CN114387028B - 一种面向网络购物平台的商品需求量的智能分析方法 - Google Patents

一种面向网络购物平台的商品需求量的智能分析方法 Download PDF

Info

Publication number
CN114387028B
CN114387028B CN202210035634.5A CN202210035634A CN114387028B CN 114387028 B CN114387028 B CN 114387028B CN 202210035634 A CN202210035634 A CN 202210035634A CN 114387028 B CN114387028 B CN 114387028B
Authority
CN
China
Prior art keywords
commodity
data
sales
microcolumns
sales volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210035634.5A
Other languages
English (en)
Other versions
CN114387028A (zh
Inventor
朱博
袁云燕
左翌
张雨钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruixiang Global Supermarket Co ltd
Original Assignee
Ruixiang Global Supermarket Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruixiang Global Supermarket Co ltd filed Critical Ruixiang Global Supermarket Co ltd
Priority to CN202210035634.5A priority Critical patent/CN114387028B/zh
Publication of CN114387028A publication Critical patent/CN114387028A/zh
Application granted granted Critical
Publication of CN114387028B publication Critical patent/CN114387028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2462Approximate or statistical queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2474Sequence data queries, e.g. querying versioned data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0605Supply or demand aggregation

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Data Mining & Analysis (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Economics (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种面向网络购物平台的商品需求量的智能分析方法。在原有的编码方式上新增了时序增量编码,增加了第二信息通道;并建立多层感知器,将数据原始编码的预测值、增量编码的预测值与当前输入的真实值建立联系,实现HTM对同时蕴含时间跨度较长大规模的商品需求量规律的更强学习能力。本发明将对生物大脑新皮质功能的模拟和多层感知器相结合,提高了HTM对同时蕴含时间跨度较长商品需求量的学习能力,从而保证了在处理同时蕴含时间跨度较长的商品需求量规律的有效性和实用性。

Description

一种面向网络购物平台的商品需求量的智能分析方法
技术领域
本发明涉及人工智能深度学习领域,尤其涉及一种面向网络购物平台的商品需求量的智能分析方法。
背景技术
从长期的角度上来看,用户的需求量是呈现一定规律性的增长或下降趋势。从短期上来看,又呈现一定的周期性的规律。例如在一些节日需求量会上涨,在平常的日子需求量则不高,因此商家也应该随着用户的需求量动态的调整自己产品的备货量,提高产品的出售率,减少商品的库存开销,以达到最大的经济效益。
受益于近些年来的大数据和计算力的提升,以及各种算法上的优化,深度学习广泛的应用于图像、语音、自然语言处理等领域,其中以循环神经网络、卷积神经网络、对抗神经网络、Transforms等为几个典型的深度学习算法。另一方面,脑科学、生物神经学的研究取的了不断突破,为人工神经网络的研究提供了良好的借鉴。其中,一种受人类大脑皮层启发的时间序列数据预测模型,层级时序记忆(Hierarchical Temporal Memory,HTM)开始受到人们的广泛关注,该模型利用了稀疏分布表征,通过空间池和时间池等算法完成学习,广泛的应用于时间序列的分析和处理,据一些研究报道称,HTM的预测效果与LSTM相当甚至更好。
当前训练的HTM的方法还比较简单,通常仅以数据本身作为单一数据流输入送入模型进行训练和预测,通过Hebbian学习规则进行微柱和神经元的突触持久值调整,对于平稳数据流的预测性能较好,但是对于购物平台的实际场景来说,考虑的因素较少。从长期来看,某一商品的用户的需求量可能会随着时间进行一定的增长,也可能会下降,虽然HTM可以一边学习数据的变化,一边进行接下来的数据预测,但是对于这种有长期趋势性的数据来说,原有的模型预测方式可能会无法快速学习到这种规律。因此针对这种问题,提出了新的基于HTM的多元预测分析方法,提高HTM对用户需求量长期趋势变化的学习能力。
发明内容
本发明的目的在于提供一种面向网络购物平台的商品需求量的智能分析方法,以解决现有的HTM对蕴含时间跨度较长的规律的学习的不稳定性的问题,提高HTM对购物平台的用户需求量的长期趋势的规律的学习和分析预测的能力。
本发明的技术方案为:一种面向网络购物平台的商品需求量的智能分析方法,包括以下步骤:
步骤1,采集某个较长时间内某类商品的销售量分段统计数据,使其包含该类商品的销售量的数量和时间两方面的特性,构成具有时序特性的长期变化趋势的商品销售量的数据流;
步骤2,针对购物平台商品的销售量分析应用,将每个时间段的商品销售数量,送入HTM模型进行学习,在编码阶段,除了数据本身外,每个时间段的销售量与上一个时间段的商品销售量做差值,将该部分数据作为具有时序特性的商品销售量变化量的数据流输入,用销售量和销售变化量两种编码的方法,代替原有的单一的编码,将商品销售量的变化也补充到HTM模型进行学习;
步骤3,建立两组空间池,利用其中一组空间池从所有的微柱中选择部分微柱进行激活,并将激活的微柱对应当前的商品需求量,另一组空间池从所有的微柱中选择部分微柱进行激活,并将激活的微柱对应当前的商品需求量变化量;
步骤4,利用各自的时间池对空间池的信息进行学习,被激活微柱上生成学习细胞集将被激活的微柱集送入时间池进行训练,构建输入之间的时序关系,并在HTM中形成记忆;
步骤5,完成对历史商品销售量的数据分析,输出下个时间段的销售量数据和变化量数据的预测模式,并通过一个小型的多层感知器训练两组预测值与真实值之间的关系,最终根据训练的结果给出销售量的综合预测值。
进一步,使用数据本身和时序差值的编码方式,两种编码分别为:
X={X(1),X(2),X(3),X(4)…X(t)} (1)
Y={Y(1),Y(2),Y(3),Y(4)…Y(t-1)} (2)
其中X(t)为销售数量,Y(t)为销售数量增量:
Y(i)=X(i+1)-X(i)i=1,2,3…t (3)
使用X、Y两组数据进行数据编码,分别由两组空间池进行学习。
进一步,所述步骤5中,通过一个小型的多层感知器训练两组预测值与真实值之间的关系,主要包括以下步骤:
步骤5.1,在HTM解码阶段后建立新的多层感知器,将输入的多个数据集映射到单一的输出的数据集上,把两组编码的上一时刻的预测结果作为输入,当前时间段的销售量真实值作为输出,训练对应的权重:
w1,w2,b分别对应x的权重值,y的权重值,以及偏移量;为两个预测值;
步骤5.2,通过反向传播算法,调整权重值,达到最佳拟合效果;
步骤5.3,最终的Z(t+1)即为训练完成后的商品需求量的预测结果。
本发明的有益效果:
1、本发明与现有网络购物平台的商品需求量分析方法不同,使用了一种面向网络购物平台的商品需求量智能分析设计方法,其中包含基于HTM的数据预测分析和多层感知器的方式,实现对较长时间商品需求量规律的更好学习。
2、本发明对现有的HTM做了一定的修改,通过增加差值编码的方式,拓展了输入数据的维度,也增加了HTM模型学习的维度,降低了预测误差,提高了HTM的学习效果;
3、本发明针对解码阶段,新增多层感知器,使得最终的预测结果综合了多种因素,提高了预测的准确度。使得对于具有长期趋势的数据规律,HTM模型仍能达到较好的预测效果。
附图说明
图1为一种面向网络购物平台的商品需求量的智能分析方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
实施例1:
如图1所示,一种面向网络购物平台的商品需求量的融合增量编码的分析设计方法。该方法的总体思路是在编码解码阶段增加多层感知器的方式,用增量的预测结果对原始的数据预测结果进行一定的修正,提高对于具有长期趋势的数据预测准确性。训练时包括商品销售量数据采集、数据编码、获取输入激活的微柱集合、生成学习细胞集、调整树突分支、调整活跃细胞集并进行预测、建立多层感知器训练并给出结果七个步骤:
步骤1,采集某个较长时间段内,商品固定时间段内的销售数量信息,与当时的时间信息一起构建商品固定时间段内的销售数量数据集,使其包含商品固定时间段内的销售数量和时间两方面的特性,构成具有时序特性的商品固定时间段内的销售数量流Datasets_X:
Datasets_X=(t,X(t)),t为时间,X(t)为销售数量;
Datasets_Y=(t,Y(t)),t为时间,Y(t)为销售数量增量
例如:Datasets_X:(0:00,100)(0:05,120)(0:10,150)…(23:55,95)
X={X(1),X(2),X(3),X(4)…X(t)} (1)
Y={Y(1),Y(2),Y(3),Y(4)…Y(t-1)} (2)
其中:
Y(i)=X(i+1)-X(i)i=1,2,3…t (3)
即:
Datasets_Y(0:00,5)(0:05,20)(0:10,30)…(23:55,5)
步骤2,针对销售量的数据,将数据X(t)编码为输入编码和差值编码,作为HTM模型的输入:
x(t)=(x1(t),x2(t),...,xn(t))∈{0,1}n
其中:min为X商品需求量的最小值,max为最大值,n为输入编码的长度,w为编码后输入编码比特位为1的位数。
yi(t)与xi(t)同理,编码结果示例如下:
X:01111100000011111000 0001111100…
Y:0111000 0011100 0001110…
步骤3,空间池算法的学习,主要是将低维的输入编码,转换为高维的稀疏离散表征。建立两组空间池微柱,获取激活的微柱集合可分别由空间池算法产生,从两组微柱中各选择部分微柱进行激活,并将激活微柱对应当前的两种输入;上述建立两组空间池,利用其中一组空间池从所有的微柱中选择部分微柱进行激活,并将激活的微柱对应当前的商品需求量,另一组空间池从所有的微柱中选择部分微柱进行激活,并将激活的微柱对应当前的商品需求量变化量。
步骤3.1微柱激活:
步骤3.1.1空间池初始会有nc个微柱,每根微柱在输入编码上的感受野范围内初始化自身近端树突,与范围内输入编码的每位输入比特位相连接,并初始化自身突触持久值;
步骤3.1.2连接到比特位1,且突触持久值大于突触连接阈值的为连接态,反之为非连接态;拥有达到连接态阈值数量近端树突的微柱,即可成为候选激活微柱;
步骤3.1.3根据近端树突连接的数量,对候选激活微柱进行倒序排布,选取前na个微柱作为激活微柱。
步骤3.2突触更新:随着数据的输入,会在每一个时间步骤,根据输入,调整近端树突的持久值,调整激活微柱,达到空间池稳定状态。
步骤4,空间池学习完成后进入时间池学习步骤。每根微柱上会有固定数量nr个细胞。对于每个时刻的输入,使用一组细胞集合的方式,对输入的状态进行表征。每个细胞上都有固定数量的远端轴突,细胞之间通过远端轴突相连接。
步骤4.1,在空间池算法筛选出的被激活微柱中,开始生成活跃细胞,若被激活的微柱上有预测细胞,则该细胞被设为活跃细胞,若被激活的微柱上没有预测细胞,则微柱上所有的细胞被设为活跃细胞。
步骤4.2预测细胞:下一时刻的某些细胞与当前时刻的激活细胞相连的远端轴突的数量达到阈值,则这些细胞即可成为预测细胞。
步骤4.3突触持久值更新:每一时刻,随着输入进入模型进行训练,如果下一时刻所用到的激活细胞与预测细胞一致,则加强该预测细胞上的突触持久值,反之则减弱,最终达到时间池的稳定状态。
步骤5,多层感知器:通过HTM原本的解码阶段,将时间池的预测模式,即细胞集合解码为与输入格式一致的预测值。两组通道同理,因此同一时刻会有两个预测值: 分别为对原始编码的预测值和对差量编码的预测值。
步骤5.1,在HTM解码阶段后建立新的多层感知器,可以将输入的多个数据集映射到单一的输出的数据集上。我们把两组编码的上一时刻的预测结果作为输入,当前时间段的销售量真实值作为输出,训练对应的权重:
w1,w2,b分别对应x的权重值,y的权重值,以及偏移量。
步骤5.2,通过反向传播算法,调整权重值,达到最佳拟合效果。
步骤5.3,最终的Z(t+1)即为训练完成后的商品需求量的预测结果。
综上,本发明的一种面向网络购物平台的商品需求量的融合增量编码的分析设计方法,在原有的解码方式上新增了差值编码,增加了第二种信息通道;并建立多层感知器,将数据原始编码的预测值、差值编码的预测值与当前输入的真实值建立学习关系,实现HTM对同时蕴含时间跨度较长大规模的商品需求量规律的更强学习能力。本发明将对生物大脑新皮质功能的模拟多层感知器机制相结合,提高了HTM对同时蕴含时间跨度较长商品需求量的学习功能,从而保证了在处理同时蕴含时间跨度较长的商品需求量规律的有效性和实用性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上实施例仅用于说明本发明的设计思想和特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,本发明的保护范围不限于上述实施例。所以,凡依据本发明所揭示的原理、设计思路所作的等同变化或修饰,均在本发明的保护范围之内。

Claims (2)

1.一种面向网络购物平台的商品需求量的智能分析方法,其特征在于,包括以下步骤:
步骤1,采集某个较长时间内某类商品的销售量分段统计数据,使其包含该类商品的销售量的数量和时间两方面的特性,构成具有时序特性的长期变化趋势的商品销售量的数据流;
步骤2,针对购物平台商品的销售量分析应用,将每个时间段的商品销售数量,送入HTM模型进行学习,在编码阶段,除了数据本身外,每个时间段的销售量与上一个时间段的商品销售量做差值,将该部分数据作为具有时序特性的商品销售量变化量的数据流输入,用销售量和销售变化量两种编码的方法,代替原有的单一的编码,将商品销售量的变化也补充到HTM模型进行学习;
步骤3,建立两组空间池,利用其中一组空间池从所有的微柱中选择部分微柱进行激活,并将激活的微柱对应当前的商品需求量,另一组空间池从所有的微柱中选择部分微柱进行激活,并将激活的微柱对应当前的商品需求量变化量;
步骤4,利用各自的时间池对空间池的信息进行学习,被激活微柱上生成学习细胞集将被激活的微柱集送入时间池进行训练,构建输入之间的时序关系,并在HTM中形成记忆;
步骤5,完成对历史商品销售量的数据分析,输出下个时间段的销售量数据和变化量数据的预测模式,并通过一个小型的多层感知器训练两组预测值与真实值之间的关系,最终根据训练的结果给出销售量的综合预测值;
所述步骤5中,通过一个小型的多层感知器训练两组预测值与真实值之间的关系,主要包括以下步骤:
步骤5.1,在HTM解码阶段后建立新的多层感知器,将输入的多个数据集映射到单一的输出的数据集上,把两组编码的上一时刻的预测结果作为输入,当前时间段的销售量真实值作为输出,训练对应的权重:
w1,w2,b分别对应x的权重值,y的权重值,以及偏移量;为两个预测值,t为时间;
步骤5.2,通过反向传播算法,调整权重值,达到最佳拟合效果;
步骤5.3,最终的Z(t+1)即为训练完成后的商品需求量的预测结果。
2.根据权利要求1所述的一种面向网络购物平台的商品需求量的智能分析方法,其特征在于,使用数据本身和时序差值的编码方式,两种编码分别为:
X = {X(1),X(2),X(3),X(4)…X(t) } (1)
Y = {Y(1),Y(2),Y(3),Y(4)… Y(t-1) } (2)
其中X(t)为销售数量,Y(t)为销售数量增量:
Y(i) = X(i+1)-X(i) i = 1,2,3…t (3)
使用X、Y两组数据进行数据编码,分别由两组空间池进行学习。
CN202210035634.5A 2022-01-13 2022-01-13 一种面向网络购物平台的商品需求量的智能分析方法 Active CN114387028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210035634.5A CN114387028B (zh) 2022-01-13 2022-01-13 一种面向网络购物平台的商品需求量的智能分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210035634.5A CN114387028B (zh) 2022-01-13 2022-01-13 一种面向网络购物平台的商品需求量的智能分析方法

Publications (2)

Publication Number Publication Date
CN114387028A CN114387028A (zh) 2022-04-22
CN114387028B true CN114387028B (zh) 2024-02-23

Family

ID=81201031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210035634.5A Active CN114387028B (zh) 2022-01-13 2022-01-13 一种面向网络购物平台的商品需求量的智能分析方法

Country Status (1)

Country Link
CN (1) CN114387028B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116227778B (zh) * 2023-01-05 2023-09-22 深圳爱巧电子商务有限公司 运行商品销售平台的网络app管理系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109784979A (zh) * 2018-12-19 2019-05-21 重庆邮电大学 一种大数据驱动的供应链需求预测方法
CN110866628A (zh) * 2018-08-28 2020-03-06 北京京东尚科信息技术有限公司 利用动态时间上下文学习进行多界限时间序列预测的系统和方法
CN110910164A (zh) * 2019-10-28 2020-03-24 苏宁云计算有限公司 产品销售预测方法、系统、计算机设备和存储介质
CN111382840A (zh) * 2020-02-25 2020-07-07 江苏大学 一种面向自然语言处理的基于循环学习单元的htm设计方法
CN111401547A (zh) * 2020-02-25 2020-07-10 江苏大学 一种面向乘客流分析的基于循环学习单元的htm设计方法
CN111447217A (zh) * 2020-03-25 2020-07-24 西南大学 一种稀疏编码下的基于htm的流数据异常检测方法及系统
CN112200314A (zh) * 2020-09-30 2021-01-08 江苏大学 一种基于微柱自荐的htm空间池快速训练方法及系统
CN112241904A (zh) * 2020-10-23 2021-01-19 浙江集享电子商务有限公司 商品销售量预测方法、装置、计算机设备和存储介质
CN112269729A (zh) * 2020-11-04 2021-01-26 江苏瑞祥科技集团有限公司 面向网络购物平台大规模服务器集群的负载智能分析方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070192267A1 (en) * 2006-02-10 2007-08-16 Numenta, Inc. Architecture of a hierarchical temporal memory based system
US9412067B2 (en) * 2012-09-05 2016-08-09 Numenta, Inc. Anomaly detection in spatial and temporal memory system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110866628A (zh) * 2018-08-28 2020-03-06 北京京东尚科信息技术有限公司 利用动态时间上下文学习进行多界限时间序列预测的系统和方法
CN109784979A (zh) * 2018-12-19 2019-05-21 重庆邮电大学 一种大数据驱动的供应链需求预测方法
CN110910164A (zh) * 2019-10-28 2020-03-24 苏宁云计算有限公司 产品销售预测方法、系统、计算机设备和存储介质
CN111382840A (zh) * 2020-02-25 2020-07-07 江苏大学 一种面向自然语言处理的基于循环学习单元的htm设计方法
CN111401547A (zh) * 2020-02-25 2020-07-10 江苏大学 一种面向乘客流分析的基于循环学习单元的htm设计方法
CN111447217A (zh) * 2020-03-25 2020-07-24 西南大学 一种稀疏编码下的基于htm的流数据异常检测方法及系统
CN112200314A (zh) * 2020-09-30 2021-01-08 江苏大学 一种基于微柱自荐的htm空间池快速训练方法及系统
CN112241904A (zh) * 2020-10-23 2021-01-19 浙江集享电子商务有限公司 商品销售量预测方法、装置、计算机设备和存储介质
CN112269729A (zh) * 2020-11-04 2021-01-26 江苏瑞祥科技集团有限公司 面向网络购物平台大规模服务器集群的负载智能分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"基于时-频分析的桥梁异常监测数据预警方法研究";王伟;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》;C034-302 *
"大型铁路客站站域空间整体性发展途径研究";桂汪洋;《中国博士学位论文全文数据库 工程科技Ⅱ辑》;C038-17 *

Also Published As

Publication number Publication date
CN114387028A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
Shen et al. Fractional skipping: Towards finer-grained dynamic cnn inference
Wang et al. Deep spiking neural networks with binary weights for object recognition
KR20220007853A (ko) 신경망의 매개변수를 압축하기 위한 방법 및 장치
CN114387028B (zh) 一种面向网络购物平台的商品需求量的智能分析方法
CN110020721B (zh) 一种基于参数压缩的目标检测深度学习网络优化方法
Fang et al. Multivariate time series classification using spiking neural networks
Shi et al. Structured Word Embedding for Low Memory Neural Network Language Model.
CN109635938A (zh) 一种自主学习脉冲神经网络权值量化方法
CN112036651A (zh) 基于量子免疫优化bp神经网络算法的电价预测方法
Zhao et al. Genetic optimization of radial basis probabilistic neural networks
CN112200314A (zh) 一种基于微柱自荐的htm空间池快速训练方法及系统
CN112183721A (zh) 一种基于自适应差分进化的组合水文预测模型的构建方法
CN116700011A (zh) 一种增强深度Transformer-Attention集成预测的分数阶微积分降能引导方法
Hulle et al. On an unsupervised learning rule for scalar quantization following the maximum entropy principle
Shymyrbay et al. Training-aware low precision quantization in spiking neural networks
CN115063597A (zh) 一种基于类脑学习的图像识别方法
Ahalt et al. Vector quantization using artificial neural network models
CN113935457A (zh) 一种基于正态分布的脉冲神经网络输入信号编码方法
Wei Application of hybrid back propagation neural network in image compression
CN114387030B (zh) 一种面向网络购物平台的在线用户量的智能分析方法
KR20210157826A (ko) 심층 신경망 구조 학습 및 경량화 방법
CN113177627A (zh) 优化系统、重新训练系统及其方法及处理器和可读介质
Chiranjeevi et al. Vector quantisation using hybrid teaching learning and pattern search optimisation for image compression
CN110910164A (zh) 产品销售预测方法、系统、计算机设备和存储介质
Zhou et al. Human Speaker Recognition based on the integration of Genetic Algorithm and RBF Network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant