNA, we infected 293T/hACE2 cells with SARS-CoV-2VLP (FIG. 2E). At 48 hours after viral particle infection, mCherry signal was observed by confocal microscope imaging, but red fluorescence in infected cells was very weak, probably due to the low copy number of ORF1ab-mCherry mRNA (fig. 2D). VLP (mCherry) is formed by cotransfection and assembly of three plasmids, namely SARS-CoV-2S plasmid, Stru delta S-EGFP plasmid and mCherry plasmid (obtained by directly inserting mCherry into pEGFP-N1 vector). No fluorescence signal was observed in vlp (mCherry) -infected cells, indicating that mCherry mRNA without the Packaging Signal (PS) sequence could not be packaged into particles. This demonstrates that the SARS-CoV-2 packaging signal located in ORF1ab fragment plays an important role in the assembly of viral RNA into particles.
Prediction and validation of package signals in SARS-CoV-2
According to previous reports, the nucleocapsid of coronavirus interacts with viral RNA by recognizing specific Packaging Signal (PS) sequences to facilitate the assembly of genomic RNA into viral particles. The prediction of the PS position of SARS-CoV-2 was performed by bioinformatics analysis, and the prediction revealed that the PS was at the 3' end near the region of ORF1 b. Meanwhile, we predict the RNA secondary structure of SARS-CoV-2, SARS-CoV and bat SARS-CoV; the prediction results showed that all three types of viruses contained two stable stem loops in the RNA secondary structure (SL1 and SL2) (fig. 3A). Multiple alignments of the PS consensus structure further confirmed the high conservation of RNA stem loops, especially SL1 and SL2 (fig. 12). These results indicate that a stable stem-loop structure may have PS function in SARS-CoV-2. To further explore, based on the informed predictions of the packaging sequence, we selected two regions to test packaging activity, one short region containing conserved stem-loop structures (PS101, nt 19900-.
Fusing and expressing the predicted PS sequence and a 3' non-coding region of the EGFP reporter gene, constructing a plasmid pEGFP-N1-PS101 and a plasmid pEGFP-N1-PS583, and respectively transfecting into 293T cells; expression of EGFP-PS101 and EGFP-PS583 RNAs was determined by RT-PCR (FIGS. S8A and 3B). To confirm the predicted assembly of PS RNA, VLPs (EGFP-PS101) and VLPs (EGFP-PS583) were collected and used to infect 293T/hACE2 cells, as shown in FIG. 3E. The SARS-CoV-2S plasmid, the Stru. delta. S plasmid and the pEGFP-N1-PS101/pEGFP-N1-PS583 plasmid were co-transfected into 293T cells to produce VLPs (EGFP-PS101) or VLPs (EGFP-PS583), respectively. In transfected cells, S protein, N protein and EGFP were expressed and assembled into VLPs, and several proteins were analyzed by western blotting (fig. 13B and 3C). Structural proteins were detected in VLPs, whereas EGFP could not be detected. To verify whether EGFP-PS101 or EGFP-PS583 RNA was packaged into VLPs, 293T/hACE2 cells were infected with VLPs and examined for EGFP expression in the infected cells (FIG. 3E). After the VLP (EGFP-PS101) or VLP (EGFP-PS583) infected cells for 48 hours, green fluorescence of EGFP was observed and had higher fluorescence intensity, indicating that it had better packaging activity. As shown in fig. 13C and 3D, the low fluorescence signal in VLP-infected cells was likely due to the lower copy number of EGFP-PS RNA packaged into the VLP. VLP (EGFP) was obtained by cotransfection of SARS-CoV-2S plasmid, Stru. delta. S plasmid and pEGFP-N1 plasmid, and as a control group, EGFP mRNA without a PS sequence on its surface could not be packaged into VLP (green fluorescent protein). These results confirm that the predicted sequence has PS function in SARS-CoV-2 and is important for the assembly of viral genomic RNA into VLPs.
Evaluation of the role of structural proteins in viral infection and Assembly
Previous reports demonstrated that SARS-CoV-2S protein is associated with receptor binding and membrane fusion, and that mutation of the S protein would greatly affect the ability to infect the host. Based on SARS-CoV-2S plasmid, we constructed 4 different region mutations, including N331Q mutation of RBD 22553 site A to C substitution and RBD 22555 site C to G substitution, N501Y of 23063 site A-T substitution; D614G with a to G substitution at position 23403 near the RBD region; and the P681H mutation by a C to A substitution at position 23604 near the furin domain; the construction and characterization of the S mutant is shown in FIGS. 14-17. VLP S (mutant) was assembled from co-transfected cells of SARS-CoV-2S (mutant) plasmid, Stru. delta. S plasmid and ORF1ab plasmid. The SARS-CoV-2S and N proteins in the virions were identified by Western blotting, and bands were expected as shown in FIG. 18. The morphology and size of VLP S (mutations) was analyzed by transmission electron microscopy and the results indicated that the mutants were similar to VLPs with wild-type S protein (fig. 18). To test the infectivity of the S mutant virus particles, 293T/hACE2 cells were infected with fluorescent VLP S (mutant) produced by labeling the lipid envelope with DiO. Cells were fixed at 1 or 2 hours post infection, then 500 cells were randomly selected for imaging under a confocal microscope and colored particles were counted for analysis. Compared to VLPs of wild-type S, VLPs (N501Y), VLPs (D614G) and VLPs (P681H) were more infectious, while the infectivity of VLPs (N331Q) was significantly reduced (fig. 4A). The results are consistent with previous reports, indicating that our constructed system can be used to assess the ability of the S mutation to have an effect on SARS-CoV-2 assembly and infectivity.
To investigate the necessity of nucleocapsid (N) in viral RNA packaging, we deleted the coding region of the N protein on plasmid SARS-CoV-2Stru Δ S, thereby constructing plasmid SARS-CoV-2Stru Δ S-EGFP/Δ N ((which may be referred to as SARS-CoV-2Stru Δ S-EGFP/Δ N plasmid, or Stru Δ S/Δ N plasmid) FIG. 19A). The activity and expression of the SARS-CoV-2 Stru. DELTA.S-EGFP/DELTA.N plasmid was detected by RT-PCR and Western blotting, respectively (FIGS. 19B and 19C). VLP (. DELTA.N) can be obtained by co-transfecting cells with SARS-CoV-2S plasmid, Stru. DELTA.S-EGFP/. DELTA.N plasmid, and ORF1ab triplasmid. VLP (Δ N) is spherical, with a coronal structure, with a diameter of 81 ± 17nm (N ═ 30, excluding spikes), as shown in TEM images. The VLPs produced, which we detected by western blot detection, detected S protein and failed to detect N protein, consistent with the expected results (fig. 4C). Whether the viral RNA assembly process is dependent on nucleocapsid is determined by infecting 293T/hACE2 cells with VLP (. DELTA.N-EGFP-PS 583); VLP (Δ N-EGFP-PS583) was produced by co-transfection with the plasmids SARS-CoV-2S, Stru Δ S/Δ N and the packaging signal plasmid pEGFP-N1-PS 583. Little green fluorescence of EGFP was observed in VLP (Δ N-EGFP-PS583) infected cells, as shown in fig. 4B; this is significantly different from VLP (EGFP-PS583) -infected cells. The results indicate that the N protein is not essential for VLP formation, but it plays an important role in viral RNA packaging.
In early reports on coronaviruses, membrane (M) and envelope (E) proteins, as major functional components, play an important role in the production of viral particles; this study also explored the effect of M and E proteins on VLP production. The M or E protein coding sequences were deleted, respectively, to give SARS-CoV-2 Stru. delta. S-EGFP/. DELTA.M plasmid and SARS-CoV-2 Stru. delta. S-EGFP/. DELTA.E plasmid, and verified by RT-PCR and Western blotting (FIGS. 20 and 22). The Stru Δ S mutant plasmid, either SARS-CoV-2Stru Δ S-EGFP/Δ M plasmid or SARS-CoV-2Stru Δ S-EGFP/Δ E plasmid, was co-transfected with plasmids SARS-CoV-2S and ORF1ab-mCherry into 293T cells, resulting in Stru Δ S mutant viral particles rVP (Δ M) or rVP (Δ E), respectively. TEM images and western blot analysis showed that viral particles lacking either M or E protein were still available in transfected cells (fig. 4C, 21A and 23A). The use of the Stru. DELTA.S mutant virus particles further to infect 293T/hACE2 cells resulted in no fluorescence signal observed after 48 hours of infection (FIGS. 21B and 23B), which is in contrast to the expression of host cells after SARS-CoV-2VLP infection, indicating that transfected cells can produce mutant virus particles even if the M or E gene is deleted, but the function of the virus particles is affected. Unlike N-deleted mutants, deletion of either M or E protein does not affect packaging of viral RNA.
The region of open reading frame 10(ORF10) in the SARS-CoV-2 genome is located downstream of the N gene, and the ORF10 protein does not appear to play a significant role in previous reports. We constructed and characterized the SARS-CoV-2 Stru. delta. S-EGFP/. delta. ORF10 plasmid with the ORF10 coding sequence knocked out (FIG. 24); this plasmid co-transfects cells with the plasmid SARS-CoV-2S, ORF1ab, thereby producing VLP (. DELTA.ORF 10). VLP (Δ ORF10) showed similar morphology and function to those of our constructed SARS-CoV-2VLP (FIG. 4C), indicating that deletion of ORF10 gene had no effect on the assembly of viral particles.
To further confirm the effect of the above structural/accessory proteins on VLP assembly, we fluorescently labeled the genome and envelope in VLP, respectively, and preliminarily explored the assembly efficiency of VLP by fluorescence co-localization efficiency (fig. 25), which is in substantial agreement with the above validation results.
real-time imaging of the entry of the rSARS-CoV-2 virus into 293T/hACE2 cells.
We prepared a dual fluorescence labeled SARS-CoV-2VLP (QD-DiO) to gain insight into the viral entry process, as shown in FIG. 5A. The viral RNA hybridizes to the target nucleic acid sequence to form a complex, which is labeled with Quantum Dot (QD) nanobeads and then fluoresces red, and the complex is finally encapsulated by viral particles. A dark electron dense core was observed inside the QD-labeled virus (fig. 5B). To obtain the bifluorescent particles, the lipid envelope was labeled with DiO. Fluorescence co-localization of RNA-QD and Env-DiO confirmed the successful construction of two-color rSARS-CoV-2(QD-DiO) (FIG. 5C), wherein rSARS-CoV-2 is also SARS-CoV-2 VLP.
To show the dynamic process of viral entry, SARS-CoV-2VLP (QD-DiO) particles were followed in 293T/hACE2 cells by confocal microscopy imaging. During real-time imaging, only the co-localization of signals containing QD and DiO are considered as single virions. Bicolor particles were observed on the membrane of 293T/hACE2 cells and transported into the host cell in an active manner (FIG. 5D). The trajectory of the virus particle is shown in FIG. 5E. In this study, we tracked and analyzed the trajectories of more than 2000 individual virus particles in living cells. The results showed that 47.5% of the virus particles entered 293T/hACE2 cells by endocytosis, whereas the other particles were only attached to the cell membrane surface and were not transported into the cytoplasm.
Release of the viral core from the envelope during endocytosis into the host cell is also captured by real-time imaging. Tracking of the rSARS-CoV-2(QD-DiO) particle in living cells showed that the viral core was released into the cytoplasm. Virions with QD and DiO co-localization signals (yellow) were imaged in the cytoplasm, and separation of red and green spots was observed during dynamic movement of virions (fig. 5F). The trajectories of RNA-QD and Env-DiO differ after the isolation behavior, as shown in FIG. 5G. The results indicate successful escape of the viral core from the endosome, a necessary process for the generation of infection. In this study, we analyzed 1000 single particles in 293T/hACE2 cells and captured 64 similar events. The lower proportion may be due to the particles being tracked moving out of the focal plane during the observation or to photobleaching of the fluorescence signal.
Discussion of the related Art
To study SARS-CoV-2, we constructed a viral genome partitioning System (SVG) and performed a corresponding characterization analysis. The SARS-CoV-2VLP with single round infection is produced by the system, and is expected to be used for biological exploration and vaccine development. SARS-CoV-2ORF1ab RNA containing the packaging signal is assembled into rSARS-CoV-2 without the structural gene in the virion, thereby ensuring the safety of the system. We designed a series of sars-CoV-2 mutants with mutations or deletions of viral genes to determine the function of viral components; the role of the four structural proteins and ORF10 protein in SARS-CoV-2VLP infection and assembly was explored. Meanwhile, the nano-beacon and the lipophilic dye are introduced, and the dynamic process of entering the host cell by SARS-CoV-2VLP through endocytosis is shown through real-time imaging. Various fluorescent probes can be designed into the system to visualize other steps of the virus life cycle, as desired for the study. In addition, a general platform for virology experiments in BSL-2 laboratories is very important for the study of SARS-CoV-2. Based on the system constructed by the inventor, the method can be applied to the current SARS-CoV-2 research of several types: (1) functional analysis of SARS-CoV-2 functional analysis of each component can be performed by designing rSARS-CoV-2 mutant. (2) The prediction and verification of the SARS-CoV-2 packaging signal with specific sequence provides a reliable way for researching the molecular mechanism involved in the virus RNA assembly. (3) Single virion tracking based on multicolor markers SARS-CoV-2 VLPs enables real-time and accurate imaging of the course of infection by virions in living host cells. (4) Assembled VLPs with different components facilitate the development of vectors and vaccines. Combining these advantages, the SVG system can be developed as a valuable platform for studying SARS-CoV-2 and other coronaviruses.
The experimental result proves that the SVG system has safety. The whole genome of SARS-CoV-2 is divided into three parts, and the packaging signal necessary for viral RNA assembly is located in ORF1ab fragment. Our system lacks multiple gene segments and does not produce wild-type virus. Unlike pseudoviruses, which contain a partial functional structure, we produce virions with almost all the components of SARS-CoV-2. However, due to the lack of structural genes in the viral packaged RNA, SARS-CoV-2 VLPs are unable to replicate and assemble progeny viruses. These single round infectious virions fail to infect host cells for multiple rounds, blocking viral transmission. There is no need to construct specific stable cell lines to produce viral particles that can be safely manipulated in the BSL-2 laboratory, such as the trans-complementation system. According to the needs of virus research, some ORF genes can be further deleted from the three fragments, and rSARS-CoV-2 mutant with higher safety can be generated.
In the SVG system, we surprisingly found that deletion of the gene encoding the M protein did not affect the formation of viral particles, whereas no mCherry signal of viral RNA expression was observed in VLP (Δ M) -infected cells. This may be due to the lack of M protein in the mutant virion interfering with the function of the virion. Thus, the SARS-CoV-2M protein plays a major role in viral function, but is not essential for the formation of viral particles. It is distinct from SARS-CoV, where the M protein is a key factor in viral assembly. The system we have developed also has some limitations. The virus assembly efficiency needs to be improved, which is of great significance to further promotion of the system and vaccine development. Optimization of virion-packaged RNA fragments can facilitate study of SARS-CoV-2 infection and replication. The SVG system, the composition and the method of the present invention can be used as a powerful tool for facilitating neutralization tests and antiviral tests, and various pseudovirions can be obtained by using the virus genome partitioning system, and can be used for neutralizing antibody tests of virus antibodies, screening of antiviral drugs, preparation of virus vaccines, etc. In conclusion, we developed an SVG system for SARS-CoV-2 research, which can be operated in BSL-2 laboratory. The resulting virion, rSARS-CoV-2, can be readily engineered for analysis of viral life processes and the function of each component.
TABLE 1
Figure BDA0003328949560000211
In the following sequences, underlined sequences are homology arms
Split fragment of S protein expression sequence (containing codon optimized S protein genome 3822 bp):
s-fragment 1(SEQ ID NO: 1):
GCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATG CTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACG CCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTCTGCAGATATAACTTCGTATAATGTATGCTATACGAAGTTATccgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattgtgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtcgaggtgagccccacgttctgcttcactctccccatctcccccccctccccacccccaattttgtatttatttattttttaattattttgtgcagcgatgggggcggggggggggggggggcggggcgaggggcggggcggggcgaggcggagaggtgcggcggcagccaatcagagcggcgcgctccgaaagtttccttttatggcgaggcggcggcggcggcggccctataaaaagcgaagcgcgcggcgggcgggagtcgctgcgcgctgccttcgccccgtgccccgctccgccgccgcctcgcgccgcccgccccggctctgactgaccgcgttactcccacaggtgagcgggcgggacggcccttctcctccgggctgtaattagctgagcaagaggtaagggtttaagggatggttggttggtggggtattaatgtttaattacctggagcacctgcctgaaatcactttttttcaggttggaccggtgccaccATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCCAGTGCGTGAACCTGACCACCCGCACCCAGCTGCCCCCCGCCTACACCAACAGCTTCACCCGCGGCGTGTACTACCCCGACAAGGTGTTCCGCAGCAGCGTGCTGCACAGCACCCAGGACCTGTTCCTGCCCTTCTTCAGCAACGTGACCTGGTTCCACGCCATCCACGTGAGCGGCACCAACGGCACCAAGCGCTTCGACAACCCCGTGCTGCCCTTCAACGACGGCGTGTACTTCGCCAGCACCGAGAAGAGCAACATCATCCGCGGCTGGATCTTCGGCACCACCCTGGACAGCAAGACCCAGAGCCTGCTGATCGTGAACAACGCCACCAACGTGGTGATCAAGGTGTGCGAGTTCCAGTTCTGCAACGACCCCTTCCTGGGCGTGTACTACCACAAGAACAACAAGAGCTGGATGGAGAGCGAGTTCCGCGTGTACAGCAGCGCCAACAACTGCACCTTCGAGTACGTGAGCCAGCCCTTCCTGATGGACCTGGAGGGCAAGCAGGGCAACTTCAAGAACCTGCGCGAGTTCGTGTTCAAGAACATCGACGGCTACTTCAAGATCTACAGCAAGCACACCCCCATCAACCTGGTGCGCGACCTGCCCCAGGGCTTCAGCGCCCTGGAGCCCCTGGTGGACCTGCCCATCGGCATCAACATCACCCGCTTCCAGACCCTGCTGGCCCTGCACCGCAGCTACCTGACCCCCGGCGACAGCAGCAGCGGCTGGACCGCCGGCGCCGCCGCCTACTACGTGGGCTACCTGCAGCCCCGCACCTTCCTGCTGAAGTACAACGAGAACGGCACCATCACCGACGCCGTGGACTGCGCCCTGGACCCCCTGAGCGAGACCAAGTGCACCCTGAAGAGCTTCACCGTGGAGAAGGGCATCTACCAGACCAGCAACTTCCGCGTGCAGCCCACCGAGAGCATCGTGCGCTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCCGCTTCGCCAGCGTGTACGCCTGGAACCGCAAGCGCATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCCGCGGCGACGAGGTGCGCCAGATCGCCCCCGGCCAGACCGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAGGTGGGCGGCAACTACAACTACCTGTACCGCCTGTTCCGCAAGAGCAACCTGAAGCCCTTCGAGCGCGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAGGGCTTCAACTGCTACTTCCCCCTGCAGAGCTACGGCTTCCAGCCCACCAACGGCGTGGGCTACCAGCCCTACCGCGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCG CCACCGTGTGCGGCCCCAAGAAGAGCACCAACCTGGTGAAGAACAAGTGCGTGAACTTCAACTTCAACGGCCTGACC GGCACCGGCGTGCTGACCGAGAGCAACAAGAAGTTCCTGCCCTTCCAGCAGTTCGGCCGCGACATCGCCGACACCAC CGACGCCGTGCGCGACCCCCAGA
s-fragment 2(SEQ ID NO: 2):
CTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGAGCACCAACCTGGTGAAGAACA AGTGCGTGAACTTCAACTTCAACGGCCTGACCGGCACCGGCGTGCTGACCGAGAGCAACAAGAAGTTCCTGCCCTT CCAGCAGTTCGGCCGCGACATCGCCGACACCACCGACGCCGTGCGCGACCCCCAGACCCTGGAGATCCTGGACATCACCCCCTGCAGCTTCGGCGGCGTGAGCGTGATCACCCCCGGCACCAACACCAGCAACCAGGTGGCCGTGCTGTACCAGGACGTGAACTGCACCGAGGTGCCCGTGGCCATCCACGCCGACCAGCTGACCCCCACCTGGCGCGTGTACAGCACCGGCAGCAACGTGTTCCAGACCCGCGCCGGCTGCCTGATCGGCGCCGAGCACGTGAACAACAGCTACGAGTGCGACATCCCCATCGGCGCCGGCATCTGCGCCAGCTACCAGACCCAGACCAACAGCCCCCGCCGCGCCCGCAGCGTGGCCAGCCAGAGCATCATCGCCTACACCATGAGCCTGGGCGCCGAGAACAGCGTGGCCTACAGCAACAACAGCATCGCCATCCCCACCAACTTCACCATCAGCGTGACCACCGAGATCCTGCCCGTGAGCATGACCAAGACCAGCGTGGACTGCACCATGTACATCTGCGGCGACAGCACCGAGTGCAGCAACCTGCTGCTGCAGTACGGCAGCTTCTGCACCCAGCTGAACCGCGCCCTGACCGGCATCGCCGTGGAGCAGGACAAGAACACCCAGGAGGTGTTCGCCCAGGTGAAGCAGATCTACAAGACCCCCCCCATCAAGGACTTCGGCGGCTTCAACTTCAGCCAGATCCTGCCCGACCCCAGCAAGCCCAGCAAGCGCAGCTTCATCGAGGACCTGCTGTTCAACAAGGTGACCCTGGCCGACGCCGGCTTCATCAAGCAGTACGGCGACTGCCTGGGCGACATCGCCGCCCGCGACCTGATCTGCGCCCAGAAGTTCAACGGCCTGACCGTGCTGCCCCCCCTGCTGACCGACGAGATGATCGCCCAGTACACCAGCGCCCTGCTGGCCGGCACCATCACCAGCGGCTGGACCTTCGGCGCCGGCGCCGCCCTGCAGATCCCCTTCGCCATGCAGATGGCCTACCGCTTCAACGGCATCGGCGTGACCCAGAACGTGCTGTACGAGAACCAGAAGCTGATCGCCAACCAGTTCAACAGCGCCATCGGCAAGATCCAGGACAGCCTGAGCAGCACCGCCAGCGCCCTGGGCAAGCTGCAGGACGTGGTGAACCAGAACGCCCAGGCCCTGAACACCCTGGTGAAGCAGCTGAGCAGCAACTTCGGCGCCATCAGCAGCGTGCTGAACGACATCCTGAGCCGCCTGGACAAGGTGGAGGCCGAGGTGCAGATCGACCGCCTGATCACCGGCCGCCTGCAGAGCCTGCAGACCTACGTGACCCAGCAGCTGATCCGCGCCGCCGAGATCCGCGCCAGCGCCAACCTGGCCGCCACCAAGATGAGCGAGTGCGTGCTGGGCCAGAGCAAGCGCGTGGACTTCTGCGGCAAGGGCTACCACCTGATGAGCTTCCCCCAGAGCGCCCCCCACGGCGTGGTGTTCCTGCACGTGACCTACGTGCCCGCCCAGGAGAAGAACTTCACCACCGCCCCCGCCATCTGCCACGACGGCAAGGCCCACTTCCCCCGCGAGGGCGTGTTCGTGAGCAACGGCACCCACTGGTTCGTGACCCAGCGCAACTTCTACGAGCCCCAGATCATCACCACCGACAACACCTTCGTGAGCGGCAACTGCGACGTGGTGATCGGCATCGTGAACAACACCGTGTACGACCCCCTGCAGCCCGAGCTGGACAGCTTCAAGGAGGAGCTGGACAAGTACTTCAAGAACCACACCAGCCCCGACGTGGACCTGGGCGACATCAGCGGCATCAACGCCAGCGTGGTGAACATCCAGAAGGAGATCGACCGCCTGAACGAGGTGGCCAAGAACCTGAACGAGAGCCTGATCGACCTGCAGGAGCTGGGCAAGTACGAGCAGTACATCAAGTGGCCCTGGTACATCTGGCTGGGCTTCATCGCCGGCCTGATCGCCATCGTGATGGTGACCATCATGCTGTGCTGCATGACCAGCTGCTGCAGCTGCCTGAAGGGCTGCTGCAGCTGCGGCAGCTGCTGCAAGTTCGACGAGGACGACAGCGAGCCCGTGCTGAAGGGCGTGAAGCTGCACTACACCTAAtgtacaaggaattctaactagagctcgctgatcagcctcgactgtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggtggggcaggacagcaagggggaggattgggaagagaatagcaggcatgctggggaATAACTTCGTATAATGTATGCTATACGAAGTTATATCCATCACACTGGCGGCCGcCTCGAGCATGCATCTAGAGGGCCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCG TTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGC TGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCT
ORF1ab sequence split fragment:
ORF1 ab-fragment 1(SEQ ID NO: 3):
CTGCCTGGCGGCAGTAGCGCGGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAG CGCCGATGGTAGTGTGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTC GAAAGACTGGGCCTTCCTGCCACTCATCGCAGTACTGTTGTAATTCATTAAgcatgTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCGattaaaggtttataccttcccaggtaacaaaccaaccaactttcgatctcttgtagatctgttctctaaacgaactttaaaatctgtgtggctgtcactcggctgcatgcttagtgcactcacgcagtataattaataactaattactgtcgttgacaggacacgagtaactcgtctatcttctgcaggctgcttacggtttcgtccgtgttgcagccgatcatcagcacatctaggtttcgtccgggtgtgaccgaaaggtaagatggagagccttgtccctggtttcaacgagaaaacacacgtccaactcagtttgcctgttttacaggttcgcgacgtgctcgtacgtggctttggagactccgtggaggaggtcttatcagaggcacgtcaacatcttaaagatggcacttgtggcttagtagaagttgaaaaaggcgttttgcctcaacttgaacagccctatgtgttcatcaaacgttcggatgctcgaactgcacctcatggtcatgttatggttgagctggtagcagaactcgaaggcattcagtacggtcgtagtggtgagacacttggtgtccttgtccctcatgtgggcgaaataccagtggcttaccgcaaggttcttcttcgtaagaacggtaataaaggagctggtggccatagttacggcgccgatctaaagtcatttgacttaggcgacgagcttggcactgatccttatgaagattttcaagaaaactggaacactaaacatagcagtggtgttacccgtgaactcatgcgtgagcttaacggaggggcatacactcgctatgtcgataacaacttctgtggccctgatggctaccctcttgagtgcattaaagaccttctagcacgtgctggtaaagcttcatgcactttgtccgaacaactggactttattgacactaagaggggtgtatactgctgccgtgaacatgagcatgaaattgcttggtacacggaacgttctgaaaagagctatgaattgcagacaccttttgaaattaaattggcaaagaaatttgacaccttcaatggggaatgtccaaattttgtatttcccttaaattccataatcaagactattcaaccaagggttgaaaagaaaaagcttgatggctttatgggtagaattcgatctgtctatccagttgcgtcaccaaatgaatgcaaccaaatgtgcctttcaactctcatgaagtgtgatcattgtggtgaaacttcatggcagacgggcgattttgttaaagccacttgcgaattttgtggcactgagaatttgactaaagaaggtgccactacttgtggttacttaccccaaaatgctgttgttaaaatttattgtccagcatgtcacaattcagaagtaggacctgagcatagtcttgccgaataccataatgaatctggcttgaaaaccattcttcgtaagggtggtcgcactattgcctttggaggctgtgtgttctcttatgttggttgccataacaagtgtgcctattgggttccacgtgctagcgctaacataggttgtaaccatacaggtgttgttggagaaggttccgaaggtcttaatgacaaccttcttgaaatactccaaaaagagaaagtcaacatcaatattgttggtgactttaaacttaatgaagagatcgccattattttggcatctttttctgcttccacaagtgcttttgtggaaactgtgaaaggtttggattataaagcattcaaacaaattgttgaatcctgtggtaattttaaagttacaaaaggaaaagctaaaaaaggtgcctggaatattggtgaacagaaatcaatactgagtcctctttatgcatttgcatcagaggctgctcgtgttgtacgatcaattttctcccgcactcttgaaactgctcaaaattctgtgcgtgttttacagaaggccgctataacaatactagatggaatttcacagtattcactgagactcattgatgctatgatgttcacatctgatttggctactaacaatctagttgtaatggcctacattacaggtggtgttgttcagttgacttcgcagtggctaactaacatctttggcactgtttatgaaaaactcaaacccgtccttgattggcttgaagagaagtttaaggaaggtgtagagtttcttagagacggttgggaaattgttaaatttatctcaacctgtgcttgtgaaattgtcggtggacaaattgtcacctgtgcaaaggaaattaaggagagtgttcagacattctttaagcttgtaaataaatttttggctttgtgtgctgactctatcattattggtggagctaaacttaaagccttgaatttaggtgaaacatttgtcacgcactcaaagggattgtacagaaagtgtgttaaatccagagaagaaactggcctactcatgcctctaaaagccccaaaagaaattatcttcttagagggagaaacacttcccacagaagtgttaacagaggaagttgtcttgaaaactggtgatttacaaccattagaacaacctactagtgaagctgttgaagctccattggttggtacaccagtttgtattaacgggcttatgttgctcgaaatcaaagacacagaaaagtactgtgcccttgcacctaatatgatggtaacaaacaataccttcacactcaaaggcggtgcaccaacaaaggttacttttggtgatgacactgtgatagaagtgcaaggttacaagagtgtgaatatcacttttgaacttgatgaaaggattgataaagtacttaatgagaagtgctctgcctatacagttgaactcggtacagaagtaaatgagttcgcctgtgttgtggcagatgctgtcataaaaactttgcaaccagtatctgaattacttacaccactgggcattgatttagatgagtggagtatggctacatactacttatttgatgagtctggtgagtttaaattggcttcacatatgtattgttctttctaccctccagatgaggatgaagaagaaggtgattgtgaagaagaagagtttgagccatcaactcaatatgagtatggtactgaagatgattaccaaggtaaacctttggaatttggtgccacttctgctgctcttcaacctgaagaagagcaagaagaagattggttagatgatgatagtcaacaaactgttggtcaacaagacggcagtgaggacaatcagacaactactattcaaacaattgttgaggttcaacctcaattagagatggaacttacaccagttgttcagactattgaagtgaatagttttagtggttatttaaaacttactgacaatgtatacattaaaaatgcagacattgtggaagaagctaaaaaggtaaaaccaacagtggttgttaatgcagccaatgtttaccttaaacatggaggaggtgttgcaggagccttaaataaggctactaacaatgccatgcaagttgaatctgatgattacatagctactaatggaccacttaaagtgggtggtagttgtgttttaagcggacacaatcttgctaaacactgtctt catgttgtcggcccaaatgttaacaaaggtgaagacattcaacttcttaagagtgcttatgaaaattttaatcagc acgaagttctacttgcaccattattatcagctggtatttttggtgctgaccctatacattctttaagagtt
ORF1 ab-fragment 2(SEQ ID NO: 4):
AAGTGGGTGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGTCTTCATGTTGTCGGCCCAA ATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGAGTGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCA CCATTATTATCAGCTGGTATTTTTGGTGCTGACCCTATACATTCTTTAAGAGTTTGTGTAGATACTGTTCGCACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCAAGCTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAGATCGCTGAGATTCCTAAAGAGGAAGTTAAGCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAGAGAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACTCTGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATGGCAATCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATTGACATCACTTTCTTAAAGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTGCTGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAGCTTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTTAAATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAAAGTGCCTTTTACATTCTACCATCTATTATCTCTAATGAGAAGCAAGAAATTCTTGGAACTGTTTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAATGCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCAACTATACAGCGTAAATATAAGGGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACACCAGTAAAACAACTGTAGCGTCACTTATCAACACACTTAACGATCTAAATGAAACTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGCTGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCTGTTTCTTCACCTGATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCTTCTAAAACACCTGAAGAACATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAAAGATTGGTCCTATTCTGGACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAAAGTGTATATTACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTTGACAATCTTAAGACACTTCTTTCTTTGAGAGAAGTGAGGACTATTAAGGTGTTTACAACAGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACATATGGACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAACCTCATAATTCACATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCTACGTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGGTACATGTCAGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATGGTTTAACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTAACACTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTATTACAGAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTGTAATAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGAGTTACTTGTTTCAACATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTTGTGGACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCACACTTTCTTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAACAAGCTACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCAGCACCACCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACTGGTAATTACCAGTGTGGTCACTATAAACATATAACTTCTAAAGAAACTTTGTATTGCATAGACGGTGCTTTACTTACAAAGTCCTCAGAATACAAAGGTCCTATTACGGATGTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATAAATTGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATAAGAAAGACAATTCTTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACCATATCCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTTGCTGATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCAAGAGAGCTTAAAGTTACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTACACACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGGCATGTTAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTGTCTTTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGAAGTCAGAGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAGTCTCTGAAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTAATGTGAAAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATAGTTTAAAAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAGACAATTCTAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTGAAAACCCTTGCTACTCATGGTTTAGCTGCTGTTAATAGTGTCCCTTGGGATACTATAGCTAATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATAGTTACACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGCTACAATTGTGTACTTTTACTAGAAGTACAAATTCTAGAATTAAAGCATCTATGCCGACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCTTCATTTAATTATTTGAAGTCACCTAATTTTTCTAAACTGATAAATATTATAATTTGGTTTTTACTATTAAGTGTTTGCCTAGGTTCTTTAATCTACTCAACCGCTGCTTTAGGTGTTTTAATGTCTAATTTAGGCATGCCTTCTTACTGTACTGGTTACAGAGAAGGCTATTTGAACTCTACTAATGTCACTATTGCAACCTACTGTACTGGTTCTATACCTTGTAGTGTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCTTCTTTAGAAACTATACAAATTACCATTTCATCTTTTAAATGGGATTTAACTGCTTTTGGCTTAGTTGCAGAGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGATTGGCTGCAATCATGCAATTGTTTTTCAGCTATTTTGCAGTACATTTTATTAGTAATTCTTGGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAGCTATGGTTAGAATGTACATCTTCTTTGCATCATTTTATTATGTATGGAAAAGTTATGTGCATGTTGTAGACGGTTGTAATTCATCAACTTGTATGATGTGTTACAAACGTAATAGAGCAACAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCCTTTTATGTCTATGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTTAATTGTGATACATTCTGTGCTGGTAGTACATTTATTAGTGATGAAGTTGCGAGAGACTTGTCACTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCTTCTTACATCGTTGATAGTGTTACAGTGAAGAATGGTTCCATCCATCTTTACTTTGATAAAGCTGGTCAAAAGACTTATGAAAGACATTCTCTCTCTCATTTTGTTAACTTAGACAACCTGAGAGCTAATAACACT AAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGGTAAATCAAAATGTGAAGAATCATCTGCAAAATCAGCGTC TGTTTACTACAGTCAGCTTATGTGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCTGATGTTGGTGATAGTG CGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGT
ORF1 ab-fragment 3(SEQ ID NO: 5):
CACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGGTAAATCAAAATGTGAAGAATCATCTG CAAAATCAGCGTCTGTTTACTACAGTCAGCTTATGTGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCTGA TGTTGGTGATAGTGCGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCATCAACTTTTAACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCTGAACTTGCAAAGAATGTGTCCTTAGACAATGTCTTATCTACTTTTATTTCAGCAGCTCGGCAAGGGTTTGTTGATTCAGATGTAGAAACTAAAGATGTTGTTGAATGTCTTAAATTGTCACATCAATCTGACATAGAAGTTACTGGCGATAGTTGTAATAACTATATGCTCACCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTATTGACTGTAGTGCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATTGCTTTGATATGGAACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGAAAACAAATACGTAGTGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTACTAGACAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAATTGTTAATAATTGGTTGAAGCAGTTAATTAAAGTTACACTTGTGTTCCTTTTTGTTGCTGCTATTTTCTATTTAATAACACCTGTTCATGTCATGTCTAAACATACTGACTTTTCAAGTGAAATCATAGGATACAAGGCTATTGATGGTGGTGTCACTCGTGACATAGCATCTACAGATACTTGTTTTGCTAACAAACATGCTGATTTTGACACATGGTTTAGCCAGCGTGGTGGTAGTTATACTAATGACAAAGCTTGCCCATTGATTGCTGCAGTCATAACAAGAGAAGTGGGTTTTGTCGTGCCTGGTTTGCCTGGCACGATATTACGCACAACTAATGGTGACTTTTTGCATTTCTTACCTAGAGTTTTTAGTGCAGTTGGTAACATCTGTTACACACCATCAAAACTTATAGAGTACACTGACTTTGCAACATCAGCTTGTGTTTTGGCTGCTGAATGTACAATTTTTAAAGATGCTTCTGGTAAGCCAGTACCATATTGTTATGATACCAATGTACTAGAAGGTTCTGTTGCTTATGAAAGTTTACGCCCTGACACACGTTATGTGCTCATGGATGGCTCTATTATTCAATTTCCTAACACCTACCTTGAAGGTTCTGTTAGAGTGGTAACAACTTTTGATTCTGAGTACTGTAGGCACGGCACTTGTGAAAGATCAGAAGCTGGTGTTTGTGTATCTACTAGTGGTAGATGGGTACTTAACAATGATTATTACAGATCTTTACCAGGAGTTTTCTGTGGTGTAGATGCTGTAAATTTACTTACTAATATGTTTACACCACTAATTCAACCTATTGGTGCTTTGGACATATCAGCATCTATAGTAGCTGGTGGTATTGTAGCTATCGTAGTAACATGCCTTGCCTACTATTTTATGAGGTTTAGAAGAGCTTTTGGTGAATACAGTCATGTAGTTGCCTTTAATACTTTACTATTCCTTATGTCATTCACTGTACTCTGTTTAACACCAGTTTACTCATTCTTACCTGGTGTTTATTCTGTTATTTACTTGTACTTGACATTTTATCTTACTAATGATGTTTCTTTTTTAGCACATATTCAGTGGATGGTTATGTTCACACCTTTAGTACCTTTCTGGATAACAATTGCTTATATCATTTGTATTTCCACAAAGCATTTCTATTGGTTCTTTAGTAATTACCTAAAGAGACGTGTAGTCTTTAATGGTGTTTCCTTTAGTACTTTTGAAGAAGCTGCGCTGTGCACCTTTTTGTTAAATAAAGAAATGTATCTAAAGTTGCGTAGTGATGTGCTATTACCTCTTACGCAATATAATAGATACTTAGCTCTTTATAATAAGTACAAGTATTTTAGTGGAGCAATGGATACAACTAGCTACAGAGAAGCTGCTTGTTGTCATCTCGCAAAGGCTCTCAATGACTTCAGTAACTCAGGTTCTGATGTTCTTTACCAACCACCACAAACCTCTATCACCTCAGCTGTT TTGCAGAGTGGTTTTAGAAAAATGGCATTCCCATCTGGTAAAGTTGAGGGTTGTATGGTACAAGTAACTTGTGGTACAACTACACTTAACGGTCTTTGGCTTGATGACGTAGTTTACTGTCCAAGACATGTGATCTGCACCTCTGAAGACATGCTTAACCCTAATTATGAAGATTTACTCATTCGTAAGTCTAATCATAATTTCTTGGTACAGGCTGGTAATGTTCAACTCAGGGTTATTGGACATTCTATGCAAAATTGTGTACTTAAGCTTAAGGTTGATACAGCCAATCCTAAGACACCTAAGTATAAGTTTGTTCGCATTCAACCAGGACAGACTTTTTCAGTGTTAGCTTGTTACAATGGTTCACCATCTGGTGTTTACCAATGTGCTATGAGGCCCAATTTCACTATTAAGGGTTCATTCCT TAATGGTTCATGTGGTAGTGTTGGTTTTAACATAGATTATGACTGTGTCTCTTTTTGTTACATGCACCATATGGAATTACCAACTGGAGTTCATGCTGGCACAGACTTAGAAGGTAACTTTTATGGACCTTTTGTTGACAGGCAAACAGCACAAGCAGCTGGTACGGACACAACTATTACAGTTAATGTTTTAGCTTGGTTGTACGCTGCTGTTATAAATGGAGACAGGTGGTTTCTCAATCGATTTACCACAACT CTTAATGACTTTAACCTTGTGGCTATGAAGTACAATTATGAACCTCTAACACAAGACCATGTTGACATACTAGGACCTCTTTCTGCTCAAACTGGAATTGCCGTTTTAGATATGTGTGCTTCATTAAAAGAATTACTGCAAAATGGTATGAATGGACGTACCATATTGGGTAGTGCTTTATTAGAAGATGAATTTACACCTTTTGATGTTGTTAGACAATGCTCAGGTGTTACTTTCCAAAGTGCAGTGAAAAGAACAATCAAGGGTACACACCACTGGTTGTTACTCACAATTTTGACTTCACTTTTAGTTTTAGTCCAGAGTACTCAATGGTCTTTGTTCTTTTTTTTGTATGAAAATGCCTTTTTACCTTTTGCTATGGGTATTATTGCTATGTCTGCTTTTGCAATGATGTTTGTCAAACATAAGCATGCATTTCTCTGTTTGTTTTTGTTACCTTCTCTTGCCACTGTAGCTTATTTTAATATGGTCTATATGCCTGCTAGTTGGGT GATGCGTATTATGACATGGTTGGATATGGTTGATACTAGTTTGTCTGGTTTTAAGCTAAAAGACTGTGTTATGTATGCATCAGCTGTAGTGTTACTAATCCTTATGACAGCAAGAACTGTGTATGATGATGGTGCTAGGAGAGTGTGGACACTTATGAATGTCTTGACACTCGTTTATAAAGTTTATTATGGTAATGCTTTAGATCAAGCCATTTCCATGTGGGCTCTTATAATCTCTGTTACTTCTAACTACTCAGGTGTAGTTACAACTGTCATGTTTTTGGCCAGAGGTATTGTTTTTATGTGTGTTGAGTATTGCCCTATTTTCTTCATAACTGGTAATACACTTCAGTGTATAATGCTAGTTTATTGTTTCTTAGGCTATTTTTGTACTTGTTACTTTGGCCTCTTTTGTTTACTCAACCGCTACTTTAGACTGACTCTTGGTGTTTATGATTACTTAGTTTCTACACAGGAGTTTAGATATATGAATTCACAGGGACTACTCCCAC CCAAGAATAGCATAGATGCCTTCAAACTCAACATTAAATTGTTGGGTGTTGGTGGCAAACCTTGTATCAAAGTAGCCACTGTACAGTCTAAAATGTCAGATGTAAAGTGCACATCAGTAGTCTTACTCTCAGTTTTGCAACAACTCAGAGTAGAATCATCATCTAAATTGTGGGCTCAATGTGTCCAGTTACACAATGACATTCTCTTAGCTAAAGATACTACTGAAGCCTTTGAAAAAATGGTTTCACTACTTTCTGTTTTGCTTTCCATGCAGGGTGCTGTAGACATAAACAAGCTTTGTGAAGAAATGCTGGACAACAGGGCAACCTTACAAGCTATAGCCTCAGAGTTTAGTTCCCTTCCATCATATGCAGCTTTTGCTACTGCTCAAGAAGCTTATGAGCAGGCTGTTGCTAATGGTGAT TCTGAAGTTGTTCTTAAAAAGTTGAAGAAGTCTTTGAATGTGGCTAAATCTGAATTTGACCGTGATGCAGCCATGCA ACGTAAGTTGGAAAAGATGGCTGATCAAGCTATGACCCAAATGTATAAACAGGCTAGATCTGAGGACAAGAGGGCAA AAGTTACTAGTGCTATGCAGAC
ORF1 ab-fragment 4(SEQ ID NO: 6):
GAGCAGGCTGTTGCTAATGGTGATTCTGAAGTTGTTCTTAAAAAGTTGAAGAAGTCTTTGAATGTGGCT AAATCTGAATTTGACCGTGATGCAGCCATGCAACGTAAGTTGGAAAAGATGGCTGATCAAGCTATGACCCAAATGTA TAAACAGGCTAGATCTGAGGACAAGAGGGCAAAAGTTACTAGTGCTATGCAGACAATGCTTTTCACTATGCTTAGAAAGTTGGATAATGATGCACTCAACAACATTATCAACAATGCAAGAGATGGTTGTGTTCCCTTGAACATAATACCTCTTACAACAGCAGCCAAACTAATGGTTGTCATACCAGACTATAACACATATAAAAATACGTGTGATGGTACAACATTTACTTATGCATCAGCATTGTGGGAAATCCAACAGGTTGTAGATGCAGATAGTAAAATTGTTCAACTTAGTGAAATTAGTATGGACAATTCACCTAATTTAGCATGGCCTCTTATTGTAACAGCTTTAAGGGCCAATTCTGCTGTCAAATTACAGAATAATGAGCTTAGTCCTGTTGCACTACGACAGATGTCTTGTGCTGCCGGTACTACACAAACTGCTTGCACTGATGACAATGCGTTAGCTTACTACAACACAACAAAGGGAGGTAGGTTTGTACTTGCACTGTTATCCGATTTACAGGATTTGAAATGGGCTAGATTCCCTAAGAGTGATGGAACTGGTACTATCTATACAGAACTGGAACCACCTTGTAGGTTTGTTACAGACACACCTAAAGGTCCTAAAGTGAAGTATTTATACTTTATTAAAGGATTAAACAACCTAAATAGAGGTATGGTACTTGGTAGTTTAGCTGCCACAGTACGTCTACAAGCTGGTAATGCAACAGAAGTGCCTGCCAATTCAACTGTATTATCTTTCTGTGCTTTTGCTGTAGATGCTGCTAAAGCTTACAAAGATTATCTAGCTAGTGGGGGACAACCAATCACTAATTGTGTTAAGATGTTGTGTACACACACTGGTACTGGTCAGGCAATAACAGTTACACCGGAAGCCAATATGGATCAAGAATCCTTTGGTGGTGCATCGTGTTGTCTGTACTGCCGTTGCCACATAGATCATCCAAATCCTAAAGGATTTTGTGACTTAAAAGGTAAGTATGTACAAATACCTACAACTTGTGCTAATGACCCTGTGGGTTTTACACTTAAAAACACAGTCTGTACCGTCTGCGGTATGTGGAAAGGTTATGGCTGTAGTTGTGATCAACTCCGCGAACCCATGCTTCAGTCAGCTGATGCACAATCGTTTTTAAACGGGTTTGCGGTGTAAGTGCAGCCCGTCTTACACCGTGCGGCACAGGCACTAGTACTGATGTCGTATACAGGGCTTTTGACATCTACAATGATAAAGTAGCTGGTTTTGCTAAATTCCTAAAAACTAATTGTTGTCGCTTCCAAGAAAAGGACGAAGATGACAATTTAATTGATTCTTACTTTGTAGTTAAGAGACACACTTTCTCTAACTACCAACATGAAGAAACAATTTATAATTTACTTAAGGATTGTCCAGCTGTTGCTAAACATGACTTCTTTAAGTTTAGAATAGACGGTGACATGGTACCACATATATCACGTCAACGTCTTACTAAATACACAATGGCAGACCTCGTCTATGCTTTAAGGCATTTTGATGAAGGTAATTGTGACACATTAAAAGAAATACTTGTCACATACAATTGTTGTGATGATGATTATTTCAATAAAAAGGACTGGTATGATTTTGTAGAAAACCCAGATATATTACGCGTATACGCCAACTTAGGTGAACGTGTACGCCAAGCTTTGTTAAAAACAGTACAATTCTGTGATGCCATGCGAAATGCTGGTATTGTTGGTGTACTGACATTAGATAATCAAGATCTCAATGGTAACTGGTATGATTTCGGTGATTTCATACAAACCACGCCAGGTAGTGGAGTTCCTGTTGTAGATTCTTATTATTCATTGTTAATGCCTATATTAACCTTGACCAGGGCTTTAACTGCAGAGTCACATGTTGACACTGACTTAACAAAGCCTTACATTAAGTGGGATTTGTTAAAATATGACTTCACGGAAGAGAGGTTAAAACTCTTTGACCGTTATTTTAAATATTGGGATCAGACATACCACCCAAATTGTGTTAACTGTTTGGATGACAGATGCATTCTGCATTGTGCAAACTTTAATGTTTTATTCTCTACAGTGTTCCCACCTACAAGTTTTGGACCACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCACTTCAGAGAGCTAGGTGTTGTACATAATCAGGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAATTACTTGTGTATGCTGCTGACCCTGCTATGCACGCTGCTTCTGGTAATCTATTACTAGATAAACGCACTACGTGCTTTTCAGTAGCTGCACTTACTAACAATGTTGCTTTTCAAACTGTCAAACCCGGTAATTTTAACAAAGACTTCTATGACTTTGCTGTGTCTAAGGGTTTCTTTAAGGAAGGAAGTTCTGTTGAATTAAAACACTTCTTCTTTGCTCAGGATGGTAATGCTGCTATCAGCGATTATGACTACTATCGTTATAATCTACCAACAATGTGTGATATCAGACAACTACTATTTGTAGTTGAAGTTGTTGATAAGTACTTTGATTGTTACGATGGTGGCTGTATTAATGCTAACCAAGTCATCGTCAACAACCTAGACAAATCAGCTGGTTTTCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGATTCAATGAGTTATGAGGATCAAGATGCACTTTTCGCATATACAAAACGTAATGTCATCCCTACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAAAGAATAGAGCTCGCACCGTAGCTGGTGTCTCTATCTGTAGTACTATGACCAATAGACAGTTTCATCAAAAATTATTGAAATCAATAGCCGCCACTAGAGGAGCTACTGTAGTAATTGGAACAAGCAAATTCTATGGTGGTTGGCACAACATGTTAAAAACTGTTTATAGTGATGTAGAAAACCCTCACCTTATGGGTTGGGATTATCCTAAATGTGATAGAGCCATGCCTAACATGCTTAGAATTATGGCCTCACTTGTTCTTGCTCGCAAACATACAACGTGTTGTAGCTTGTCACACCGTTTCTATAGATTAGCTAATGAGTGTGCTCAAGTATTGAGTGAAATGGTCATGTGTGGCGGTTCACTATATGTTAAACCAGGTGGAACCTCATCAGGAGATGCCACAACTGCTTATGCTAATAGTGTTTTTAACATTTGTCAAGCTGTCACGGCCAATGTTAATGCACTTTTATCTACTGATGGTAACAAAATTGCCGATAAGTATGTCCGCAATTTACAACACAGACTTTATGAGTGTCTCTATAGAAATAGAGATGTTGACACAGACTTTGTGAATGAGTTTTACGCATATTTGCGTAAACATTTCTCAATGATGATACTCTCTGACGATGCTGTTGTGTGTTTCAATAGCACTTATGCATCTCAAGGTCTAGTGGCTAGCATAAAGAACTTTAAGTCAGTTCTTTATTATCAAAACAATGTTTTTATGTCTGAAGCAAAATGTTGGACTGAGACTGACCTTACTAAAGGACCTCATGAATTTTGCTCTCAACATACAATGCTAGTTAAACAGGGTGATGATTATGTGTACCTTCCTTACCCAGATCCATCAAGAATCCTAGGGGCCGGCTGTTTTGTAGATGATATCGTAAAAACAGATGGTACACTTATGATTGAACGGTTCGTGTCTTTAGCTATAGATGCTTACCCACTTACTAAACATCCTAATCAGGAGTATGCTGATGTCTTTCATTTGTACTTACAATACATAAGAAAGCTACATGATGAGTTAACAGGACACATGTTAGACATGTATTCTGTTATGCTTACTAATGATAACACTTCAAGGTATTGGGAACCTGAGTTTTATGAGGCTATGTACACACCGCATACAGTCTTACAGGCTGTTGGGGCTTGTGTTCTTTGCAATTCACAGACTTCATTAAGATGTGGTGCTTGCATACGTAGACCATTCTTATGTTGTAAATGCTGTTACGACCATGTCATATCAACATCACATAAATTAGTCTTGTCTGTTAATCCGTATGTTTGCAATGCTCCAGGTTGTGATGTCACAGATGTGACTCAACTTTACTTAGGAGGTATGAGCTATTATTGTAAATCACATAAACCACCCATTAGTTTTCCATTGTGTGCTAATGGACAAGTTTTTGGTTTATATAAAAATACATGTGTTGGTAGCGATAATGTTACTGACTTTAATGCAATTGCAACATGTGACTGGACAAATGCTGGTGATTACATTTTAGCTAACACCTGTACTGAAAGACTCAAGCTTTTTGCAGCAGAAACGCTCAAAGCTACTGAGGAGACATTTAAACTGTCTTATGGTATTGCTACTGTACGTGAAGTGCTGTCTGACAGAGAATTACATCTTTCATGGGAAGTTGGTAAACCTAGACCACCACTTAACCGAAATTATGTCTTTACTGGTTATCGTGTAACTAAAAACAGTAAAGTACAAATAGGAGAGTACACCTTTGAAAAAGGTGACTATGGTGATGCTGTTGTTTACCGAGGTACAACAACTTACAAATTAAATGTTGGTGATTATTTTGTGCTGACATCA CATACAGTAATGCCATTAAGTGCACCTACACTAGTGCCACAAGAGCACTATGTTAGAATTACTGGCTTATACCCAAC ACTCAATATCTCAGATGAGTTTTCTAGCAATGTTGCAAATTATCAAAAGGTTGGTATGCAAAAGTATTCTACACTC
ORF1 ab-fragment 5(SEQ ID NO: 7):
caacaacttacaaattaaatgttggtgattattttgtgctgacatcacatacagtaatgccattaagt gcacctacactagtgccacaagagcactatgttagaattactggcttatacccaacactcaatatctcagatgagt tttctagcaatgttgcaaattatcaaaaggttggtatgcaaaagtattctacactccagggaccacctggtactggtaagagtcattttgctattggcctagctctctactacccttctgctcgcatagtgtatacagcttgctctcatgccgctgttgatgcactatgtgagaaggcattaaaatatttgcctatagataaatgtagtagaattatacctgcacgtgctcgtgtagagtgttttgataaattcaaagtgaattcaacattagaacagtatgtcttttgtactgtaaatgcattgcctgagacgacagcagatatagttgtctttgatgaaatttcaatggccacaaattatgatttgagtgttgtcaatgccagattacgtgctaagcactatgtgtacattggcgaccctgctcaattacctgcaccacgcacattgctaactaagggcacactagaaccagaatatttcaatt
cagtgtgtagacttatgaaaactataggtccagacatgttcctcggaacttgtcggcgttgtcctgctgaaattgttgacactgtgagtgctttggtttatgataataagcttaaagcacataaagacaaatcagctcaatgctttaaaatgttttataagggtgttatcacgcatgatgtttcatctgcaattaacaggccacaaataggcgtggtaagagaattccttacacgtaaccctgcttggagaaaagctgtctttatttcaccttataattcacagaatgctgtagcctcaaagattttgggactaccaactcaaactgttgattcatcacagggctcagaatatgactatgtcatattcactcaaaccactgaaacagctcactcttgtaatgtaaacagatttaatgttgctattaccagagcaaaagtaggcatactttgcataatgtctgatagagacctttatgacaagttgcaatttacaagtcttgaaattccacgtaggaatgtggcaactttacaagctgaaaatgtaacaggactctttaaagattgtagtaaggtaatcactgggttacatcctacacaggcacctacacacctcagtgttgacactaaattcaaaactgaaggtttatgtgttgacatacctggcatacctaaggacatgacctatagaagactcatctctatgatgggttttaaaatgaattatcaagttaatggttaccctaacatgtttatcacccgcgaagaagctataagacatgtacgtgcatggattggcttcgatgtcgaggggtgtcatgctactagagaagctgttggtaccaatttacctttacagctaggtttttctacaggtgttaacctagttgctgtacctacaggttatgttgatacacctaataatacagatttttccagagttagtgctaaaccaccgcctggagatcaatttaaacacctcataccacttatgtacaaaggacttccttggaatgtagtgcgtataaagattgtacaaatgttaagtgacacacttaaaaatctctctgacagagtcgtatttgtcttatgggcacatggctttgagttgacatctatgaagtattttgtgaaaataggacctgagcgcacctgttgtctatgtgatagacgtgccacatgcttttccactgcttcagacacttatgcctgttggcatcattctattggatttgattacgtctataatccgtttatgattgatgttcaacaatggggttttacaggtaacctacaaagcaaccatgatctgtattgtcaagtccatggtaatgcacatgtagctagttgtgatgcaatcatgactaggtgtctagctgtccacgagtgctttgttaagcgtgttgactggactattgaatatcctataattggtgatgaactgaagattaatgcggcttgtagaaaggttcaacacatggttgttaaagctgcattattagcagacaaattcccagttcttcacgacattggtaaccctaaagctattaagtgtgtacctcaagctgatgtagaatggaagttctatgatgcacagccttgtagtgacaaagcttataaaatagaagaattattctattcttatgccacacattctgacaaattcacagatggtgtatgcctattttggaattgcaatgtcgatagatatcctgctaattccattgtttgtagatttgacactagagtgctatctaaccttaacttgcctggttgtgatggtggcagtttgtatgtaaataaacatgcattccacacaccagcttttgataaaagtgcttttgttaatttaaaacaattaccatttttctattactctgacagtccatgtgagtctcatggaaaacaagtagtgtcagatatagattatgtaccactaaagtctgctacgtgtataacacgttgcaatttaggtggtgctgtctgtagacatcatgctaatgagtacagattgtatctcgatgcttataacatgatgatctcagctggctttagcttgtgggtttacaaacaatttgatacttataacctctggaacacttttacaagacttcagagtttagaaaatgtggcttttaatgttgtaaataagggacactttgatggacaacagggtgaagtaccagtttctatcatta ataacactgtttacacaaaagttgatggtgttgatgtagaattgtttgaaaataaaacaacattacctgttaatgt agcatttgagctttgggctaagcgcaacattaaaccagtaccagaggtgaaaatactcaataatttgggtgtggac attgctgctaatactgtgatct
ORF1 ab-fragment 6(SEQ ID NO: 8):
gggtgaagtaccagtttctatcattaataacactgtttacacaaaagttgatggtgttgatgtagaat tgtttgaaaataaaacaacattacctgttaatgtagcatttgagctttgggctaagcgcaacattaaaccagtacc agaggtgaaaatactcaataatttgggtgtggacattgctgctaatactgtgatctgggactacaaaagagatgctccagcacatatatctactattggtgtttgttctatgactgacatagccaagaaaccaactgaaacgatttgtgcaccactcactgtcttttttgatggtagagttgatggtcaagtagacttatttagaaatgcccgtaatggtgttcttattacagaaggtagtgttaaaggtttacaaccatctgtaggtcccaaacaagctagtcttaatggagtcacattaattggagaagccgtaaaaacacagttcaattattataagaaagttgatggtgttgtccaacaattacctgaaacttactttactcagagtagaaatttacaagaatttaaacccaggagtcaaatggaaattgatttcttagaattagctatggatgaattcattgaacggtataaattagaaggctatgccttcgaacatatcgtttatggagattttagtcatagtcagttaggtggtttacatctactgattggactagctaaacgttttaaggaatcaccttttgaattagaagattttattcctatggacagtacagttaaaaactatttcataacagatgcgcaaacaggttcatctaagtgtgtgtgttctgttattgatttattacttgatgattttgttgaaataataaaatcccaagatttatctgtagtttctaaggttgtcaaagtgactattgactatacagaaatttcatttatgctttggtgtaaagatggccatgtagaaacattttacccaaaattacaatctagtcaagcgtggcaaccgggtgttgctatgcctaatctttacaaaatgcaaagaatgctattagaaaagtgtgaccttcaaaattatggtgatagtgcaacattacctaaaggcataatgatgaatgtcgcaaaatatactcaactgtgtcaatatttaaacacattaacattagctgtaccctataatatgagagttatacattttggtgctggttctgataaaggagttgcaccaggtacagctgttttaagacagtggttgcctacgggtacgctgcttgtcgattcagatcttaatgactttgtctctgatgcagattcaactttgattggtgattgtgcaactgtacatacagctaataaatgggatctcattattagtgatatgtacgaccctaagactaaaaatgttacaaaagaaaatgactctaaagagggttttttcacttacatttgtgggtttatacaacaaaagctagctcttggaggttccgtggctataaagataacagaacattcttggaatgctgatctttataagctcatgggacacttcgcatggtggacagcctttgttactaatgtgaatgcgtcatcatctgaagcatttttaattggatgtaattatcttggcaaaccacgcgaacaaatagatggttatgtcatgcatgcaaattacatattttggaggaatacaaatccaattcagttgtcttcctattctttatttgacatgagtaaatttccccttaaattaaggggtactgctgttatgtctttaaaagaaggtcaaatcaatgatatgattttatctcttcttagtaaaggtagacttataattagagaaaacaacagagttgttatttctagtgatgttcttgttaacaacGCGGCCGCCGAGGGCCGCGGCAGCCTGCTGACCTGCGGCGACGTGGAGGAGAACCCCGGCCCCGCGGCCGCCatggtgagcaagggcgaggaggacaacatggccatcatcaaggagttcatgcgcttcaaggtgcacatggagggcagcgtgaacggccacgagttcgagatcgagggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggcggccccctgcccttcgcctgggacatcctgagcccccagttcatgtacggcagcaaggcctacgtgaagcaccccgccgacatccccgactacctgaagctgagcttccccgagggcttcaagtgggagcgcgtgatgaacttcgaggacggcggcgtggtgaccgtgacccaggacagcagcctgcaggacggcgagttcatctacaaggtgaagctgcgcggcaccaacttccccagcgacggccccgtgatgcagaagaagaccatgggctgggaggccagcagcgagcgcatgtaccccgaggacggcgccctgaagggcgagatcaagcagcgcctgaagctgaaggacggcggccactacgacgccgaggtgaagaccacctacaaggccaagaagcccgtgcagctgcccggcgcctacaacgtgaacatcaagctggacatcaccagccacaacgaggactacaccatcgtggagcagtacgagcgcgccgagggccgccacagcaccggcggcatggacgagctgtacaagGCGGCCGCCtaacaatctttaatcagtgtgtaacattagggaggacttgaaagagccaccacattttcaccgaggccacgcggagtacgatcgagtgtacagtgaacaatgctagggagagctgcctatatggaagagccctaatgtgtaaaattaattttagtagtgctatccccatgtgattttaatagcttcttaggagaatgacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaAAAAAAAAAAAAgggtcggcatggcatctccacctcctcgcggtccgacctgggcatccgaaggaggacgcacgtccactcggatggctaagggagGCTAGCcagacatgataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaagttaacaacaacaattgcattcattttatgtttcaggttcagggggaggtgtgggaggttttttaaagcaagtaaaacctctacaaatgtggtaCAGAAAGTCAAAAGCCTCCGACCGGAGGCTTTTGACTAT TACTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTATAAACGCAGAAAGGCCCACCCGAAGGTGAGCCAG TGTGATTACCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCAAAAAACCCCTCAAGACCCGTTTAGAG GCCCCAA
stru. delta. S protein expression sequence split fragment:
stru. delta. S-fragment 1(SEQ ID NO: 9):
CTGCCTGGCGGCAGTAGCGCGGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAG CGCCGATGGTAGTGTGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTC GAAAGACTGGGCCTTCCTGCCACTCATCGCAGTACTGTTGTAATTCATTAAgcatgTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCTAATACGACTCACTATAGGGattaaaggtttataccttcccaggtaacaaaccaaccaactttcgatctcttgtagatctgttctctaaacgaactttaaaatctgtgtggctgtcactcggctgcatgcttagtgcactcacgcagtataattaataactaattactgtcgttgacaggacacgagtaactcgtctatcttctgcaggctgcttacggtttcgtccgtgttgcagccgatcatcagcacatctaggtttcgtccgggtgtgaccgaaaggtaagacgaacttatggatttgtttatgagaatcttcacaattggaactgtaactttgaagcaaggtgaaatcaaggatgctactccttcagattttgttcgcgctactgcaacgataccgatacaagcctcactccctttcggatggcttattgttggcgttgcacttcttgctgtttttcagagcgcttccaaaatcataaccctcaaaaagagatggcaactagcactctccaagggtgttcactttgtttgcaacttgctgttgttgtttgtaacagtttactcacaccttttgctcgttgctgctggccttgaagccccttttctctatctttatgctttagtctacttcttgcagagtataaactttgtaagaataataatgaggctttggctttgctggaaatgccgttccaaaaacccattactttatgatgccaactattttctttgctggcatactaattgttacgactattgtataccttacaatagtgtaacttcttcaattgtcattacttcaggtgatggcacaacaagtcctatttctgaacatgactaccagattggtggttatactgaaaaatgggaatctggagtaaaagactgtgttgtattacacagttacttcacttcagactattaccagctgtactcaactcaattgagtacagacactggtgttgaacatgttaccttcttcatctacaataaaattgttgatgagcctgaagaacatgtccaaattcacacaatcgacggttcatccggagttgttaatccagtaatggaaccaatttatgatgaaccgacgacgactactagcgtgcctttgtaagcacaagctgatgagtacgaacttatgtactcattcgtttcggaagagacaggtacgttaatagttaatagcgtacttctttttcttgctttcgtggtattcttgctagttacactagccatccttactgcgct tcgattgtgtgcgtactgctgcaatattgttaacgtgagtcttgtaaaaccttctttttacgtttactctcgtgtt aaaaatctgaattcttctagagttcctgatcttctggtctaaacgaactaaatattatattagtttttctgtttgg aactttaattttagccatg
stru. delta. S-fragment 2(SEQ ID NO: 10):
ctagttacactagccatccttactgcgcttcgattgtgtgcgtactgctgcaatattgttaacgtgag tcttgtaaaaccttctttttacgtttactctcgtgttaaaaatctgaattcttctagagttcctgatcttctggtc taaacgaactaaatattatattagtttttctgtttggaactttaattttagccatggcagattccaacggtactattaccgttgaagagcttaaaaagctccttgaacaatggaacctagtaataggtttcctattccttacatggatttgtcttctacaatttgcctatgccaacaggaataggtttttgtatataattaagttaattttcctctggctgttatggccagtaactttagcttgttttgtgcttgctgctgtttacagaataaattggatcaccggtggaattgctatcgcaatggcttgtcttgtaggcttgatgtggctcagctacttcattgcttctttcagactgtttgcgcgtacgcgttccatgtggtcattcaatccagaaactaacattcttctcaacgtgccactccatggcactattctgaccagaccgcttctagaaagtgaactcgtaatcggagctgtgatccttcgtggacatcttcgtattgctggacaccatctaggacgctgtgacatcaaggacctgcctaaagaaatcactgttgctacatcacgaacgctttcttattacaaattgggagcttcgcagcgtgtagcaggtgactcaggttttgctgcatacagtcgctacaggattggcaactataaattaaacacagaccattccagtagcagtgacaatattgctttgcttgtacagtaagtgacaacagatgtttcatctcgttgactttcaggttactatagcagagatattactaattattatgaggacttttaaagtttccatttggaatcttgattacatcataaacctcataattaaaaatttatctaagtcactaactgagaataaatattctcaattagatgaagagcaaccaatggagattgattaaacgaacatgaaaattattcttttcttggcactgataacactcgctacttgtgagctttatcactaccaagagtgtgttagaggtacaacagtacttttaaaagaaccttgctcttctggaacatacgagggcaattcaccatttcatcctctagctgataacaaatttgcactgacttgctttagcactcaatttgcttttgcttgtcctgacggcgtaaaacacgtctatcagttacgtgccagatcagtttcacctaaactgttcatcagacaagaggaagttcaagaactttactctccaatttttcttattgttgcggcaatagtgtttataacactttgcttcacactcaaaagaaagacagaatgattgaactttcattaattgacttctatttgtgctttttagcctttctgctattccttgttttaattatgcttattatcttttggttctcacttgaactgcaagatcataatgaaacttgtcacgcctaaacgaacatgaaatttcttgttttcttaggaatcatcacaactgtagctgcatttcaccaagaatgtagtttacagtcatgtactcaacatcaaccatatgtagttgatgacccgtgtcctattcacttctattctaaatggtatattagagtaggagctagaaaatcagcacctttaattgaattgtgcgtggatgaggctggttctaaatcacccattcagtacatcgatatcggtaattatacagtttcctgtttaccttttacaattaattgccaggaacctaaattgggtagtcttgtagtgcgttgttcgttctatgaagactttttagagtatcatgacgttcgtgttgttttagatttcatctaaacgaacaaactaaaatgtctgataatggaccccaaaatcagcgaaatgcaccccgcattacgtttggtggaccctcagattcaactggcagtaaccagaatggagaacgcagtggggcgcgatcaaaacaacgtcggccccaaggtttacccaataatactgcgtcttggttcaccgctctcactcaacatggcaaggaagaccttaaattccctcgaggacaaggcgttccaattaacaccaatagcagtccagatgaccaaattggctactaccgaagagctaccagacgaattcgtggtggtgacggtaaaatgaaagatctcagtccaagatggtatttctactacctaggaactgggccagaagctggacttccctatggtgctaacaaagacggcatcatatgggttgcaactgagggagccttgaatacaccaaaagatcacattggcacccgcaatcctgctaacaatgctgcaatcgtgctacaacttcctcaaggaacaacattgccaaaaggcttctacgcagaagggagcagaggcggcagtcaagcctcttctcgttcctcatcacgtagtcgcaacagttcaagaaattcaactccaggcagcagtaggggaacttctcctgctagaatggctggcaatggcggtgatgctgctcttgctttgctgctgcttgacagattgaaccagcttgagagcaaaatgtctggtaaaggccaacaacaacaaggccaaactgtcactaagaaatctgctgctgaggcttctaagaagcctcggcaaaaacgtactgccactaaagcatacaatgtaacacaagctttcggcagacgtggtccagaacaaacccaaggaaatt ttggggaccaggaactaatcagacaaggaactgattacaaacattggccgcaaattgcacaatttgcccccagcgc ttcagcgttcttcggaatgtcgcgcattggcatggaagtcacaccttcgggaacgtggttgacctacacaggtgcc atcaaattggatgacaaagatccaaatt
stru. delta. S-fragment 3(SEQ ID NO: 11):
agaacaaacccaaggaaattttggggaccaggaactaatcagacaaggaactgattacaaacattggc cgcaaattgcacaatttgcccccagcgcttcagcgttcttcggaatgtcgcgcattggcatggaagtcacaccttc gggaacgtggttgacctacacaggtgccatcaaattggatgacaaagatccaaatttcaaagatcaagtcattttgctgaataagcatattgacgcatacaaaacattcccaccaacagagcctaaaaaggacaaaaagaagaaggctgatgaaactcaagccttaccgcagagacagaagaaacagcaaactgtgactcttcttcctgctgcagatttggatgatttctccaaacaattgcaacaatccatgagcagtgctgactcaactcaggcctaaactcatgcagaccacacaaggcagatgggctatataaacgttttcgcttttccgtttacgatatatagtctactcttgtgcagaatgaattctcgtaactacatagcacaagtagatgtagttaactttaatctcacaGAGGGCCGCGGCAGCCTGCTGACCTGCGGCGACGTGGAGGAGAACCCCGGCCCCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGCGTGGTGCCCATCCTGGTGGAGCTGGACGGCGACGTGAACGGCCACAAGTTCAGCGTGAGCGGCGAGGGCGAGGGCGACGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTGGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGAGCGCCATGCCCGAGGGCTACGTGCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGCCACAAGCTGGAGTACAACTACAACAGCCACAACGTGTACATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTGGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGAGCGCCCTGAGCAAGGACCCCAACGAGAAGCGCGACCACATGGTGCTGCTGGAGTTCGTGACCGCCGCCGGCATCACCCTGGGCATGGACGAGCTGTACAAGGCCACCAACTTCAGCCTGCTGAAGCAGGCCGGCGACGTGGAGGAGAACCCCGGCCCCATGATCGAGCAGGACGGCCTGCACGCCGGCAGCCCCGCCGCCTGGGTGGAGCGCCTGTTCGGCTACGACTGGGCCCAGCAGACCATCGGCTGCAGCGACGCCGCCGTGTTCCGCCTGAGCGCCCAGGGCCGCCCCGTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGAACGAGCTGCAGGACGAGGCCGCCCGCCTGAGCTGGCTGGCCACCACCGGCGTGCCCTGCGCCGCCGTGCTGGACGTGGTGACCGAGGCCGGCCGCGACTGGCTGCTGCTGGGCGAGGTGCCCGGCCAGGACCTGCTGAGCAGCCACCTGGCCCCCGCCGAGAAGGTGAGCATCATGGCCGACGCCATGCGCCGCCTGCACACCCTGGACCCCGCCACCTGCCCCTTCGACCACCAGGCCAAGCACCGCATCGAGCGCGCCCGCACCCGCATGGAGGCCGGCCTGGTGGACCAGGACGACCTGGACGAGGAGCACCAGGGCCTGGCCCCCGCCGAGCTGTTCGCCCGCCTGAAGGCCAGCATGCCCGACGGCGAGGACCTGGTGGTGACCCACGGCGACGCCTGCCTGCCCAACATCATGGTGGAGAACGGCCGCTTCAGCGGCTTCATCGACTGCGGCAGGCTGGGCGTGGCCGACCGCTACCAGGACATCGCCCTGGCCACCCGCGACATCGCCGAGGAGCTGGGCGGCGAGTGGGCCGACCGCTTCCTGGTGCTGTACGGCATCGCCGCCCCCGACAGCCAGCGCATCGCCTTCTACCGCCTGCTGGACGAGTTCTTCTAAcaatctttaatcagtgtgtaacattagggaggacttgaaagagccaccacattttcaccgaggccacgcggagtacgatcgagtgtacagtgaacaatgctagggagagctgcctatatggaagagccctaatgtgtaaaattaattttagtagtgctatccccatgtgattttaatagcttcttaggagaatgacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaAAAAAAAAAAAAgggtcggcatggcatctccacctcctcgcggtccgacctgggcatccgaaggaggacgcacgtccactcggatggctaagggagGCTAGCcagacatgataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaagttaacaacaacaattgcattcattttatgtttcaggttcagggggaggtgtgggaggttttttaaagcaagtaaaacctctacaaatgtggtaCAGAAAGTCAAAAGCCTCCGACCGGAGGCTTTTGACTATTACTGCCGACATGGAAGCCATCACAAA CGGCATGATGAACCTATAAACGCAGAAAGGCCCACCCGAAGGTGAGCCAGTGTGATTACCAGCGGCATCAGCACCTT GTCGCCTTGCGTATAATATTTGCAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAA
5' UTR (SEQ ID NO: 12) used in example 1
ATTAAAGGTTTATACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAACGAACTTTAAAATCTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACTCACGCAGTATAATTAATAACTAATTACTGTCGTTGACAGGACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGTTTCGTCCGTGTTGCAGCCGATCATCAGCACATCTAGGTTTCGTCCGGGTGTGACCGAAAGGTAAG
3' UTR (comprising polyA tail, SEQ ID NO: 13) used in example 1
CAATCTTTAATCAGTGTGTAACATTAGGGAGGACTTGAAAGAGCCACCACATTTTCACCGAGGCCACGCGGAGTACGATCGAGTGTACAGTGAACAATGCTAGGGAGAGCTGCCTATATGGAAGAGCCCTAATGTGTAAAATTAATTTTAGTAGTGCTATCCCCATGTGATTTTAATAGCTTCTTAGGAGAATGACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
The embodiments of the present invention are not limited to the above-described examples, and various changes and modifications in form and detail may be made by those skilled in the art without departing from the spirit and scope of the present invention, and these are considered to fall within the scope of the present invention.
Sequence listing
<110> Shenzhen advanced technology research institute of Chinese academy of sciences
Preparation method and application of <120> SARS-CoV-2 virus-like particle
<130> XJYZL20210699
<140> CN202111271508.1
<141> 2021-10-29
<160> 13
<170> PatentIn version 3.5
<210> 1
<211> 2773
<212> DNA
<213> Artificial Sequence
<220>
<223> S-fragment 1
<400> 1
gcagtgagcg caacgcaatt aatgtgagtt agctcactca ttaggcaccc caggctttac 60
actttatgct tccggctcgt atgttgtgtg gaattgtgag cggataacaa tttcacacag 120
gaaacagcta tgaccatgat tacgccaagc ttggtaccga gctcggatcc actagtaacg 180
gccgccagtg tgctggaatt ctgcagatat aacttcgtat aatgtatgct atacgaagtt 240
atccgttaca taacttacgg taaatggccc gcctggctga ccgcccaacg acccccgccc 300
attgacgtca atagtaacgc caatagggac tttccattga cgtcaatggg tggagtattt 360
acggtaaact gcccacttgg cagtacatca agtgtatcat atgccaagta cgccccctat 420
tgacgtcaat gacggtaaat ggcccgcctg gcattgtgcc cagtacatga ccttatggga 480
ctttcctact tggcagtaca tctacgtatt agtcatcgct attaccatgg tcgaggtgag 540
ccccacgttc tgcttcactc tccccatctc ccccccctcc ccacccccaa ttttgtattt 600
atttattttt taattatttt gtgcagcgat gggggcgggg gggggggggg ggcggggcga 660
ggggcggggc ggggcgaggc ggagaggtgc ggcggcagcc aatcagagcg gcgcgctccg 720
aaagtttcct tttatggcga ggcggcggcg gcggcggccc tataaaaagc gaagcgcgcg 780
gcgggcggga gtcgctgcgc gctgccttcg ccccgtgccc cgctccgccg ccgcctcgcg 840
ccgcccgccc cggctctgac tgaccgcgtt actcccacag gtgagcgggc gggacggccc 900
ttctcctccg ggctgtaatt agctgagcaa gaggtaaggg tttaagggat ggttggttgg 960
tggggtatta atgtttaatt acctggagca cctgcctgaa atcacttttt ttcaggttgg 1020
accggtgcca ccatgttcgt gttcctggtg ctgctgcccc tggtgagcag ccagtgcgtg 1080
aacctgacca cccgcaccca gctgcccccc gcctacacca acagcttcac ccgcggcgtg 1140
tactaccccg acaaggtgtt ccgcagcagc gtgctgcaca gcacccagga cctgttcctg 1200
cccttcttca gcaacgtgac ctggttccac gccatccacg tgagcggcac caacggcacc 1260
aagcgcttcg acaaccccgt gctgcccttc aacgacggcg tgtacttcgc cagcaccgag 1320
aagagcaaca tcatccgcgg ctggatcttc ggcaccaccc tggacagcaa gacccagagc 1380
ctgctgatcg tgaacaacgc caccaacgtg gtgatcaagg tgtgcgagtt ccagttctgc 1440
aacgacccct tcctgggcgt gtactaccac aagaacaaca agagctggat ggagagcgag 1500
ttccgcgtgt acagcagcgc caacaactgc accttcgagt acgtgagcca gcccttcctg 1560
atggacctgg agggcaagca gggcaacttc aagaacctgc gcgagttcgt gttcaagaac 1620
atcgacggct acttcaagat ctacagcaag cacaccccca tcaacctggt gcgcgacctg 1680
ccccagggct tcagcgccct ggagcccctg gtggacctgc ccatcggcat caacatcacc 1740
cgcttccaga ccctgctggc cctgcaccgc agctacctga cccccggcga cagcagcagc 1800
ggctggaccg ccggcgccgc cgcctactac gtgggctacc tgcagccccg caccttcctg 1860
ctgaagtaca acgagaacgg caccatcacc gacgccgtgg actgcgccct ggaccccctg 1920
agcgagacca agtgcaccct gaagagcttc accgtggaga agggcatcta ccagaccagc 1980
aacttccgcg tgcagcccac cgagagcatc gtgcgcttcc ccaacatcac caacctgtgc 2040
cccttcggcg aggtgttcaa cgccacccgc ttcgccagcg tgtacgcctg gaaccgcaag 2100
cgcatcagca actgcgtggc cgactacagc gtgctgtaca acagcgccag cttcagcacc 2160
ttcaagtgct acggcgtgag ccccaccaag ctgaacgacc tgtgcttcac caacgtgtac 2220
gccgacagct tcgtgatccg cggcgacgag gtgcgccaga tcgcccccgg ccagaccggc 2280
aagatcgccg actacaacta caagctgccc gacgacttca ccggctgcgt gatcgcctgg 2340
aacagcaaca acctggacag caaggtgggc ggcaactaca actacctgta ccgcctgttc 2400
cgcaagagca acctgaagcc cttcgagcgc gacatcagca ccgagatcta ccaggccggc 2460
agcaccccct gcaacggcgt ggagggcttc aactgctact tccccctgca gagctacggc 2520
ttccagccca ccaacggcgt gggctaccag ccctaccgcg tggtggtgct gagcttcgag 2580
ctgctgcacg cccccgccac cgtgtgcggc cccaagaaga gcaccaacct ggtgaagaac 2640
aagtgcgtga acttcaactt caacggcctg accggcaccg gcgtgctgac cgagagcaac 2700
aagaagttcc tgcccttcca gcagttcggc cgcgacatcg ccgacaccac cgacgccgtg 2760
cgcgaccccc aga 2773
<210> 2
<211> 2785
<212> DNA
<213> Artificial Sequence
<220>
<223> S-fragment 2
<400> 2
cttcgagctg ctgcacgccc ccgccaccgt gtgcggcccc aagaagagca ccaacctggt 60
gaagaacaag tgcgtgaact tcaacttcaa cggcctgacc ggcaccggcg tgctgaccga 120
gagcaacaag aagttcctgc ccttccagca gttcggccgc gacatcgccg acaccaccga 180
cgccgtgcgc gacccccaga ccctggagat cctggacatc accccctgca gcttcggcgg 240
cgtgagcgtg atcacccccg gcaccaacac cagcaaccag gtggccgtgc tgtaccagga 300
cgtgaactgc accgaggtgc ccgtggccat ccacgccgac cagctgaccc ccacctggcg 360
cgtgtacagc accggcagca acgtgttcca gacccgcgcc ggctgcctga tcggcgccga 420
gcacgtgaac aacagctacg agtgcgacat ccccatcggc gccggcatct gcgccagcta 480
ccagacccag accaacagcc cccgccgcgc ccgcagcgtg gccagccaga gcatcatcgc 540
ctacaccatg agcctgggcg ccgagaacag cgtggcctac agcaacaaca gcatcgccat 600
ccccaccaac ttcaccatca gcgtgaccac cgagatcctg cccgtgagca tgaccaagac 660
cagcgtggac tgcaccatgt acatctgcgg cgacagcacc gagtgcagca acctgctgct 720
gcagtacggc agcttctgca cccagctgaa ccgcgccctg accggcatcg ccgtggagca 780
ggacaagaac acccaggagg tgttcgccca ggtgaagcag atctacaaga ccccccccat 840
caaggacttc ggcggcttca acttcagcca gatcctgccc gaccccagca agcccagcaa 900
gcgcagcttc atcgaggacc tgctgttcaa caaggtgacc ctggccgacg ccggcttcat 960
caagcagtac ggcgactgcc tgggcgacat cgccgcccgc gacctgatct gcgcccagaa 1020
gttcaacggc ctgaccgtgc tgccccccct gctgaccgac gagatgatcg cccagtacac 1080
cagcgccctg ctggccggca ccatcaccag cggctggacc ttcggcgccg gcgccgccct 1140
gcagatcccc ttcgccatgc agatggccta ccgcttcaac ggcatcggcg tgacccagaa 1200
cgtgctgtac gagaaccaga agctgatcgc caaccagttc aacagcgcca tcggcaagat 1260
ccaggacagc ctgagcagca ccgccagcgc cctgggcaag ctgcaggacg tggtgaacca 1320
gaacgcccag gccctgaaca ccctggtgaa gcagctgagc agcaacttcg gcgccatcag 1380
cagcgtgctg aacgacatcc tgagccgcct ggacaaggtg gaggccgagg tgcagatcga 1440
ccgcctgatc accggccgcc tgcagagcct gcagacctac gtgacccagc agctgatccg 1500
cgccgccgag atccgcgcca gcgccaacct ggccgccacc aagatgagcg agtgcgtgct 1560
gggccagagc aagcgcgtgg acttctgcgg caagggctac cacctgatga gcttccccca 1620
gagcgccccc cacggcgtgg tgttcctgca cgtgacctac gtgcccgccc aggagaagaa 1680
cttcaccacc gcccccgcca tctgccacga cggcaaggcc cacttccccc gcgagggcgt 1740
gttcgtgagc aacggcaccc actggttcgt gacccagcgc aacttctacg agccccagat 1800
catcaccacc gacaacacct tcgtgagcgg caactgcgac gtggtgatcg gcatcgtgaa 1860
caacaccgtg tacgaccccc tgcagcccga gctggacagc ttcaaggagg agctggacaa 1920
gtacttcaag aaccacacca gccccgacgt ggacctgggc gacatcagcg gcatcaacgc 1980
cagcgtggtg aacatccaga aggagatcga ccgcctgaac gaggtggcca agaacctgaa 2040
cgagagcctg atcgacctgc aggagctggg caagtacgag cagtacatca agtggccctg 2100
gtacatctgg ctgggcttca tcgccggcct gatcgccatc gtgatggtga ccatcatgct 2160
gtgctgcatg accagctgct gcagctgcct gaagggctgc tgcagctgcg gcagctgctg 2220
caagttcgac gaggacgaca gcgagcccgt gctgaagggc gtgaagctgc actacaccta 2280
atgtacaagg aattctaact agagctcgct gatcagcctc gactgtgcct tctagttgcc 2340
agccatctgt tgtttgcccc tcccccgtgc cttccttgac cctggaaggt gccactccca 2400
ctgtcctttc ctaataaaat gaggaaattg catcgcattg tctgagtagg tgtcattcta 2460
ttctgggggg tggggtgggg caggacagca agggggagga ttgggaagag aatagcaggc 2520
atgctgggga ataacttcgt ataatgtatg ctatacgaag ttatatccat cacactggcg 2580
gccgcctcga gcatgcatct agagggccca attcgcccta tagtgagtcg tattacaatt 2640
cactggccgt cgttttacaa cgtcgtgact gggaaaaccc tggcgttacc caacttaatc 2700
gccttgcagc acatccccct ttcgccagct ggcgtaatag cgaagaggcc cgcaccgatc 2760
gcccttccca acagttgcgc agcct 2785
<210> 3
<211> 4547
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF1 ab-fragment 1
<400> 3
ctgcctggcg gcagtagcgc ggtggtccca cctgacccca tgccgaactc agaagtgaaa 60
cgccgtagcg ccgatggtag tgtggggtct ccccatgcga gagtagggaa ctgccaggca 120
tcaaataaaa cgaaaggctc agtcgaaaga ctgggccttc ctgccactca tcgcagtact 180
gttgtaattc attaagcatg tagttattaa tagtaatcaa ttacggggtc attagttcat 240
agcccatata tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg 300
cccaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata 360
gggactttcc attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta 420
catcaagtgt atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc 480
gcctggcatt atgcccagta catgacctta tgggactttc ctacttggca gtacatctac 540
gtattagtca tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga 600
tagcggtttg actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg 660
ttttggcacc aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg 720
caaatgggcg gtaggcgtgt acggtgggag gtctatataa gcagagctgg tttagtgaac 780
cgtcagatcg attaaaggtt tataccttcc caggtaacaa accaaccaac tttcgatctc 840
ttgtagatct gttctctaaa cgaactttaa aatctgtgtg gctgtcactc ggctgcatgc 900
ttagtgcact cacgcagtat aattaataac taattactgt cgttgacagg acacgagtaa 960
ctcgtctatc ttctgcaggc tgcttacggt ttcgtccgtg ttgcagccga tcatcagcac 1020
atctaggttt cgtccgggtg tgaccgaaag gtaagatgga gagccttgtc cctggtttca 1080
acgagaaaac acacgtccaa ctcagtttgc ctgttttaca ggttcgcgac gtgctcgtac 1140
gtggctttgg agactccgtg gaggaggtct tatcagaggc acgtcaacat cttaaagatg 1200
gcacttgtgg cttagtagaa gttgaaaaag gcgttttgcc tcaacttgaa cagccctatg 1260
tgttcatcaa acgttcggat gctcgaactg cacctcatgg tcatgttatg gttgagctgg 1320
tagcagaact cgaaggcatt cagtacggtc gtagtggtga gacacttggt gtccttgtcc 1380
ctcatgtggg cgaaatacca gtggcttacc gcaaggttct tcttcgtaag aacggtaata 1440
aaggagctgg tggccatagt tacggcgccg atctaaagtc atttgactta ggcgacgagc 1500
ttggcactga tccttatgaa gattttcaag aaaactggaa cactaaacat agcagtggtg 1560
ttacccgtga actcatgcgt gagcttaacg gaggggcata cactcgctat gtcgataaca 1620
acttctgtgg ccctgatggc taccctcttg agtgcattaa agaccttcta gcacgtgctg 1680
gtaaagcttc atgcactttg tccgaacaac tggactttat tgacactaag aggggtgtat 1740
actgctgccg tgaacatgag catgaaattg cttggtacac ggaacgttct gaaaagagct 1800
atgaattgca gacacctttt gaaattaaat tggcaaagaa atttgacacc ttcaatgggg 1860
aatgtccaaa ttttgtattt cccttaaatt ccataatcaa gactattcaa ccaagggttg 1920
aaaagaaaaa gcttgatggc tttatgggta gaattcgatc tgtctatcca gttgcgtcac 1980
caaatgaatg caaccaaatg tgcctttcaa ctctcatgaa gtgtgatcat tgtggtgaaa 2040
cttcatggca gacgggcgat tttgttaaag ccacttgcga attttgtggc actgagaatt 2100
tgactaaaga aggtgccact acttgtggtt acttacccca aaatgctgtt gttaaaattt 2160
attgtccagc atgtcacaat tcagaagtag gacctgagca tagtcttgcc gaataccata 2220
atgaatctgg cttgaaaacc attcttcgta agggtggtcg cactattgcc tttggaggct 2280
gtgtgttctc ttatgttggt tgccataaca agtgtgccta ttgggttcca cgtgctagcg 2340
ctaacatagg ttgtaaccat acaggtgttg ttggagaagg ttccgaaggt cttaatgaca 2400
accttcttga aatactccaa aaagagaaag tcaacatcaa tattgttggt gactttaaac 2460
ttaatgaaga gatcgccatt attttggcat ctttttctgc ttccacaagt gcttttgtgg 2520
aaactgtgaa aggtttggat tataaagcat tcaaacaaat tgttgaatcc tgtggtaatt 2580
ttaaagttac aaaaggaaaa gctaaaaaag gtgcctggaa tattggtgaa cagaaatcaa 2640
tactgagtcc tctttatgca tttgcatcag aggctgctcg tgttgtacga tcaattttct 2700
cccgcactct tgaaactgct caaaattctg tgcgtgtttt acagaaggcc gctataacaa 2760
tactagatgg aatttcacag tattcactga gactcattga tgctatgatg ttcacatctg 2820
atttggctac taacaatcta gttgtaatgg cctacattac aggtggtgtt gttcagttga 2880
cttcgcagtg gctaactaac atctttggca ctgtttatga aaaactcaaa cccgtccttg 2940
attggcttga agagaagttt aaggaaggtg tagagtttct tagagacggt tgggaaattg 3000
ttaaatttat ctcaacctgt gcttgtgaaa ttgtcggtgg acaaattgtc acctgtgcaa 3060
aggaaattaa ggagagtgtt cagacattct ttaagcttgt aaataaattt ttggctttgt 3120
gtgctgactc tatcattatt ggtggagcta aacttaaagc cttgaattta ggtgaaacat 3180
ttgtcacgca ctcaaaggga ttgtacagaa agtgtgttaa atccagagaa gaaactggcc 3240
tactcatgcc tctaaaagcc ccaaaagaaa ttatcttctt agagggagaa acacttccca 3300
cagaagtgtt aacagaggaa gttgtcttga aaactggtga tttacaacca ttagaacaac 3360
ctactagtga agctgttgaa gctccattgg ttggtacacc agtttgtatt aacgggctta 3420
tgttgctcga aatcaaagac acagaaaagt actgtgccct tgcacctaat atgatggtaa 3480
caaacaatac cttcacactc aaaggcggtg caccaacaaa ggttactttt ggtgatgaca 3540
ctgtgataga agtgcaaggt tacaagagtg tgaatatcac ttttgaactt gatgaaagga 3600
ttgataaagt acttaatgag aagtgctctg cctatacagt tgaactcggt acagaagtaa 3660
atgagttcgc ctgtgttgtg gcagatgctg tcataaaaac tttgcaacca gtatctgaat 3720
tacttacacc actgggcatt gatttagatg agtggagtat ggctacatac tacttatttg 3780
atgagtctgg tgagtttaaa ttggcttcac atatgtattg ttctttctac cctccagatg 3840
aggatgaaga agaaggtgat tgtgaagaag aagagtttga gccatcaact caatatgagt 3900
atggtactga agatgattac caaggtaaac ctttggaatt tggtgccact tctgctgctc 3960
ttcaacctga agaagagcaa gaagaagatt ggttagatga tgatagtcaa caaactgttg 4020
gtcaacaaga cggcagtgag gacaatcaga caactactat tcaaacaatt gttgaggttc 4080
aacctcaatt agagatggaa cttacaccag ttgttcagac tattgaagtg aatagtttta 4140
gtggttattt aaaacttact gacaatgtat acattaaaaa tgcagacatt gtggaagaag 4200
ctaaaaaggt aaaaccaaca gtggttgtta atgcagccaa tgtttacctt aaacatggag 4260
gaggtgttgc aggagcctta aataaggcta ctaacaatgc catgcaagtt gaatctgatg 4320
attacatagc tactaatgga ccacttaaag tgggtggtag ttgtgtttta agcggacaca 4380
atcttgctaa acactgtctt catgttgtcg gcccaaatgt taacaaaggt gaagacattc 4440
aacttcttaa gagtgcttat gaaaatttta atcagcacga agttctactt gcaccattat 4500
tatcagctgg tatttttggt gctgacccta tacattcttt aagagtt 4547
<210> 4
<211> 4500
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF1 ab-fragment 2
<400> 4
aagtgggtgg tagttgtgtt ttaagcggac acaatcttgc taaacactgt cttcatgttg 60
tcggcccaaa tgttaacaaa ggtgaagaca ttcaacttct taagagtgct tatgaaaatt 120
ttaatcagca cgaagttcta cttgcaccat tattatcagc tggtattttt ggtgctgacc 180
ctatacattc tttaagagtt tgtgtagata ctgttcgcac aaatgtctac ttagctgtct 240
ttgataaaaa tctctatgac aaacttgttt caagcttttt ggaaatgaag agtgaaaagc 300
aagttgaaca aaagatcgct gagattccta aagaggaagt taagccattt ataactgaaa 360
gtaaaccttc agttgaacag agaaaacaag atgataagaa aatcaaagct tgtgttgaag 420
aagttacaac aactctggaa gaaactaagt tcctcacaga aaacttgtta ctttatattg 480
acattaatgg caatcttcat ccagattctg ccactcttgt tagtgacatt gacatcactt 540
tcttaaagaa agatgctcca tatatagtgg gtgatgttgt tcaagagggt gttttaactg 600
ctgtggttat acctactaaa aaggctggtg gcactactga aatgctagcg aaagctttga 660
gaaaagtgcc aacagacaat tatataacca cttacccggg tcagggttta aatggttaca 720
ctgtagagga ggcaaagaca gtgcttaaaa agtgtaaaag tgccttttac attctaccat 780
ctattatctc taatgagaag caagaaattc ttggaactgt ttcttggaat ttgcgagaaa 840
tgcttgcaca tgcagaagaa acacgcaaat taatgcctgt ctgtgtggaa actaaagcca 900
tagtttcaac tatacagcgt aaatataagg gtattaaaat acaagagggt gtggttgatt 960
atggtgctag attttacttt tacaccagta aaacaactgt agcgtcactt atcaacacac 1020
ttaacgatct aaatgaaact cttgttacaa tgccacttgg ctatgtaaca catggcttaa 1080
atttggaaga agctgctcgg tatatgagat ctctcaaagt gccagctaca gtttctgttt 1140
cttcacctga tgctgttaca gcgtataatg gttatcttac ttcttcttct aaaacacctg 1200
aagaacattt tattgaaacc atctcacttg ctggttccta taaagattgg tcctattctg 1260
gacaatctac acaactaggt atagaatttc ttaagagagg tgataaaagt gtatattaca 1320
ctagtaatcc taccacattc cacctagatg gtgaagttat cacctttgac aatcttaaga 1380
cacttctttc tttgagagaa gtgaggacta ttaaggtgtt tacaacagta gacaacatta 1440
acctccacac gcaagttgtg gacatgtcaa tgacatatgg acaacagttt ggtccaactt 1500
atttggatgg agctgatgtt actaaaataa aacctcataa ttcacatgaa ggtaaaacat 1560
tttatgtttt acctaatgat gacactctac gtgttgaggc ttttgagtac taccacacaa 1620
ctgatcctag ttttctgggt aggtacatgt cagcattaaa tcacactaaa aagtggaaat 1680
acccacaagt taatggttta acttctatta aatgggcaga taacaactgt tatcttgcca 1740
ctgcattgtt aacactccaa caaatagagt tgaagtttaa tccacctgct ctacaagatg 1800
cttattacag agcaagggct ggtgaagctg ctaacttttg tgcacttatc ttagcctact 1860
gtaataagac agtaggtgag ttaggtgatg ttagagaaac aatgagttac ttgtttcaac 1920
atgccaattt agattcttgc aaaagagtct tgaacgtggt gtgtaaaact tgtggacaac 1980
agcagacaac ccttaagggt gtagaagctg ttatgtacat gggcacactt tcttatgaac 2040
aatttaagaa aggtgttcag ataccttgta cgtgtggtaa acaagctaca aaatatctag 2100
tacaacagga gtcacctttt gttatgatgt cagcaccacc tgctcagtat gaacttaagc 2160
atggtacatt tacttgtgct agtgagtaca ctggtaatta ccagtgtggt cactataaac 2220
atataacttc taaagaaact ttgtattgca tagacggtgc tttacttaca aagtcctcag 2280
aatacaaagg tcctattacg gatgttttct acaaagaaaa cagttacaca acaaccataa 2340
aaccagttac ttataaattg gatggtgttg tttgtacaga aattgaccct aagttggaca 2400
attattataa gaaagacaat tcttatttca cagagcaacc aattgatctt gtaccaaacc 2460
aaccatatcc aaacgcaagc ttcgataatt ttaagtttgt atgtgataat atcaaatttg 2520
ctgatgattt aaaccagtta actggttata agaaacctgc ttcaagagag cttaaagtta 2580
catttttccc tgacttaaat ggtgatgtgg tggctattga ttataaacac tacacaccct 2640
cttttaagaa aggagctaaa ttgttacata aacctattgt ttggcatgtt aacaatgcaa 2700
ctaataaagc cacgtataaa ccaaatacct ggtgtatacg ttgtctttgg agcacaaaac 2760
cagttgaaac atcaaattcg tttgatgtac tgaagtcaga ggacgcgcag ggaatggata 2820
atcttgcctg cgaagatcta aaaccagtct ctgaagaagt agtggaaaat cctaccatac 2880
agaaagacgt tcttgagtgt aatgtgaaaa ctaccgaagt tgtaggagac attatactta 2940
aaccagcaaa taatagttta aaaattacag aagaggttgg ccacacagat ctaatggctg 3000
cttatgtaga caattctagt cttactatta agaaacctaa tgaattatct agagtattag 3060
gtttgaaaac ccttgctact catggtttag ctgctgttaa tagtgtccct tgggatacta 3120
tagctaatta tgctaagcct tttcttaaca aagttgttag tacaactact aacatagtta 3180
cacggtgttt aaaccgtgtt tgtactaatt atatgcctta tttctttact ttattgctac 3240
aattgtgtac ttttactaga agtacaaatt ctagaattaa agcatctatg ccgactacta 3300
tagcaaagaa tactgttaag agtgtcggta aattttgtct agaggcttca tttaattatt 3360
tgaagtcacc taatttttct aaactgataa atattataat ttggttttta ctattaagtg 3420
tttgcctagg ttctttaatc tactcaaccg ctgctttagg tgttttaatg tctaatttag 3480
gcatgccttc ttactgtact ggttacagag aaggctattt gaactctact aatgtcacta 3540
ttgcaaccta ctgtactggt tctatacctt gtagtgtttg tcttagtggt ttagattctt 3600
tagacaccta tccttcttta gaaactatac aaattaccat ttcatctttt aaatgggatt 3660
taactgcttt tggcttagtt gcagagtggt ttttggcata tattcttttc actaggtttt 3720
tctatgtact tggattggct gcaatcatgc aattgttttt cagctatttt gcagtacatt 3780
ttattagtaa ttcttggctt atgtggttaa taattaatct tgtacaaatg gccccgattt 3840
cagctatggt tagaatgtac atcttctttg catcatttta ttatgtatgg aaaagttatg 3900
tgcatgttgt agacggttgt aattcatcaa cttgtatgat gtgttacaaa cgtaatagag 3960
caacaagagt cgaatgtaca actattgtta atggtgttag aaggtccttt tatgtctatg 4020
ctaatggagg taaaggcttt tgcaaactac acaattggaa ttgtgttaat tgtgatacat 4080
tctgtgctgg tagtacattt attagtgatg aagttgcgag agacttgtca ctacagttta 4140
aaagaccaat aaatcctact gaccagtctt cttacatcgt tgatagtgtt acagtgaaga 4200
atggttccat ccatctttac tttgataaag ctggtcaaaa gacttatgaa agacattctc 4260
tctctcattt tgttaactta gacaacctga gagctaataa cactaaaggt tcattgccta 4320
ttaatgttat agtttttgat ggtaaatcaa aatgtgaaga atcatctgca aaatcagcgt 4380
ctgtttacta cagtcagctt atgtgtcaac ctatactgtt actagatcag gcattagtgt 4440
ctgatgttgg tgatagtgcg gaagttgcag ttaaaatgtt tgatgcttac gttaatacgt 4500
<210> 5
<211> 4500
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF1 ab-fragment 3
<400> 5
cactaaaggt tcattgccta ttaatgttat agtttttgat ggtaaatcaa aatgtgaaga 60
atcatctgca aaatcagcgt ctgtttacta cagtcagctt atgtgtcaac ctatactgtt 120
actagatcag gcattagtgt ctgatgttgg tgatagtgcg gaagttgcag ttaaaatgtt 180
tgatgcttac gttaatacgt tttcatcaac ttttaacgta ccaatggaaa aactcaaaac 240
actagttgca actgcagaag ctgaacttgc aaagaatgtg tccttagaca atgtcttatc 300
tacttttatt tcagcagctc ggcaagggtt tgttgattca gatgtagaaa ctaaagatgt 360
tgttgaatgt cttaaattgt cacatcaatc tgacatagaa gttactggcg atagttgtaa 420
taactatatg ctcacctata acaaagttga aaacatgaca ccccgtgacc ttggtgcttg 480
tattgactgt agtgcgcgtc atattaatgc gcaggtagca aaaagtcaca acattgcttt 540
gatatggaac gttaaagatt tcatgtcatt gtctgaacaa ctacgaaaac aaatacgtag 600
tgctgctaaa aagaataact taccttttaa gttgacatgt gcaactacta gacaagttgt 660
taatgttgta acaacaaaga tagcacttaa gggtggtaaa attgttaata attggttgaa 720
gcagttaatt aaagttacac ttgtgttcct ttttgttgct gctattttct atttaataac 780
acctgttcat gtcatgtcta aacatactga cttttcaagt gaaatcatag gatacaaggc 840
tattgatggt ggtgtcactc gtgacatagc atctacagat acttgttttg ctaacaaaca 900
tgctgatttt gacacatggt ttagccagcg tggtggtagt tatactaatg acaaagcttg 960
cccattgatt gctgcagtca taacaagaga agtgggtttt gtcgtgcctg gtttgcctgg 1020
cacgatatta cgcacaacta atggtgactt tttgcatttc ttacctagag tttttagtgc 1080
agttggtaac atctgttaca caccatcaaa acttatagag tacactgact ttgcaacatc 1140
agcttgtgtt ttggctgctg aatgtacaat ttttaaagat gcttctggta agccagtacc 1200
atattgttat gataccaatg tactagaagg ttctgttgct tatgaaagtt tacgccctga 1260
cacacgttat gtgctcatgg atggctctat tattcaattt cctaacacct accttgaagg 1320
ttctgttaga gtggtaacaa cttttgattc tgagtactgt aggcacggca cttgtgaaag 1380
atcagaagct ggtgtttgtg tatctactag tggtagatgg gtacttaaca atgattatta 1440
cagatcttta ccaggagttt tctgtggtgt agatgctgta aatttactta ctaatatgtt 1500
tacaccacta attcaaccta ttggtgcttt ggacatatca gcatctatag tagctggtgg 1560
tattgtagct atcgtagtaa catgccttgc ctactatttt atgaggttta gaagagcttt 1620
tggtgaatac agtcatgtag ttgcctttaa tactttacta ttccttatgt cattcactgt 1680
actctgttta acaccagttt actcattctt acctggtgtt tattctgtta tttacttgta 1740
cttgacattt tatcttacta atgatgtttc ttttttagca catattcagt ggatggttat 1800
gttcacacct ttagtacctt tctggataac aattgcttat atcatttgta tttccacaaa 1860
gcatttctat tggttcttta gtaattacct aaagagacgt gtagtcttta atggtgtttc 1920
ctttagtact tttgaagaag ctgcgctgtg cacctttttg ttaaataaag aaatgtatct 1980
aaagttgcgt agtgatgtgc tattacctct tacgcaatat aatagatact tagctcttta 2040
taataagtac aagtatttta gtggagcaat ggatacaact agctacagag aagctgcttg 2100
ttgtcatctc gcaaaggctc tcaatgactt cagtaactca ggttctgatg ttctttacca 2160
accaccacaa acctctatca cctcagctgt tttgcagagt ggttttagaa aaatggcatt 2220
cccatctggt aaagttgagg gttgtatggt acaagtaact tgtggtacaa ctacacttaa 2280
cggtctttgg cttgatgacg tagtttactg tccaagacat gtgatctgca cctctgaaga 2340
catgcttaac cctaattatg aagatttact cattcgtaag tctaatcata atttcttggt 2400
acaggctggt aatgttcaac tcagggttat tggacattct atgcaaaatt gtgtacttaa 2460
gcttaaggtt gatacagcca atcctaagac acctaagtat aagtttgttc gcattcaacc 2520
aggacagact ttttcagtgt tagcttgtta caatggttca ccatctggtg tttaccaatg 2580
tgctatgagg cccaatttca ctattaaggg ttcattcctt aatggttcat gtggtagtgt 2640
tggttttaac atagattatg actgtgtctc tttttgttac atgcaccata tggaattacc 2700
aactggagtt catgctggca cagacttaga aggtaacttt tatggacctt ttgttgacag 2760
gcaaacagca caagcagctg gtacggacac aactattaca gttaatgttt tagcttggtt 2820
gtacgctgct gttataaatg gagacaggtg gtttctcaat cgatttacca caactcttaa 2880
tgactttaac cttgtggcta tgaagtacaa ttatgaacct ctaacacaag accatgttga 2940
catactagga cctctttctg ctcaaactgg aattgccgtt ttagatatgt gtgcttcatt 3000
aaaagaatta ctgcaaaatg gtatgaatgg acgtaccata ttgggtagtg ctttattaga 3060
agatgaattt acaccttttg atgttgttag acaatgctca ggtgttactt tccaaagtgc 3120
agtgaaaaga acaatcaagg gtacacacca ctggttgtta ctcacaattt tgacttcact 3180
tttagtttta gtccagagta ctcaatggtc tttgttcttt tttttgtatg aaaatgcctt 3240
tttacctttt gctatgggta ttattgctat gtctgctttt gcaatgatgt ttgtcaaaca 3300
taagcatgca tttctctgtt tgtttttgtt accttctctt gccactgtag cttattttaa 3360
tatggtctat atgcctgcta gttgggtgat gcgtattatg acatggttgg atatggttga 3420
tactagtttg tctggtttta agctaaaaga ctgtgttatg tatgcatcag ctgtagtgtt 3480
actaatcctt atgacagcaa gaactgtgta tgatgatggt gctaggagag tgtggacact 3540
tatgaatgtc ttgacactcg tttataaagt ttattatggt aatgctttag atcaagccat 3600
ttccatgtgg gctcttataa tctctgttac ttctaactac tcaggtgtag ttacaactgt 3660
catgtttttg gccagaggta ttgtttttat gtgtgttgag tattgcccta ttttcttcat 3720
aactggtaat acacttcagt gtataatgct agtttattgt ttcttaggct atttttgtac 3780
ttgttacttt ggcctctttt gtttactcaa ccgctacttt agactgactc ttggtgttta 3840
tgattactta gtttctacac aggagtttag atatatgaat tcacagggac tactcccacc 3900
caagaatagc atagatgcct tcaaactcaa cattaaattg ttgggtgttg gtggcaaacc 3960
ttgtatcaaa gtagccactg tacagtctaa aatgtcagat gtaaagtgca catcagtagt 4020
cttactctca gttttgcaac aactcagagt agaatcatca tctaaattgt gggctcaatg 4080
tgtccagtta cacaatgaca ttctcttagc taaagatact actgaagcct ttgaaaaaat 4140
ggtttcacta ctttctgttt tgctttccat gcagggtgct gtagacataa acaagctttg 4200
tgaagaaatg ctggacaaca gggcaacctt acaagctata gcctcagagt ttagttccct 4260
tccatcatat gcagcttttg ctactgctca agaagcttat gagcaggctg ttgctaatgg 4320
tgattctgaa gttgttctta aaaagttgaa gaagtctttg aatgtggcta aatctgaatt 4380
tgaccgtgat gcagccatgc aacgtaagtt ggaaaagatg gctgatcaag ctatgaccca 4440
aatgtataaa caggctagat ctgaggacaa gagggcaaaa gttactagtg ctatgcagac 4500
<210> 6
<211> 4919
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF1 ab-fragment 4
<400> 6
gagcaggctg ttgctaatgg tgattctgaa gttgttctta aaaagttgaa gaagtctttg 60
aatgtggcta aatctgaatt tgaccgtgat gcagccatgc aacgtaagtt ggaaaagatg 120
gctgatcaag ctatgaccca aatgtataaa caggctagat ctgaggacaa gagggcaaaa 180
gttactagtg ctatgcagac aatgcttttc actatgctta gaaagttgga taatgatgca 240
ctcaacaaca ttatcaacaa tgcaagagat ggttgtgttc ccttgaacat aatacctctt 300
acaacagcag ccaaactaat ggttgtcata ccagactata acacatataa aaatacgtgt 360
gatggtacaa catttactta tgcatcagca ttgtgggaaa tccaacaggt tgtagatgca 420
gatagtaaaa ttgttcaact tagtgaaatt agtatggaca attcacctaa tttagcatgg 480
cctcttattg taacagcttt aagggccaat tctgctgtca aattacagaa taatgagctt 540
agtcctgttg cactacgaca gatgtcttgt gctgccggta ctacacaaac tgcttgcact 600
gatgacaatg cgttagctta ctacaacaca acaaagggag gtaggtttgt acttgcactg 660
ttatccgatt tacaggattt gaaatgggct agattcccta agagtgatgg aactggtact 720
atctatacag aactggaacc accttgtagg tttgttacag acacacctaa aggtcctaaa 780
gtgaagtatt tatactttat taaaggatta aacaacctaa atagaggtat ggtacttggt 840
agtttagctg ccacagtacg tctacaagct ggtaatgcaa cagaagtgcc tgccaattca 900
actgtattat ctttctgtgc ttttgctgta gatgctgcta aagcttacaa agattatcta 960
gctagtgggg gacaaccaat cactaattgt gttaagatgt tgtgtacaca cactggtact 1020
ggtcaggcaa taacagttac accggaagcc aatatggatc aagaatcctt tggtggtgca 1080
tcgtgttgtc tgtactgccg ttgccacata gatcatccaa atcctaaagg attttgtgac 1140
ttaaaaggta agtatgtaca aatacctaca acttgtgcta atgaccctgt gggttttaca 1200
cttaaaaaca cagtctgtac cgtctgcggt atgtggaaag gttatggctg tagttgtgat 1260
caactccgcg aacccatgct tcagtcagct gatgcacaat cgtttttaaa cgggtttgcg 1320
gtgtaagtgc agcccgtctt acaccgtgcg gcacaggcac tagtactgat gtcgtataca 1380
gggcttttga catctacaat gataaagtag ctggttttgc taaattccta aaaactaatt 1440
gttgtcgctt ccaagaaaag gacgaagatg acaatttaat tgattcttac tttgtagtta 1500
agagacacac tttctctaac taccaacatg aagaaacaat ttataattta cttaaggatt 1560
gtccagctgt tgctaaacat gacttcttta agtttagaat agacggtgac atggtaccac 1620
atatatcacg tcaacgtctt actaaataca caatggcaga cctcgtctat gctttaaggc 1680
attttgatga aggtaattgt gacacattaa aagaaatact tgtcacatac aattgttgtg 1740
atgatgatta tttcaataaa aaggactggt atgattttgt agaaaaccca gatatattac 1800
gcgtatacgc caacttaggt gaacgtgtac gccaagcttt gttaaaaaca gtacaattct 1860
gtgatgccat gcgaaatgct ggtattgttg gtgtactgac attagataat caagatctca 1920
atggtaactg gtatgatttc ggtgatttca tacaaaccac gccaggtagt ggagttcctg 1980
ttgtagattc ttattattca ttgttaatgc ctatattaac cttgaccagg gctttaactg 2040
cagagtcaca tgttgacact gacttaacaa agccttacat taagtgggat ttgttaaaat 2100
atgacttcac ggaagagagg ttaaaactct ttgaccgtta ttttaaatat tgggatcaga 2160
cataccaccc aaattgtgtt aactgtttgg atgacagatg cattctgcat tgtgcaaact 2220
ttaatgtttt attctctaca gtgttcccac ctacaagttt tggaccacta gtgagaaaaa 2280
tatttgttga tggtgttcca tttgtagttt caactggata ccacttcaga gagctaggtg 2340
ttgtacataa tcaggatgta aacttacata gctctagact tagttttaag gaattacttg 2400
tgtatgctgc tgaccctgct atgcacgctg cttctggtaa tctattacta gataaacgca 2460
ctacgtgctt ttcagtagct gcacttacta acaatgttgc ttttcaaact gtcaaacccg 2520
gtaattttaa caaagacttc tatgactttg ctgtgtctaa gggtttcttt aaggaaggaa 2580
gttctgttga attaaaacac ttcttctttg ctcaggatgg taatgctgct atcagcgatt 2640
atgactacta tcgttataat ctaccaacaa tgtgtgatat cagacaacta ctatttgtag 2700
ttgaagttgt tgataagtac tttgattgtt acgatggtgg ctgtattaat gctaaccaag 2760
tcatcgtcaa caacctagac aaatcagctg gttttccatt taataaatgg ggtaaggcta 2820
gactttatta tgattcaatg agttatgagg atcaagatgc acttttcgca tatacaaaac 2880
gtaatgtcat ccctactata actcaaatga atcttaagta tgccattagt gcaaagaata 2940
gagctcgcac cgtagctggt gtctctatct gtagtactat gaccaataga cagtttcatc 3000
aaaaattatt gaaatcaata gccgccacta gaggagctac tgtagtaatt ggaacaagca 3060
aattctatgg tggttggcac aacatgttaa aaactgttta tagtgatgta gaaaaccctc 3120
accttatggg ttgggattat cctaaatgtg atagagccat gcctaacatg cttagaatta 3180
tggcctcact tgttcttgct cgcaaacata caacgtgttg tagcttgtca caccgtttct 3240
atagattagc taatgagtgt gctcaagtat tgagtgaaat ggtcatgtgt ggcggttcac 3300
tatatgttaa accaggtgga acctcatcag gagatgccac aactgcttat gctaatagtg 3360
tttttaacat ttgtcaagct gtcacggcca atgttaatgc acttttatct actgatggta 3420
acaaaattgc cgataagtat gtccgcaatt tacaacacag actttatgag tgtctctata 3480
gaaatagaga tgttgacaca gactttgtga atgagtttta cgcatatttg cgtaaacatt 3540
tctcaatgat gatactctct gacgatgctg ttgtgtgttt caatagcact tatgcatctc 3600
aaggtctagt ggctagcata aagaacttta agtcagttct ttattatcaa aacaatgttt 3660
ttatgtctga agcaaaatgt tggactgaga ctgaccttac taaaggacct catgaatttt 3720
gctctcaaca tacaatgcta gttaaacagg gtgatgatta tgtgtacctt ccttacccag 3780
atccatcaag aatcctaggg gccggctgtt ttgtagatga tatcgtaaaa acagatggta 3840
cacttatgat tgaacggttc gtgtctttag ctatagatgc ttacccactt actaaacatc 3900
ctaatcagga gtatgctgat gtctttcatt tgtacttaca atacataaga aagctacatg 3960
atgagttaac aggacacatg ttagacatgt attctgttat gcttactaat gataacactt 4020
caaggtattg ggaacctgag ttttatgagg ctatgtacac accgcataca gtcttacagg 4080
ctgttggggc ttgtgttctt tgcaattcac agacttcatt aagatgtggt gcttgcatac 4140
gtagaccatt cttatgttgt aaatgctgtt acgaccatgt catatcaaca tcacataaat 4200
tagtcttgtc tgttaatccg tatgtttgca atgctccagg ttgtgatgtc acagatgtga 4260
ctcaacttta cttaggaggt atgagctatt attgtaaatc acataaacca cccattagtt 4320
ttccattgtg tgctaatgga caagtttttg gtttatataa aaatacatgt gttggtagcg 4380
ataatgttac tgactttaat gcaattgcaa catgtgactg gacaaatgct ggtgattaca 4440
ttttagctaa cacctgtact gaaagactca agctttttgc agcagaaacg ctcaaagcta 4500
ctgaggagac atttaaactg tcttatggta ttgctactgt acgtgaagtg ctgtctgaca 4560
gagaattaca tctttcatgg gaagttggta aacctagacc accacttaac cgaaattatg 4620
tctttactgg ttatcgtgta actaaaaaca gtaaagtaca aataggagag tacacctttg 4680
aaaaaggtga ctatggtgat gctgttgttt accgaggtac aacaacttac aaattaaatg 4740
ttggtgatta ttttgtgctg acatcacata cagtaatgcc attaagtgca cctacactag 4800
tgccacaaga gcactatgtt agaattactg gcttataccc aacactcaat atctcagatg 4860
agttttctag caatgttgca aattatcaaa aggttggtat gcaaaagtat tctacactc 4919
<210> 7
<211> 3000
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF1 ab-fragment 5
<400> 7
caacaactta caaattaaat gttggtgatt attttgtgct gacatcacat acagtaatgc 60
cattaagtgc acctacacta gtgccacaag agcactatgt tagaattact ggcttatacc 120
caacactcaa tatctcagat gagttttcta gcaatgttgc aaattatcaa aaggttggta 180
tgcaaaagta ttctacactc cagggaccac ctggtactgg taagagtcat tttgctattg 240
gcctagctct ctactaccct tctgctcgca tagtgtatac agcttgctct catgccgctg 300
ttgatgcact atgtgagaag gcattaaaat atttgcctat agataaatgt agtagaatta 360
tacctgcacg tgctcgtgta gagtgttttg ataaattcaa agtgaattca acattagaac 420
agtatgtctt ttgtactgta aatgcattgc ctgagacgac agcagatata gttgtctttg 480
atgaaatttc aatggccaca aattatgatt tgagtgttgt caatgccaga ttacgtgcta 540
agcactatgt gtacattggc gaccctgctc aattacctgc accacgcaca ttgctaacta 600
agggcacact agaaccagaa tatttcaatt cagtgtgtag acttatgaaa actataggtc 660
cagacatgtt cctcggaact tgtcggcgtt gtcctgctga aattgttgac actgtgagtg 720
ctttggttta tgataataag cttaaagcac ataaagacaa atcagctcaa tgctttaaaa 780
tgttttataa gggtgttatc acgcatgatg tttcatctgc aattaacagg ccacaaatag 840
gcgtggtaag agaattcctt acacgtaacc ctgcttggag aaaagctgtc tttatttcac 900
cttataattc acagaatgct gtagcctcaa agattttggg actaccaact caaactgttg 960
attcatcaca gggctcagaa tatgactatg tcatattcac tcaaaccact gaaacagctc 1020
actcttgtaa tgtaaacaga tttaatgttg ctattaccag agcaaaagta ggcatacttt 1080
gcataatgtc tgatagagac ctttatgaca agttgcaatt tacaagtctt gaaattccac 1140
gtaggaatgt ggcaacttta caagctgaaa atgtaacagg actctttaaa gattgtagta 1200
aggtaatcac tgggttacat cctacacagg cacctacaca cctcagtgtt gacactaaat 1260
tcaaaactga aggtttatgt gttgacatac ctggcatacc taaggacatg acctatagaa 1320
gactcatctc tatgatgggt tttaaaatga attatcaagt taatggttac cctaacatgt 1380
ttatcacccg cgaagaagct ataagacatg tacgtgcatg gattggcttc gatgtcgagg 1440
ggtgtcatgc tactagagaa gctgttggta ccaatttacc tttacagcta ggtttttcta 1500
caggtgttaa cctagttgct gtacctacag gttatgttga tacacctaat aatacagatt 1560
tttccagagt tagtgctaaa ccaccgcctg gagatcaatt taaacacctc ataccactta 1620
tgtacaaagg acttccttgg aatgtagtgc gtataaagat tgtacaaatg ttaagtgaca 1680
cacttaaaaa tctctctgac agagtcgtat ttgtcttatg ggcacatggc tttgagttga 1740
catctatgaa gtattttgtg aaaataggac ctgagcgcac ctgttgtcta tgtgatagac 1800
gtgccacatg cttttccact gcttcagaca cttatgcctg ttggcatcat tctattggat 1860
ttgattacgt ctataatccg tttatgattg atgttcaaca atggggtttt acaggtaacc 1920
tacaaagcaa ccatgatctg tattgtcaag tccatggtaa tgcacatgta gctagttgtg 1980
atgcaatcat gactaggtgt ctagctgtcc acgagtgctt tgttaagcgt gttgactgga 2040
ctattgaata tcctataatt ggtgatgaac tgaagattaa tgcggcttgt agaaaggttc 2100
aacacatggt tgttaaagct gcattattag cagacaaatt cccagttctt cacgacattg 2160
gtaaccctaa agctattaag tgtgtacctc aagctgatgt agaatggaag ttctatgatg 2220
cacagccttg tagtgacaaa gcttataaaa tagaagaatt attctattct tatgccacac 2280
attctgacaa attcacagat ggtgtatgcc tattttggaa ttgcaatgtc gatagatatc 2340
ctgctaattc cattgtttgt agatttgaca ctagagtgct atctaacctt aacttgcctg 2400
gttgtgatgg tggcagtttg tatgtaaata aacatgcatt ccacacacca gcttttgata 2460
aaagtgcttt tgttaattta aaacaattac catttttcta ttactctgac agtccatgtg 2520
agtctcatgg aaaacaagta gtgtcagata tagattatgt accactaaag tctgctacgt 2580
gtataacacg ttgcaattta ggtggtgctg tctgtagaca tcatgctaat gagtacagat 2640
tgtatctcga tgcttataac atgatgatct cagctggctt tagcttgtgg gtttacaaac 2700
aatttgatac ttataacctc tggaacactt ttacaagact tcagagttta gaaaatgtgg 2760
cttttaatgt tgtaaataag ggacactttg atggacaaca gggtgaagta ccagtttcta 2820
tcattaataa cactgtttac acaaaagttg atggtgttga tgtagaattg tttgaaaata 2880
aaacaacatt acctgttaat gtagcatttg agctttgggc taagcgcaac attaaaccag 2940
taccagaggt gaaaatactc aataatttgg gtgtggacat tgctgctaat actgtgatct 3000
<210> 8
<211> 3421
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF1 ab-fragment 6
<400> 8
gggtgaagta ccagtttcta tcattaataa cactgtttac acaaaagttg atggtgttga 60
tgtagaattg tttgaaaata aaacaacatt acctgttaat gtagcatttg agctttgggc 120
taagcgcaac attaaaccag taccagaggt gaaaatactc aataatttgg gtgtggacat 180
tgctgctaat actgtgatct gggactacaa aagagatgct ccagcacata tatctactat 240
tggtgtttgt tctatgactg acatagccaa gaaaccaact gaaacgattt gtgcaccact 300
cactgtcttt tttgatggta gagttgatgg tcaagtagac ttatttagaa atgcccgtaa 360
tggtgttctt attacagaag gtagtgttaa aggtttacaa ccatctgtag gtcccaaaca 420
agctagtctt aatggagtca cattaattgg agaagccgta aaaacacagt tcaattatta 480
taagaaagtt gatggtgttg tccaacaatt acctgaaact tactttactc agagtagaaa 540
tttacaagaa tttaaaccca ggagtcaaat ggaaattgat ttcttagaat tagctatgga 600
tgaattcatt gaacggtata aattagaagg ctatgccttc gaacatatcg tttatggaga 660
ttttagtcat agtcagttag gtggtttaca tctactgatt ggactagcta aacgttttaa 720
ggaatcacct tttgaattag aagattttat tcctatggac agtacagtta aaaactattt 780
cataacagat gcgcaaacag gttcatctaa gtgtgtgtgt tctgttattg atttattact 840
tgatgatttt gttgaaataa taaaatccca agatttatct gtagtttcta aggttgtcaa 900
agtgactatt gactatacag aaatttcatt tatgctttgg tgtaaagatg gccatgtaga 960
aacattttac ccaaaattac aatctagtca agcgtggcaa ccgggtgttg ctatgcctaa 1020
tctttacaaa atgcaaagaa tgctattaga aaagtgtgac cttcaaaatt atggtgatag 1080
tgcaacatta cctaaaggca taatgatgaa tgtcgcaaaa tatactcaac tgtgtcaata 1140
tttaaacaca ttaacattag ctgtacccta taatatgaga gttatacatt ttggtgctgg 1200
ttctgataaa ggagttgcac caggtacagc tgttttaaga cagtggttgc ctacgggtac 1260
gctgcttgtc gattcagatc ttaatgactt tgtctctgat gcagattcaa ctttgattgg 1320
tgattgtgca actgtacata cagctaataa atgggatctc attattagtg atatgtacga 1380
ccctaagact aaaaatgtta caaaagaaaa tgactctaaa gagggttttt tcacttacat 1440
ttgtgggttt atacaacaaa agctagctct tggaggttcc gtggctataa agataacaga 1500
acattcttgg aatgctgatc tttataagct catgggacac ttcgcatggt ggacagcctt 1560
tgttactaat gtgaatgcgt catcatctga agcattttta attggatgta attatcttgg 1620
caaaccacgc gaacaaatag atggttatgt catgcatgca aattacatat tttggaggaa 1680
tacaaatcca attcagttgt cttcctattc tttatttgac atgagtaaat ttccccttaa 1740
attaaggggt actgctgtta tgtctttaaa agaaggtcaa atcaatgata tgattttatc 1800
tcttcttagt aaaggtagac ttataattag agaaaacaac agagttgtta tttctagtga 1860
tgttcttgtt aacaacgcgg ccgccgaggg ccgcggcagc ctgctgacct gcggcgacgt 1920
ggaggagaac cccggccccg cggccgccat ggtgagcaag ggcgaggagg acaacatggc 1980
catcatcaag gagttcatgc gcttcaaggt gcacatggag ggcagcgtga acggccacga 2040
gttcgagatc gagggcgagg gcgagggccg cccctacgag ggcacccaga ccgccaagct 2100
gaaggtgacc aagggcggcc ccctgccctt cgcctgggac atcctgagcc cccagttcat 2160
gtacggcagc aaggcctacg tgaagcaccc cgccgacatc cccgactacc tgaagctgag 2220
cttccccgag ggcttcaagt gggagcgcgt gatgaacttc gaggacggcg gcgtggtgac 2280
cgtgacccag gacagcagcc tgcaggacgg cgagttcatc tacaaggtga agctgcgcgg 2340
caccaacttc cccagcgacg gccccgtgat gcagaagaag accatgggct gggaggccag 2400
cagcgagcgc atgtaccccg aggacggcgc cctgaagggc gagatcaagc agcgcctgaa 2460
gctgaaggac ggcggccact acgacgccga ggtgaagacc acctacaagg ccaagaagcc 2520
cgtgcagctg cccggcgcct acaacgtgaa catcaagctg gacatcacca gccacaacga 2580
ggactacacc atcgtggagc agtacgagcg cgccgagggc cgccacagca ccggcggcat 2640
ggacgagctg tacaaggcgg ccgcctaaca atctttaatc agtgtgtaac attagggagg 2700
acttgaaaga gccaccacat tttcaccgag gccacgcgga gtacgatcga gtgtacagtg 2760
aacaatgcta gggagagctg cctatatgga agagccctaa tgtgtaaaat taattttagt 2820
agtgctatcc ccatgtgatt ttaatagctt cttaggagaa tgacaaaaaa aaaaaaaaaa 2880
aaaaaaaaaa aaaaaaaaaa aaaaaaaaag ggtcggcatg gcatctccac ctcctcgcgg 2940
tccgacctgg gcatccgaag gaggacgcac gtccactcgg atggctaagg gaggctagcc 3000
agacatgata agatacattg atgagtttgg acaaaccaca actagaatgc agtgaaaaaa 3060
atgctttatt tgtgaaattt gtgatgctat tgctttattt gtaaccatta taagctgcaa 3120
taaacaagtt aacaacaaca attgcattca ttttatgttt caggttcagg gggaggtgtg 3180
ggaggttttt taaagcaagt aaaacctcta caaatgtggt acagaaagtc aaaagcctcc 3240
gaccggaggc ttttgactat tactgccgac atggaagcca tcacaaacgg catgatgaac 3300
ctataaacgc agaaaggccc acccgaaggt gagccagtgt gattaccagc ggcatcagca 3360
ccttgtcgcc ttgcgtataa tatttgcaaa aaacccctca agacccgttt agaggcccca 3420
a 3421
<210> 9
<211> 2215
<212> DNA
<213> Artificial Sequence
<220>
<223> Stru. DELTA.S-fragment 1
<400> 9
ctgcctggcg gcagtagcgc ggtggtccca cctgacccca tgccgaactc agaagtgaaa 60
cgccgtagcg ccgatggtag tgtggggtct ccccatgcga gagtagggaa ctgccaggca 120
tcaaataaaa cgaaaggctc agtcgaaaga ctgggccttc ctgccactca tcgcagtact 180
gttgtaattc attaagcatg tagttattaa tagtaatcaa ttacggggtc attagttcat 240
agcccatata tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg 300
cccaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata 360
gggactttcc attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta 420
catcaagtgt atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc 480
gcctggcatt atgcccagta catgacctta tgggactttc ctacttggca gtacatctac 540
gtattagtca tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga 600
tagcggtttg actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg 660
ttttggcacc aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg 720
caaatgggcg gtaggcgtgt acggtgggag gtctatataa gcagagctgg tttagtgaac 780
cgtcagatct aatacgactc actataggga ttaaaggttt ataccttccc aggtaacaaa 840
ccaaccaact ttcgatctct tgtagatctg ttctctaaac gaactttaaa atctgtgtgg 900
ctgtcactcg gctgcatgct tagtgcactc acgcagtata attaataact aattactgtc 960
gttgacagga cacgagtaac tcgtctatct tctgcaggct gcttacggtt tcgtccgtgt 1020
tgcagccgat catcagcaca tctaggtttc gtccgggtgt gaccgaaagg taagacgaac 1080
ttatggattt gtttatgaga atcttcacaa ttggaactgt aactttgaag caaggtgaaa 1140
tcaaggatgc tactccttca gattttgttc gcgctactgc aacgataccg atacaagcct 1200
cactcccttt cggatggctt attgttggcg ttgcacttct tgctgttttt cagagcgctt 1260
ccaaaatcat aaccctcaaa aagagatggc aactagcact ctccaagggt gttcactttg 1320
tttgcaactt gctgttgttg tttgtaacag tttactcaca ccttttgctc gttgctgctg 1380
gccttgaagc cccttttctc tatctttatg ctttagtcta cttcttgcag agtataaact 1440
ttgtaagaat aataatgagg ctttggcttt gctggaaatg ccgttccaaa aacccattac 1500
tttatgatgc caactatttt ctttgctggc atactaattg ttacgactat tgtatacctt 1560
acaatagtgt aacttcttca attgtcatta cttcaggtga tggcacaaca agtcctattt 1620
ctgaacatga ctaccagatt ggtggttata ctgaaaaatg ggaatctgga gtaaaagact 1680
gtgttgtatt acacagttac ttcacttcag actattacca gctgtactca actcaattga 1740
gtacagacac tggtgttgaa catgttacct tcttcatcta caataaaatt gttgatgagc 1800
ctgaagaaca tgtccaaatt cacacaatcg acggttcatc cggagttgtt aatccagtaa 1860
tggaaccaat ttatgatgaa ccgacgacga ctactagcgt gcctttgtaa gcacaagctg 1920
atgagtacga acttatgtac tcattcgttt cggaagagac aggtacgtta atagttaata 1980
gcgtacttct ttttcttgct ttcgtggtat tcttgctagt tacactagcc atccttactg 2040
cgcttcgatt gtgtgcgtac tgctgcaata ttgttaacgt gagtcttgta aaaccttctt 2100
tttacgttta ctctcgtgtt aaaaatctga attcttctag agttcctgat cttctggtct 2160
aaacgaacta aatattatat tagtttttct gtttggaact ttaattttag ccatg 2215
<210> 10
<211> 2984
<212> DNA
<213> Artificial Sequence
<220>
<223> Stru. DELTA.S-fragment 2
<400> 10
ctagttacac tagccatcct tactgcgctt cgattgtgtg cgtactgctg caatattgtt 60
aacgtgagtc ttgtaaaacc ttctttttac gtttactctc gtgttaaaaa tctgaattct 120
tctagagttc ctgatcttct ggtctaaacg aactaaatat tatattagtt tttctgtttg 180
gaactttaat tttagccatg gcagattcca acggtactat taccgttgaa gagcttaaaa 240
agctccttga acaatggaac ctagtaatag gtttcctatt ccttacatgg atttgtcttc 300
tacaatttgc ctatgccaac aggaataggt ttttgtatat aattaagtta attttcctct 360
ggctgttatg gccagtaact ttagcttgtt ttgtgcttgc tgctgtttac agaataaatt 420
ggatcaccgg tggaattgct atcgcaatgg cttgtcttgt aggcttgatg tggctcagct 480
acttcattgc ttctttcaga ctgtttgcgc gtacgcgttc catgtggtca ttcaatccag 540
aaactaacat tcttctcaac gtgccactcc atggcactat tctgaccaga ccgcttctag 600
aaagtgaact cgtaatcgga gctgtgatcc ttcgtggaca tcttcgtatt gctggacacc 660
atctaggacg ctgtgacatc aaggacctgc ctaaagaaat cactgttgct acatcacgaa 720
cgctttctta ttacaaattg ggagcttcgc agcgtgtagc aggtgactca ggttttgctg 780
catacagtcg ctacaggatt ggcaactata aattaaacac agaccattcc agtagcagtg 840
acaatattgc tttgcttgta cagtaagtga caacagatgt ttcatctcgt tgactttcag 900
gttactatag cagagatatt actaattatt atgaggactt ttaaagtttc catttggaat 960
cttgattaca tcataaacct cataattaaa aatttatcta agtcactaac tgagaataaa 1020
tattctcaat tagatgaaga gcaaccaatg gagattgatt aaacgaacat gaaaattatt 1080
cttttcttgg cactgataac actcgctact tgtgagcttt atcactacca agagtgtgtt 1140
agaggtacaa cagtactttt aaaagaacct tgctcttctg gaacatacga gggcaattca 1200
ccatttcatc ctctagctga taacaaattt gcactgactt gctttagcac tcaatttgct 1260
tttgcttgtc ctgacggcgt aaaacacgtc tatcagttac gtgccagatc agtttcacct 1320
aaactgttca tcagacaaga ggaagttcaa gaactttact ctccaatttt tcttattgtt 1380
gcggcaatag tgtttataac actttgcttc acactcaaaa gaaagacaga atgattgaac 1440
tttcattaat tgacttctat ttgtgctttt tagcctttct gctattcctt gttttaatta 1500
tgcttattat cttttggttc tcacttgaac tgcaagatca taatgaaact tgtcacgcct 1560
aaacgaacat gaaatttctt gttttcttag gaatcatcac aactgtagct gcatttcacc 1620
aagaatgtag tttacagtca tgtactcaac atcaaccata tgtagttgat gacccgtgtc 1680
ctattcactt ctattctaaa tggtatatta gagtaggagc tagaaaatca gcacctttaa 1740
ttgaattgtg cgtggatgag gctggttcta aatcacccat tcagtacatc gatatcggta 1800
attatacagt ttcctgttta ccttttacaa ttaattgcca ggaacctaaa ttgggtagtc 1860
ttgtagtgcg ttgttcgttc tatgaagact ttttagagta tcatgacgtt cgtgttgttt 1920
tagatttcat ctaaacgaac aaactaaaat gtctgataat ggaccccaaa atcagcgaaa 1980
tgcaccccgc attacgtttg gtggaccctc agattcaact ggcagtaacc agaatggaga 2040
acgcagtggg gcgcgatcaa aacaacgtcg gccccaaggt ttacccaata atactgcgtc 2100
ttggttcacc gctctcactc aacatggcaa ggaagacctt aaattccctc gaggacaagg 2160
cgttccaatt aacaccaata gcagtccaga tgaccaaatt ggctactacc gaagagctac 2220
cagacgaatt cgtggtggtg acggtaaaat gaaagatctc agtccaagat ggtatttcta 2280
ctacctagga actgggccag aagctggact tccctatggt gctaacaaag acggcatcat 2340
atgggttgca actgagggag ccttgaatac accaaaagat cacattggca cccgcaatcc 2400
tgctaacaat gctgcaatcg tgctacaact tcctcaagga acaacattgc caaaaggctt 2460
ctacgcagaa gggagcagag gcggcagtca agcctcttct cgttcctcat cacgtagtcg 2520
caacagttca agaaattcaa ctccaggcag cagtagggga acttctcctg ctagaatggc 2580
tggcaatggc ggtgatgctg ctcttgcttt gctgctgctt gacagattga accagcttga 2640
gagcaaaatg tctggtaaag gccaacaaca acaaggccaa actgtcacta agaaatctgc 2700
tgctgaggct tctaagaagc ctcggcaaaa acgtactgcc actaaagcat acaatgtaac 2760
acaagctttc ggcagacgtg gtccagaaca aacccaagga aattttgggg accaggaact 2820
aatcagacaa ggaactgatt acaaacattg gccgcaaatt gcacaatttg cccccagcgc 2880
ttcagcgttc ttcggaatgt cgcgcattgg catggaagtc acaccttcgg gaacgtggtt 2940
gacctacaca ggtgccatca aattggatga caaagatcca aatt 2984
<210> 11
<211> 2938
<212> DNA
<213> Artificial Sequence
<220>
<223> Stru. DELTA.S-fragment 3
<400> 11
agaacaaacc caaggaaatt ttggggacca ggaactaatc agacaaggaa ctgattacaa 60
acattggccg caaattgcac aatttgcccc cagcgcttca gcgttcttcg gaatgtcgcg 120
cattggcatg gaagtcacac cttcgggaac gtggttgacc tacacaggtg ccatcaaatt 180
ggatgacaaa gatccaaatt tcaaagatca agtcattttg ctgaataagc atattgacgc 240
atacaaaaca ttcccaccaa cagagcctaa aaaggacaaa aagaagaagg ctgatgaaac 300
tcaagcctta ccgcagagac agaagaaaca gcaaactgtg actcttcttc ctgctgcaga 360
tttggatgat ttctccaaac aattgcaaca atccatgagc agtgctgact caactcaggc 420
ctaaactcat gcagaccaca caaggcagat gggctatata aacgttttcg cttttccgtt 480
tacgatatat agtctactct tgtgcagaat gaattctcgt aactacatag cacaagtaga 540
tgtagttaac tttaatctca cagagggccg cggcagcctg ctgacctgcg gcgacgtgga 600
ggagaacccc ggccccatgg tgagcaaggg cgaggagctg ttcaccggcg tggtgcccat 660
cctggtggag ctggacggcg acgtgaacgg ccacaagttc agcgtgagcg gcgagggcga 720
gggcgacgcc acctacggca agctgaccct gaagttcatc tgcaccaccg gcaagctgcc 780
cgtgccctgg cccaccctgg tgaccaccct gacctacggc gtgcagtgct tcagccgcta 840
ccccgaccac atgaagcagc acgacttctt caagagcgcc atgcccgagg gctacgtgca 900
ggagcgcacc atcttcttca aggacgacgg caactacaag acccgcgccg aggtgaagtt 960
cgagggcgac accctggtga accgcatcga gctgaagggc atcgacttca aggaggacgg 1020
caacatcctg ggccacaagc tggagtacaa ctacaacagc cacaacgtgt acatcatggc 1080
cgacaagcag aagaacggca tcaaggtgaa cttcaagatc cgccacaaca tcgaggacgg 1140
cagcgtgcag ctggccgacc actaccagca gaacaccccc atcggcgacg gccccgtgct 1200
gctgcccgac aaccactacc tgagcaccca gagcgccctg agcaaggacc ccaacgagaa 1260
gcgcgaccac atggtgctgc tggagttcgt gaccgccgcc ggcatcaccc tgggcatgga 1320
cgagctgtac aaggccacca acttcagcct gctgaagcag gccggcgacg tggaggagaa 1380
ccccggcccc atgatcgagc aggacggcct gcacgccggc agccccgccg cctgggtgga 1440
gcgcctgttc ggctacgact gggcccagca gaccatcggc tgcagcgacg ccgccgtgtt 1500
ccgcctgagc gcccagggcc gccccgtgct gttcgtgaag accgacctga gcggcgccct 1560
gaacgagctg caggacgagg ccgcccgcct gagctggctg gccaccaccg gcgtgccctg 1620
cgccgccgtg ctggacgtgg tgaccgaggc cggccgcgac tggctgctgc tgggcgaggt 1680
gcccggccag gacctgctga gcagccacct ggcccccgcc gagaaggtga gcatcatggc 1740
cgacgccatg cgccgcctgc acaccctgga ccccgccacc tgccccttcg accaccaggc 1800
caagcaccgc atcgagcgcg cccgcacccg catggaggcc ggcctggtgg accaggacga 1860
cctggacgag gagcaccagg gcctggcccc cgccgagctg ttcgcccgcc tgaaggccag 1920
catgcccgac ggcgaggacc tggtggtgac ccacggcgac gcctgcctgc ccaacatcat 1980
ggtggagaac ggccgcttca gcggcttcat cgactgcggc aggctgggcg tggccgaccg 2040
ctaccaggac atcgccctgg ccacccgcga catcgccgag gagctgggcg gcgagtgggc 2100
cgaccgcttc ctggtgctgt acggcatcgc cgcccccgac agccagcgca tcgccttcta 2160
ccgcctgctg gacgagttct tctaacaatc tttaatcagt gtgtaacatt agggaggact 2220
tgaaagagcc accacatttt caccgaggcc acgcggagta cgatcgagtg tacagtgaac 2280
aatgctaggg agagctgcct atatggaaga gccctaatgt gtaaaattaa ttttagtagt 2340
gctatcccca tgtgatttta atagcttctt aggagaatga caaaaaaaaa aaaaaaaaaa 2400
aaaaaaaaaa aaaaaaaaaa aaaaaagggt cggcatggca tctccacctc ctcgcggtcc 2460
gacctgggca tccgaaggag gacgcacgtc cactcggatg gctaagggag gctagccaga 2520
catgataaga tacattgatg agtttggaca aaccacaact agaatgcagt gaaaaaaatg 2580
ctttatttgt gaaatttgtg atgctattgc tttatttgta accattataa gctgcaataa 2640
acaagttaac aacaacaatt gcattcattt tatgtttcag gttcaggggg aggtgtggga 2700
ggttttttaa agcaagtaaa acctctacaa atgtggtaca gaaagtcaaa agcctccgac 2760
cggaggcttt tgactattac tgccgacatg gaagccatca caaacggcat gatgaaccta 2820
taaacgcaga aaggcccacc cgaaggtgag ccagtgtgat taccagcggc atcagcacct 2880
tgtcgccttg cgtataatat ttgcaaaaaa cccctcaaga cccgtttaga ggccccaa 2938
<210> 12
<211> 265
<212> DNA
<213> Artificial Sequence
<220>
<223> 5'UTR
<400> 12
attaaaggtt tataccttcc caggtaacaa accaaccaac tttcgatctc ttgtagatct 60
gttctctaaa cgaactttaa aatctgtgtg gctgtcactc ggctgcatgc ttagtgcact 120
cacgcagtat aattaataac taattactgt cgttgacagg acacgagtaa ctcgtctatc 180
ttctgcaggc tgcttacggt ttcgtccgtg ttgcagccga tcatcagcac atctaggttt 240
cgtccgggtg tgaccgaaag gtaag 265
<210> 13
<211> 229
<212> DNA
<213> Artificial Sequence
<220>
<223> 3'UTR
<400> 13
caatctttaa tcagtgtgta acattaggga ggacttgaaa gagccaccac attttcaccg 60
aggccacgcg gagtacgatc gagtgtacag tgaacaatgc tagggagagc tgcctatatg 120
gaagagccct aatgtgtaaa attaatttta gtagtgctat ccccatgtga ttttaatagc 180
ttcttaggag aatgacaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 229

Claims (12)

1. A composition for preparing SARS-CoV-2 virus-like particles, comprising the following (a), and further comprising any one or any two selected from the following (b) and (c):
(a) a first plasmid comprising a Stru Δ S fragment, said Δ S fragment comprising a nucleic acid sequence encoding at least one structural protein of SARS-CoV-2 virus or a mutant thereof and/or at least one accessory protein or a mutant thereof, and said Δ S fragment not comprising a nucleic acid sequence encoding an S protein of SARS-CoV-2 virus or a mutant thereof;
(b) a second plasmid comprising an S fragment comprising a nucleic acid sequence encoding an S protein of SARS-CoV-2 virus or a mutant thereof;
(c) a third plasmid comprising a packaging signal fragment of SARS-CoV-2 virus, said packaging signal fragment comprising a packaging signal sequence of SARS-CoV-2 virus.
2. The composition of claim 1, wherein the mutation of the mutant of S protein relative to the S protein of SARS-CoV-2 virus comprises N331Q, N501Y, D614G and/or P681H.
3. The composition of claim 1 or 2, wherein the Stru Δ S fragment comprises any one of:
(1) nucleic acid sequences encoding all structural proteins and all accessory proteins of the SARS-CoV-2 virus except the S protein;
(2) at least one of the structural and accessory proteins has a mutation relative to wild-type SARS-CoV-2 virus compared to (1); and
(3) in comparison with (1), any one of the structural protein and the accessory protein is deleted.
4. The composition according to any one of claims 1 to 3, wherein the packaging signal sequence is nucleotides 19900 and 20000 of NCBI sequence No. NC-045512.2 or nucleotides 19773 and 20335 of NCBI sequence No. NC-045512.2.
5. The composition of any one of claims 1-4, wherein the packaging signal fragment comprises ORF1ab of the SARS-CoV-2 viral genome.
6. A method of preparing the composition of any one of claims 1-5, comprising preparing the first, second and/or third plasmids by:
(1) splitting the Stru delta S fragment, the S fragment and/or the ORF1ab packaging signal fragment into short DNA fragments with homologous sequences between adjacent fragments respectively;
(2) transferring the DNA short fragment and the linearized plasmid vector obtained in the step (1) into a yeast cell, and performing homologous recombination to respectively obtain a first plasmid, a second plasmid and/or a third plasmid.
A method for preparing SARS-CoV-2 virus-like particles, comprising:
transfecting a packaging cell with the composition of any one of claims 1 to 5 to obtain a SARS-CoV-2 virus-like particle.
8. The method of claim 7, further comprising
Preparing a first plasmid, a second plasmid and/or a third plasmid by respectively:
(1) splitting the Stru delta S fragment, the S fragment and/or the packaging signal fragment into short DNA fragments with homologous sequences between adjacent fragments respectively;
(2) transferring the DNA short fragment and the linearized plasmid vector obtained in the step (1) into a yeast cell, and performing homologous recombination to respectively obtain a first plasmid, a second plasmid and/or a third plasmid.
9. The method of claim 8, further comprising amplifying the first, second and/or third plasmids in E.coli, respectively, and then transfecting the packaging cell.
10. SARS-CoV-2 virus-like particles produced by the production method according to any one of claims 7 to 9.
11. Use of a composition according to any one of claims 1 to 5 or a SARS-CoV-2 virus-like particle according to claim 10 in the preparation of a vaccine for the prevention or treatment of SARS-CoV-2 virus infection.
12. Use of a composition according to any of claims 1-5 or a SARS-CoV-2 virus-like particle according to claim 10 in the study of SARS-CoV-2 virus infected cells in vitro.
CN202111271508.1A 2021-10-29 2021-10-29 Preparation method and application of SARS-CoV-2 virus-like particle Active CN114395017B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111271508.1A CN114395017B (en) 2021-10-29 2021-10-29 Preparation method and application of SARS-CoV-2 virus-like particle
PCT/CN2021/138037 WO2023070873A1 (en) 2021-10-29 2021-12-14 Method for preparing sars-cov-2 virus-like particles and use of sars-cov-2 virus-like particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111271508.1A CN114395017B (en) 2021-10-29 2021-10-29 Preparation method and application of SARS-CoV-2 virus-like particle

Publications (2)

Publication Number Publication Date
CN114395017A true CN114395017A (en) 2022-04-26
CN114395017B CN114395017B (en) 2024-08-13

Family

ID=81225768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111271508.1A Active CN114395017B (en) 2021-10-29 2021-10-29 Preparation method and application of SARS-CoV-2 virus-like particle

Country Status (2)

Country Link
CN (1) CN114395017B (en)
WO (1) WO2023070873A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070873A1 (en) * 2021-10-29 2023-05-04 中国科学院深圳先进技术研究院 Method for preparing sars-cov-2 virus-like particles and use of sars-cov-2 virus-like particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050130127A1 (en) * 2001-05-17 2005-06-16 Rottier Petrus J.M. Coronavirus-like particles comprising functionally deleted genomes
US20080044437A1 (en) * 2004-09-02 2008-02-21 Qun Chen Encapsidation System for Production of Recombinant Virus-Like Particles
CN112746059A (en) * 2020-09-15 2021-05-04 清华大学 Coronavirus cell model based on virus structural protein genetic complementation
CA3101131A1 (en) * 2020-01-31 2021-07-31 Janssen Pharmaceuticals, Inc. Compositions and methods for preventing and treating coronavirus infection - sars­cov-2 vaccines
WO2021176397A2 (en) * 2020-03-04 2021-09-10 Premas Biotech Pvt. Ltd Expression of sars-cov proteins, nucleic acid constructs, virus like proteins (vlps) and methods relevant thereto
WO2021212101A1 (en) * 2020-04-17 2021-10-21 Vyriad, Inc. Compositions for treating and/or preventing coronavirus infections

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248579B (en) * 2020-02-12 2022-10-18 重庆医科大学 Novel coronavirus (2019-ncov) epitope, antibody and application thereof
TW202203966A (en) * 2020-03-31 2022-02-01 澳大利亞商賽門蒂斯公司 Attenuated poxvirus vector based vaccine for protection against covid-19
WO2021211760A1 (en) * 2020-04-14 2021-10-21 The Regents Of The University Of California Large sequence pan-coronavirus vaccine compositions
CN111647053A (en) * 2020-04-16 2020-09-11 军事科学院军事医学研究院生命组学研究所 Polypeptide and application thereof in novel coronavirus detection and antibody or vaccine screening
CN114395017B (en) * 2021-10-29 2024-08-13 中国科学院深圳先进技术研究院 Preparation method and application of SARS-CoV-2 virus-like particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050130127A1 (en) * 2001-05-17 2005-06-16 Rottier Petrus J.M. Coronavirus-like particles comprising functionally deleted genomes
US20080044437A1 (en) * 2004-09-02 2008-02-21 Qun Chen Encapsidation System for Production of Recombinant Virus-Like Particles
CA3101131A1 (en) * 2020-01-31 2021-07-31 Janssen Pharmaceuticals, Inc. Compositions and methods for preventing and treating coronavirus infection - sars­cov-2 vaccines
WO2021176397A2 (en) * 2020-03-04 2021-09-10 Premas Biotech Pvt. Ltd Expression of sars-cov proteins, nucleic acid constructs, virus like proteins (vlps) and methods relevant thereto
WO2021212101A1 (en) * 2020-04-17 2021-10-21 Vyriad, Inc. Compositions for treating and/or preventing coronavirus infections
CN112746059A (en) * 2020-09-15 2021-05-04 清华大学 Coronavirus cell model based on virus structural protein genetic complementation

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HONGYAN HUANG等: "SARS-CoV-2 N501Y variants of concern and their potential transmission by mouse", 《EDITORIAL》, vol. 28, no. 10, pages 2840 - 2842, XP037575994, DOI: 10.1038/s41418-021-00846-4 *
MINGHAI CHEN等: "The intraviral protein-protein interaction of SARS-CoV-2 reveals the key role of N protein in virus-like particle assembly", 《INT J BIOL SCI》, vol. 7, no. 14, pages 3889 *
NETA S ZUCKERMAN等: "A Unique SARS-CoV-2 Spike Protein P681H Variant Detected in Israel", 《VACCINES (BASEL) 》, vol. 9, no. 6, pages 1 - 9 *
QIANQIAN LI 等: "The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity", 《CELL》, vol. 182, no. 5, pages 1284 - 1294 *
SYLVIE ROY等: "A stable platform for the production of virus-like particles pseudotyped with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein", 《VIRUS RES》, vol. 295, pages 1 - 10 *
YINGXIN MA等: "Studying bona fide SARS-CoV-2 biology in a BSL-2 biosafety environment using a split-virus-genome system", 《SCI CHINA LIFE SCI》, vol. 65, no. 9, pages 1896 - 1897 *
张旋旋等: "新冠病毒蛋白亚单位疫苗研究进展", 《中国医药导刊》, vol. 24, no. 05, pages 434 - 438 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070873A1 (en) * 2021-10-29 2023-05-04 中国科学院深圳先进技术研究院 Method for preparing sars-cov-2 virus-like particles and use of sars-cov-2 virus-like particles

Also Published As

Publication number Publication date
CN114395017B (en) 2024-08-13
WO2023070873A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
CN111228475A (en) Biological product for preventing novel coronavirus
KR20200003390A (en) Alpha virus neoantigen vector
KR20220016137A (en) modified adenovirus
CN110295149B (en) Mutant strain 3 type duck hepatitis A virus CH-P60-117C strain and construction method thereof
CN109715219A (en) Canine adenovirus vector
CN112029736B (en) Recombinant pseudorabies virus live vaccine for preventing African swine fever and preparation method thereof
CN112961219B (en) Recombinant adeno-associated virus, mutant thereof, construction method and application thereof
KR20220041844A (en) HIV antigen and MHC complex
KR20210013589A (en) Immune checkpoint inhibitor co-expression vector
KR20200066349A (en) Replicable adenovirus vector
CN107043774A (en) A kind of chimeric strong promoter and application thereof
KR20230046313A (en) Multi-epitope vaccine cassette
CN109321571A (en) A method of utilizing CRISPR/Cas9 preparation and reorganization porcine pseudorabies virus
CN114395017B (en) Preparation method and application of SARS-CoV-2 virus-like particle
CN112391412A (en) Replication-type oncolytic adenovirus for regulating lipid metabolism and application thereof
CN107815469A (en) A kind of recombinant herpesvirus of turkeys and preparation method thereof
EP2460878B1 (en) Orf7 deficient varicella virus, vaccine comprising the virus and use thereof
CN110295180B (en) Type 3 duck hepatitis A virus mutant gene ISA-A117C-C4334A and construction method thereof
JP2021502822A (en) Non-human papillomavirus for gene delivery in vitro and in vivo
CN110684781B (en) Type 3 duck hepatitis A virus mutant gene ISA-A117C-T1142A and construction method thereof
CN110747232A (en) Long-acting stably expressed baculovirus vector and construction method thereof
CA3226725A1 (en) Composition and uses thereof
CN112079905B (en) Avian influenza virus-like particle antigen, vaccine, preparation method and application thereof
CN110484546B (en) Type-3 duck hepatitis A virus mutant gene ISA-C4334A and construction method
CN110283835B (en) Type-3 duck hepatitis A virus mutant gene ISA-T1142A-C4334A and construction method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant