CN114386598A - 一种复合绝缘子实时状态检测方法 - Google Patents

一种复合绝缘子实时状态检测方法 Download PDF

Info

Publication number
CN114386598A
CN114386598A CN202210001946.4A CN202210001946A CN114386598A CN 114386598 A CN114386598 A CN 114386598A CN 202210001946 A CN202210001946 A CN 202210001946A CN 114386598 A CN114386598 A CN 114386598A
Authority
CN
China
Prior art keywords
composite insulator
neural network
parameters
network model
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210001946.4A
Other languages
English (en)
Other versions
CN114386598B (zh
Inventor
张宇娇
赵建
黄雄峰
陈志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202210001946.4A priority Critical patent/CN114386598B/zh
Publication of CN114386598A publication Critical patent/CN114386598A/zh
Application granted granted Critical
Publication of CN114386598B publication Critical patent/CN114386598B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Insulators (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

一种复合绝缘子实时状态检测方法,包括:建立复合绝缘子仿真模型并使用有限元法对仿真模型进行周围电场和表面温度场计算;在仿真模型上选取多个数据点,将每个数据点处的参数构建成一组矩阵数组;搭建神经网络模型,并通过多组矩阵数组对神经网络模型进行训练;通过训练好的神经网络模型与仿真模型构建出复合绝缘子数字孪生模型;采集待检测复合绝缘子的材料参数、实时运行环境参数,并将采集到的材料参数、运行环境参数输入复合绝缘子的数字孪生模型中,数字孪生模型即可实时显示待检测的复合绝缘子上各点的实时温度值和实时电场强度。本发明可便捷、准确的获取待测绝缘子的实时状态,为运维巡线人员的工作提供更多的参考。

Description

一种复合绝缘子实时状态检测方法
技术领域
本发明涉及一种绝缘子检测领域,尤其涉及一种复合绝缘子实时状态检测方法,具体适用于对复合绝缘子实时状态进行监测。
背景技术
在电力产业的发展历程中复合绝缘子起着至关重要的作用,但是它们大多都安装在室外,很容易受到恶劣天气的影响。雨水和大气灰尘等因素会在短时间内使绝缘子的表面积累大量污秽,污秽受潮以后,使复合绝缘子表面电导率上升,这大大降低了复合绝缘子的绝缘性能,引起复合绝缘子异常温升;并且绝缘子表面污秽分布不均匀还容易引发放电现象,放电严重时会造成污闪。进而造成停电事故,对人们的工作生活造成巨大影响。
传统的机器学习方法(深度/卷积/递归神经网络)可以最大化利用数据蕴含的信息,构建高保真的传热模型以准确描述“输入—输出”间关联关系,进而可用于状态监视、产品质量控制和风险预测。但是,盲目地以数据驱动方法学习物理场信息,可能会得到难以解释的甚至违背物理规律的结果。
发明内容
本发明的目的是克服现有技术中存在的使用机器学习方法对绝缘子风险进行检测的准确率较低,甚至会出现违背物理规律的检测结果的问题,提供了一种复合绝缘子实时状态检测方法。
为实现以上目的,本发明的技术解决方案是:
一种复合绝缘子实时状态检测方法,所述复合绝缘子实时状态检测方法包括如下步骤:
S1、建立复合绝缘子仿真模型,计算不同材料参数、环境条件参数下复合绝缘子仿真模型上不同部位的温度值和电场强度;
S2、在复合绝缘子仿真模型上选取多个数据点,每一个数据点处的材料参数、环境条件参数、温度值和电场强度构建成一组矩阵数组;
S3、搭建神经网络模型,并将每一组矩阵数组中的材料参数、运行环境参数作为神经网络模型的输入,同组数据矩阵中的温度值和电场强度作为神经网络模型的输出,对神经网络模型进行训练,得到训练好的神经网络模型;
S4、采集待检测的复合绝缘子的材料参数、运行环境参数,并将待检测的复合绝缘子的材料参数、运行环境参数输入训练好的神经网络模型,通过训练好的神经网络模型预测待检测的复合绝缘子上各点的温度值和电场强度;
S5、将待检测的复合绝缘子上各点的温度值和电场强度的预测值显示在复合绝缘子的三维空间模型上,形成复合绝缘子的数字孪生模型,通过复合绝缘子的数字孪生模型显示待检测的复合绝缘子的状态。
所述步骤S1中,计算不同材料参数、环境条件参数下复合绝缘子仿真模型上不同部位的温度值和电场强度包括如下步骤:
S101、在建立复合绝缘子仿真模型的基础上,设置施加在绝缘子两端的电压,设置复合绝缘子仿真模型上不同部位的材料参数,设置复合绝缘子运行环境参数;
S102、采用有限元法进行电场-温度场耦合计算,得到复合绝缘子仿真模型上不同部位的温度值和电场强度,获得已知每个数据点的材料参数、运行环境参数、温度值和电场强度的复合绝缘子仿真结果云图;
S103、多次重复步骤S101、步骤S102,得到多个已知每个数据点的材料参数、运行环境参数、温度值和电场强度的复合绝缘子仿真结果云图。
所述步骤S101中,所述运行环境参数包括环境湿度和环境风速,所述材料参数根据绝缘子的电导率、相对介电常数、使用年限和表面污秽状态确定。
所述步骤S101中,设置复合绝缘子仿真模型的材料参数及运行环境参数包括如下步骤:
a、设置复合绝缘子的电导率、相对介电常数和使用年限;
b、在复合绝缘子的伞裙及护套表面添加一层污秽层,在复合绝缘子上分区域调整污秽层的等值盐密,以模拟工程实际中复合绝缘子自然积污的污秽状态;
c、设置环境风速;
d、设置环境湿度。
所述步骤S2中,复合绝缘子仿真模型上选取多个数据点包括:在已知每个数据点的材料参数、运行环境参数、温度值和电场强度的复合绝缘子仿真结果云图上选取32*32*128个数据点。
所述步骤S3中,对神经网络模型进行训练时,将步骤S2中得到的全部矩阵数组划分为训练集合测试集,通过训练集中的矩阵数组对搭建好的神经网络模型进行训练,训练完成后,使用测试集中的矩阵数组测试训练完成的神经网络模型的精度:
若训练好的神经网络模型的精度满足要求,则得到训练好的神经网络模型,随后进入步骤S4;
若训练好的神经网络模型的精度不满足要求,则返回步骤S2,重新选取数据点并构建矩阵数组。
所述步骤S3中,通过训练集中的矩阵数组对搭建好的神经网络模型进行训练时,将训练集中的矩阵数组所对应的数据点分为两类,一类数据点位于复合绝缘子表面,位于复合绝缘子表面的数据点的个数为nb;另一类数据点为位于复合绝缘子内部,位于复合绝缘子内部的数据点的个数为nd
所述神经网络模型的损失函数为:
Figure BDA0003454990570000031
上述公式中,λ为惩罚系数,θ为热传导参数;
Figure BDA0003454990570000032
是电场强度参数;
σb i、hb i、vb i分别为第i个位于复合绝缘子表面的数据点处的材料参数、湿度和风速;
Figure BDA0003454990570000033
为第i个位于复合绝缘子表面的数据点处神经网络模型的预测结果,
Figure BDA0003454990570000034
为第i个位于复合绝缘子表面的数据点所对应的矩阵数组的实际值;
σd i、hd i、vd i分别为第i个位于复合绝缘子内部的数据点处的材料参数、湿度和风速;
Figure BDA0003454990570000035
为第i个位于复合绝缘子内部的数据点处物理约束信息方程z
Figure BDA0003454990570000036
的n阶导数项,n的取值范围为{0,1,2,3};
Figure BDA0003454990570000037
表示第i个位于复合绝缘子内部的数据点处σd i、hd i、vd i与电场强度参数之间的物理约束对应的残差函数,
Figure BDA0003454990570000038
表示第i个位于复合绝缘子内部的数据点处σd i、hd i、vd i与热传导参数之间的物理约束对应的残差函数。
完成所述步骤S1后,依照与复合绝缘子仿真模型相同的材料参数、运行环境参数及绝缘子两端电压搭建试验平台,进行复合绝缘子污秽试验,并对复合绝缘子表面温度进行测试,将测试得到的复合绝缘子表面温度T1与通过计算得到的仿真模型表面温度T2进行比较:若|T1-T2|的值在预设范围内,则复合绝缘子仿真模型符合要求,进入步骤S2;
若|T1-T2|的值不在预设范围内,则复合绝缘子仿真模型不符合要求,返回步骤S1,重新建立复合绝缘子运行情况的仿真模型。
对运行状态下的复合绝缘子表面温度进行测试后,将测得的复合绝缘子表面温度及与其对相应的复合绝缘子的材料参数、运行环境参数构建成验证矩阵数组;
完成所述步骤S3后,通过验证矩阵数组对训练好的神经网络模型的预测精度进行验证。
与现有技术相比,本发明的有益效果为:
1、本发明一种复合绝缘子实时状态检测方法中的通过有限元仿真计算、对神经网络模型进行训练,最终形成复合绝缘子数字孪生模型,通过修改复合绝缘子数字孪生模型中的材料参数与环境参数,可便捷的得到不同污秽情况、不同运行环境下的绝缘子温升分布,可为绝缘子运行情况提供全面的数据,节约了运维成本。因此,本设计通过建立成复合绝缘子数字孪生模型,复合绝缘子数字孪生模型可为绝缘子运行情况提供全面的数据,节约运维成本。
2、本发明一种复合绝缘子实时状态检测方法中在计算复合绝缘子仿真模型上各处温度值和电场强度后,对照复合绝缘子仿真模型的材料参数及运行环境参数进行多组绝缘子污秽实验,对仿真结果进行对比和验证,加强仿真结果的可靠性;同时,将绝缘子污秽实验中获取的实验数据构建成验证矩阵数组,通过验证矩阵数组可对训练好的神经网络模型进行预测精度检测,进一步增强复合绝缘子实时状态检测检测结果的可靠性。因此,本设计中通过多组绝缘子污秽实验,对仿真结果进行对比和验证,同时将绝缘子污秽实验中获取的实验数据也构建成矩阵数组参与对神经网络模型预测精度的检测,增强复合绝缘子实时状态检测检测结果的可靠性。
3、本发明一种复合绝缘子实时状态检测方法中采取有限元约束与神经网络结合的方式训练神经网络模型,神经网络模型的损失函数考虑到数据点处材料参数、环境条件与温度值、电场强度之间的物理约束,神经网络模型输出的结果符合物理约束,输出结果更加精确。因此,本设计中神经网络模型的损失函数考虑到物理约束条件,神经网络模型输出的结果更加精确。
4、本发明一种复合绝缘子实时状态检测方法中对搭建好的神经网络模型进行训练时,将训练集中的矩阵数组所对应的数据点分为两类,一类数据点位于复合绝缘子表面,另一类数据点为位于复合绝缘子内部,能减小环境对训练结果的影响。因此,本设计中,将训练集中的矩阵数组所对应的数据点分为两类,减小环境对训练结果的影响。
5、本发明一种复合绝缘子实时状态检测方法中,当需要对复合绝缘子进行检测时,根据待检测绝缘子的当前污秽情况及运行环境修改复合绝缘子数字孪生模型中的材料参数与环境参数,就能得到待测绝缘子的实时状态,对运维巡线人员的工作提供更多的参考。因此,本设计能便捷的获取待测绝缘子的实时状态,为运维巡线人员的工作提供更多的参考。
附图说明
图1是本发明方法的流程图。
图2是复合绝缘子仿真模型图。
图3是复合绝缘子温度分布云图。
图4是复合绝缘子电场分布云图。
图5是神经网络模型的结构示意图。
具体实施方式
以下结合附图说明和具体实施方式对本发明作进一步详细的说明。
参见图1至图5,一种复合绝缘子实时状态检测方法,包括以下步骤:
根据复合绝缘子运行情况建立复合绝缘子仿真模型,复合绝缘子仿真模型图如图2所示,采用有限元法进行电场-温度场耦合计算,通过电场控制方程计算复合绝缘子表面电场分布,通过温度场控制方程计算复合绝缘子表面温度,通过湍流场控制方程控制环境风速,进而控制环境换热系数,通过水分流动控制方程控制空气湿度;
在建立复合绝缘子仿真模型的基础上,设置施加在绝缘子两端的电压,设置复合绝缘子仿真模型上各部位的材料参数及运行环境参数,所述运行环境参数包括环境湿度和环境风速,所述材料参数根据绝缘子的电导率、相对介电常数、使用年限和表面污秽状态确定。
设置复合绝缘子仿真模型的材料参数及运行环境参数包括如下步骤:
a、设置复合绝缘子的电导率、相对介电常数和使用年限;
b、并在复合绝缘子的伞裙及护套表面添加一层污秽层,并使复合绝缘子上不同区域上污秽层的等值盐密不同,在复合绝缘子上分区域调整污秽层的等值盐密来模拟工程实际中自然积污的污秽状态;
c、设置环境风速;
d、设置环境湿度。
通过设置环境风速、环境湿度模拟不同的散热环境,使用有限元法对仿真模型进行电场-温度场耦合计算进行计算,得到复合绝缘子在不同情况下的表面电场强度与表面温度值。如图3、图4所示,仿真得到复合绝缘子温度分布云图和复合绝缘子电场分布云图,复合绝缘子温度分布云图和复合绝缘子电场分布云图显示复合绝缘子的表面温度值与表面电场强度。
计算复合绝缘子仿真模型上各处温度值和电场强度后,依照与复合绝缘子仿真模型相同的材料参数及运行环境参数搭建试验平台,进行复合绝缘子的污秽试验,测量复合绝缘子在不同情况下的表面温度。如调整绝缘子表面污秽层的等值盐密、环境风速、环境湿度以及绝缘子两端运行工作电压,将测量得到的绝缘子表面温度T1与相同的模拟条件下仿真得到的绝缘子表面温度T2相比较,以验证仿真结果的可靠性:若|T1-T2|的值在预设范围内,则复合绝缘子仿真模型符合要求,进入步骤S2;
若|T1-T2|的值不在预设范围内,则复合绝缘子仿真模型不符合要求,返回步骤S1,重新建立复合绝缘子运行情况的仿真模型;
同时在进行复合绝缘子表面涂抹污秽的运行试验后,将实验中测得的复合绝缘子的材料参数、运行环境参数及相对应的复合绝缘子表面温度构建成验证矩阵数组,通过验证矩阵数组可在后续步骤中对训练好的神经网络模型的预测精度进行验证。
搭建神经网络模型,在已知每个数据点的材料参数、运行环境参数、温度值和电场强度的复合绝缘子仿真结果云图上选取32*32*128个数据点,每个数据点的材料参数、环境湿度和环境风速作为神经网络模型的输入层,所述32*32*128个数据点可来自不同的仿真结果云图。如图5所示,经过基于U-net的神经网络架构进行拟合,输出每个点对应的温度值与电场强度,将输入层的结果与输出层结果自动微分,计算神经网络模型的损失函数。
所述神经网络模型的损失函数为:
Figure BDA0003454990570000061
上述公式中,λ为惩罚系数,θ为热传导参数;
Figure BDA0003454990570000062
是电场强度参数;
σb i、hb i、vb i分别为第i个位于复合绝缘子表面的数据点处的材料参数、湿度和风速;
Figure BDA0003454990570000071
为第i个位于复合绝缘子表面的数据点处神经网络模型的预测结果,
Figure BDA0003454990570000072
为第i个位于复合绝缘子表面的数据点所对应的矩阵数组的实际值;
σd i、hd i、vd i分别为第i个位于复合绝缘子内部的数据点处的材料参数、湿度和风速;
Figure BDA0003454990570000073
为第i个位于复合绝缘子内部的数据点处物理约束信息方程z
Figure BDA0003454990570000074
的n阶导数项,n的取值范围为{0,1,2,3};
Figure BDA0003454990570000075
表示第i个位于复合绝缘子内部的数据点处σd i、hd i、vd i与电场强度参数之间的物理约束对应的残差函数,
Figure BDA0003454990570000076
表示第i个位于复合绝缘子内部的数据点处σd i、hd i、vd i与热传导参数之间的物理约束对应的残差函数。
对神经网络模型进行训练时,将全部矩阵数组中的一部分作为训练集,矩阵数组中的另一部分作为测试集,先使用训练集中的矩阵数组训练搭建好的模型,在训练完成后,使用测试集中的矩阵数组测试模型精度,当神经网络模型的误差损失满足预设值后,通过训练好的神经网络模型计算复合绝缘子仿真模型上各点的实时温度值和实时电场强度,将每个点的温度值和电场强度实时显示在复合绝缘子模型上作为复合绝缘子数字孪生模型,复合绝缘子的数字孪生模型即可显示待检测的复合绝缘子的状态。
在工程实际中,采用传感器实时采集复合绝缘子上点的材料参数、环境风速和环境湿度数据,将复合绝缘子的材质、使用年限以及采集到的复合绝缘子上点位的材料参数、环境风速和环境湿度数据输入建立好的数字孪生模型,即可得到与工程实际中复合绝缘子对应的数字孪生模型,并将工程实际中复合绝缘子所对应点位的温度值与电场强度实时显示在数字孪生模型上,为运维巡线人员采取的措施提供参考。
本发明的原理说明如下:
所述材料参数即复合绝缘子的绝缘参数,材料参数受两方面因素影响,一方面是指复合绝缘子本身绝缘参数随着使用年限而变化,另一方面是指绝缘子表面自然积污后的绝缘参数随之变化。
所述神经网络模型的损失函数为:
Figure BDA0003454990570000081
上述公式中,λ为惩罚系数,θ为热传导参数,热传导参数表示热源与热导率的比;
Figure BDA0003454990570000082
是电场强度参数,电场强度参数表示电势的梯度;
σb i、hb i、vb i分别为第i个位于复合绝缘子表面的数据点处的材料参数、湿度和风速;
Figure BDA0003454990570000083
为第i个位于复合绝缘子表面的数据点处热传导参数、电场强度参数的预测值,
Figure BDA0003454990570000084
为第i个位于复合绝缘子表面的数据点处热传导参数、电场强度参数的实际值;
σd i、hd i、vd i分别为第i个位于复合绝缘子内部的数据点处的材料参数、湿度和风速;
Figure BDA0003454990570000085
为第i个位于复合绝缘子内部的数据点处物理约束信息方程z
Figure BDA0003454990570000086
的n阶导数项;
由于σd i、hd i、vd i与θ、
Figure BDA0003454990570000087
之间存在物理定理的约束,因此σd i、hd i、vd i与θ、
Figure BDA0003454990570000088
之间对应的电场束偏微分方程的表达式为
Figure BDA0003454990570000089
因此用
Figure BDA00034549905700000810
表示第i个位于复合绝缘子内部的数据点处σd i、hd i、vd i与电场强度参数之间的物理约束,方程中C表示常数,n表示偏微分方程阶数,n的取值范围为{0,1,2,3};
σd i、hd i、vd i与θ、
Figure BDA00034549905700000811
之间的对应温度场约束偏微分方程的表达式为
Figure BDA00034549905700000812
Figure BDA00034549905700000813
因此用
Figure BDA00034549905700000814
表示第i个位于复合绝缘子内部的数据点处σd i、hd i、vd i与热传导参数之间的物理约束,方程中c表示常数,n表示偏微分方程阶数,n的取值范围为{0,1,2,3}。
在神经网络模型的损失函数中包含温度场物理定理的约束和电场物理定理约束,且由于C、c均为常量,
Figure BDA00034549905700000815
均是带有物理参量的偏微分方程,在计算损失残差时,常量对其影响很小,故而在神经网络模型的损失函数中将其省略。
对神经网络模型进行训练的过程中,以损失函数作为调整网络权重和偏置的标准。
实施例1:
一种复合绝缘子实时状态检测方法,所述复合绝缘子实时状态检测方法包括如下步骤:
S1、建立复合绝缘子仿真模型,计算不同材料参数、环境条件参数下复合绝缘子仿真模型上不同部位的温度值和电场强度;
计算不同材料参数、环境条件参数下复合绝缘子仿真模型上不同部位的温度值和电场强度包括如下步骤:
S101、在建立复合绝缘子仿真模型的基础上,设置施加在绝缘子两端的电压,设置复合绝缘子仿真模型上不同部位的材料参数,设置复合绝缘子运行环境参数;
S102、采用有限元法进行电场-温度场耦合计算,得到复合绝缘子仿真模型上不同部位的温度值和电场强度,获得已知每个数据点的材料参数、运行环境参数、温度值和电场强度的复合绝缘子仿真结果云图;
S103、多次重复步骤S101、步骤S102,得到多个已知每个数据点的材料参数、运行环境参数、温度值和电场强度的复合绝缘子仿真结果云图。
所述步骤S101中,所述运行环境参数包括环境湿度和环境风速,所述材料参数根据绝缘子的电导率、相对介电常数、使用年限和表面污秽状态确定。
所述步骤S101中,设置复合绝缘子仿真模型的材料参数及运行环境参数包括如下步骤:
a、设置复合绝缘子的电导率、相对介电常数和使用年限;
b、在复合绝缘子的伞裙及护套表面添加一层污秽层,在复合绝缘子上分区域调整污秽层的等值盐密,以模拟工程实际中复合绝缘子自然积污的状态;
c、设置环境风速;
d、设置环境湿度。
随后通过电场-温度场耦合计算获取复合绝缘子仿真模型上各处温度值和电场强度。
通过电场-温度场耦合计算复合绝缘子仿真模型上各处温度值和电场强度,采用有限元法进行电场-温度场耦合计算:
通过电场控制方程(2)、(3)、(4)计算复合绝缘子仿真模型上各处的电场分布:
Figure BDA0003454990570000091
J=σE+jωD+Je (3)
Figure BDA0003454990570000092
公式(2)、(3)、(4)中,
Figure BDA0003454990570000093
是哈密顿算子,即矢量的微分算符;J是电流密度;Je是外部产生的电流密度;Qj,v是自由电荷;σ是介电常数;E是电场;D是电位移场;V是电势;
通过温度场控制方程(5)、(6)计算仿真云图上各个点位的温升:
Figure BDA0003454990570000101
Figure BDA0003454990570000102
公式(5)、(6)中,Q是热流;ρ是密度;Cp为恒压热容;
Figure BDA0003454990570000103
是温度变化;u是模型部分在物质框架内运动时由平移运动子节点定义的速度场;q为热源;k是导热系数;
通过湍流场控制方程(7)控制空气风速:
Figure BDA0003454990570000104
公式(7)中,u是流体速度;p是流体压力;ρ是流体密度;μ是流体动力黏度;F作用在流体上的外力;
水分流动控制方程(8)、(9)、(10)控制空气湿度:
Figure BDA0003454990570000105
Figure BDA0003454990570000106
cv=φcsat (10)
公式(8)、(9)、(10)中,Mv为蒸汽质量;u为空气速度场;g为蒸汽通量;G为液体源;cv为蒸汽浓度;D为扩散系数;csat为饱和蒸汽浓度;φ为孔隙率。
完成所述步骤S1后,依照与复合绝缘子仿真模型相同的材料参数及运行环境参数搭建试验平台,进行复合绝缘子的污秽试验,测量复合绝缘子在不同情况下的表面温度。如调整绝缘子表面污秽层的等值盐密、环境风速、环境湿度以及绝缘子两端运行工作电压,将测量得到的绝缘子表面温度T1与相同的模拟条件下仿真得到的绝缘子表面温度T2相比较,以验证仿真结果的可靠性:若|T1-T2|的值在预设范围内,则复合绝缘子仿真模型符合要求,进入步骤S2;
若|T1-T2|的值不在预设范围内,则复合绝缘子仿真模型不符合要求,返回步骤S1,重新建立复合绝缘子运行情况的仿真模型。
进行复合绝缘子污秽实验后,将复合绝缘子污秽实验中测得的复合绝缘子的材料参数、运行环境参数及相对应的复合绝缘子表面温度构建成验证矩阵数组,验证矩阵数组用于后续步骤中对训练好的神经网络模型进行预测精度进行验证,使训练得到的神经网络模型更贴近实际,进一步加强复合绝缘子实时状态检测结果的可靠性。
S2、在已知每个数据点的材料参数、运行环境参数、温度值和电场强度的复合绝缘子仿真结果云图上选取32*32*128个数据点,每一个数据点处的材料参数、环境条件参数、温度值和电场强度构建成一组矩阵数组;
S3、搭建神经网络模型,并将每一组矩阵数组中材料参数、湿度和环境条件作为神经网络模型的输入,温度值和电场强度作为神经网络模型对应的输出,通过多组矩阵数组数据对神经网络模型进行训练。
所述步骤S3中,对神经网络模型进行训练时,将步骤S2中得到的全部矩阵数组划分为训练集合测试集,通过训练集中的矩阵数组对搭建好的神经网络模型进行训练,训练完成后,使用测试集中的矩阵数组测试训练完成的神经网络模型的精度:
若训练好的神经网络模型的精度满足要求,则得到训练好的神经网络模型,随后进入步骤S4;
若训练好的神经网络模型的精度不满足要求,则返回步骤S2,重新选取数据点并构建矩阵数组。
所述神经网络模型的精度满足,即神经网络模型的损失函数在测试集上的损失满足一定的预设值。
同时,在通过训练集中的矩阵数组对搭建好的神经网络模型进行训练时,将训练集中的矩阵数组所对应的数据点分为两类,一类数据点位于复合绝缘子表面,位于复合绝缘子表面的数据点的个数为nb;另一类数据点为位于复合绝缘子内部,位于复合绝缘子内部的数据点的个数为nd
所述神经网络模型的损失函数为:
Figure BDA0003454990570000111
上述公式中,λ为惩罚系数,θ为热传导参数;
Figure BDA0003454990570000112
是电场强度参数;
σb i、hb i、vb i分别为第i个位于复合绝缘子表面的数据点处的材料参数、湿度和风速,电场强度参数表示电势的梯度;
Figure BDA0003454990570000113
为第i个位于复合绝缘子表面的数据点处神经网络模型的预测结果,
Figure BDA0003454990570000114
为第i个位于复合绝缘子表面的数据点所对应的矩阵数组中的实际值;
σd i、hd i、vd i分别为第i个位于复合绝缘子内部的数据点处的材料参数、湿度和风速;
Figure BDA0003454990570000121
为第i个位于复合绝缘子内部的数据点处物理约束信息方程z
Figure BDA0003454990570000122
的n阶导数项,n的取值范围为{0,1,2,3};
Figure BDA0003454990570000123
表示第i个位于复合绝缘子内部的数据点处σd i、hd i、vd i与电场强度参数之间的物理约束对应的残差函数,
Figure BDA0003454990570000124
表示第i个位于复合绝缘子内部的数据点处σd i、hd i、vd i与热传导参数之间的物理约束对应的残差函数。
S4、通过传感器实时采集待检测的复合绝缘子的实际材料参数、运行环境参数,并将待检测的复合绝缘子的材料参数、运行环境参数输入训练好的神经网络模型,通过训练好的神经网络模型预测待检测的复合绝缘子上各点的实时温度值和实时电场强度;
S5、将待检测的复合绝缘子上各点的温度值和电场强度的预测值实时显示在复合绝缘子的三维空间模型上,形成复合绝缘子的数字孪生模型,通过复合绝缘子的数字孪生模型显示待检测的复合绝缘子的实时状态。
实施例2:
实施例2与实施例1基本相同,其不同之处在于:
所述|T1-T2|的值小于等于T1*5%的值时,|T1-T2|的值在预设范围内;|T1-T2|的值大于T1*5%的值,的值时,|T1-T2|的值不在预设范围内。
以上所述仅为本发明的较佳实施方式,本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。

Claims (9)

1.一种复合绝缘子实时状态检测方法,其特征在于:
所述复合绝缘子实时状态检测方法包括如下步骤:
S1、建立复合绝缘子仿真模型,计算不同材料参数、环境条件参数下复合绝缘子仿真模型上不同部位的温度值和电场强度;
S2、在复合绝缘子仿真模型上选取多个数据点,每一个数据点处的材料参数、环境条件参数、温度值和电场强度构建成一组矩阵数组;
S3、搭建神经网络模型,并将每一组矩阵数组中的材料参数、运行环境参数作为神经网络模型的输入,同组数据矩阵中的温度值和电场强度作为神经网络模型的输出,对神经网络模型进行训练,得到训练好的神经网络模型;
S4、采集待检测的复合绝缘子的材料参数、运行环境参数,并将待检测的复合绝缘子的材料参数、运行环境参数输入训练好的神经网络模型,通过训练好的神经网络模型预测待检测的复合绝缘子上各点的温度值和电场强度;
S5、将待检测的复合绝缘子上各点的温度值和电场强度的预测值显示在复合绝缘子的三维空间模型上,形成复合绝缘子的数字孪生模型,通过复合绝缘子的数字孪生模型显示待检测的复合绝缘子的状态。
2.根据权利要求1所述的一种复合绝缘子实时状态检测方法,其特征在于:
所述步骤S1中,计算不同材料参数、环境条件参数下复合绝缘子仿真模型上不同部位的温度值和电场强度包括如下步骤:
S101、在建立复合绝缘子仿真模型的基础上,设置施加在绝缘子两端的电压,设置复合绝缘子仿真模型上不同部位的材料参数,设置复合绝缘子运行环境参数;
S102、采用有限元法进行电场-温度场耦合计算,得到复合绝缘子仿真模型上不同部位的温度值和电场强度,获得已知每个数据点的材料参数、运行环境参数、温度值和电场强度的复合绝缘子仿真结果云图;
S103、多次重复步骤S101、步骤S102,得到多个已知每个数据点的材料参数、运行环境参数、温度值和电场强度的复合绝缘子仿真结果云图。
3.根据权利要求2所述的一种复合绝缘子实时状态检测方法,其特征在于:
所述步骤S101中,所述运行环境参数包括环境湿度和环境风速,所述材料参数根据绝缘子的电导率、相对介电常数、使用年限和表面污秽状态确定。
4.根据权利要求3所述的一种复合绝缘子实时状态检测方法,其特征在于:
所述步骤S101中,设置复合绝缘子仿真模型的材料参数及运行环境参数包括如下步骤:
a、设置复合绝缘子的电导率、相对介电常数和使用年限;
b、在复合绝缘子的伞裙及护套表面添加一层污秽层,在复合绝缘子上分区域调整污秽层的等值盐密,以模拟工程实际中复合绝缘子自然积污的污秽状态;
c、设置环境风速;
d、设置环境湿度。
5.根据权利要求4所述的一种复合绝缘子实时状态检测方法,其特征在于:
所述步骤S2中,在复合绝缘子仿真模型上选取多个数据点包括:在已知每个数据点的材料参数、运行环境参数、温度值和电场强度的复合绝缘子仿真结果云图上选取32*32*128个数据点。
6.根据权利要求1-5中任一项所述的一种复合绝缘子实时状态检测方法,其特征在于:
所述步骤S3中,对神经网络模型进行训练时,将步骤S2中得到的全部矩阵数组划分为训练集合测试集,通过训练集中的矩阵数组对搭建好的神经网络模型进行训练,训练完成后,使用测试集中的矩阵数组测试训练完成的神经网络模型的精度:
若训练好的神经网络模型的精度满足要求,则得到训练好的神经网络模型,随后进入步骤S4;
若训练好的神经网络模型的精度不满足要求,则返回步骤S2,重新选取数据点并构建矩阵数组。
7.根据权利要求6所述的一种复合绝缘子实时状态检测方法,其特征在于:
所述步骤S3中,通过训练集中的矩阵数组对搭建好的神经网络模型进行训练时,将训练集中的矩阵数组所对应的数据点分为两类,一类数据点位于复合绝缘子表面,位于复合绝缘子表面的数据点的个数为nb;另一类数据点为位于复合绝缘子内部,位于复合绝缘子内部的数据点的个数为nd
所述神经网络模型的损失函数为:
Figure FDA0003454990560000031
上述公式中,λ为惩罚系数,θ为热传导参数;
Figure FDA0003454990560000039
是电场强度参数;
σb i、hb i、vb i分别为第i个位于复合绝缘子表面的数据点处的材料参数、湿度和风速;
Figure FDA0003454990560000032
为第i个位于复合绝缘子表面的数据点处神经网络模型的预测结果,
Figure FDA0003454990560000033
为第i个位于复合绝缘子表面的数据点所对应的矩阵数组的实际值;
σd i、hd i、vd i分别为第i个位于复合绝缘子内部的数据点处的材料参数、湿度和风速;
Figure FDA0003454990560000034
为第i个位于复合绝缘子内部的数据点处物理约束信息方程
Figure FDA0003454990560000035
Figure FDA0003454990560000036
的n阶导数项,n的取值范围为{0,1,2,3};
Figure FDA0003454990560000037
表示第i个位于复合绝缘子内部的数据点处σd i、hd i、vd i与电场强度参数之间的物理约束对应的残差函数,
Figure FDA0003454990560000038
表示第i个位于复合绝缘子内部的数据点处σd i、hd i、vd i与热传导参数之间的物理约束对应的残差函数。
8.根据权利要求1所述的一种复合绝缘子实时状态检测方法,其特征在于:
完成所述步骤S1后,依照与复合绝缘子仿真模型相同的材料参数、运行环境参数及绝缘子两端电压搭建试验平台,进行复合绝缘子污秽试验,并对复合绝缘子表面温度进行测试,将测试得到的复合绝缘子表面温度T1与通过计算得到的仿真模型表面温度T2进行比较:若|T1-T2|的值在预设范围内,则复合绝缘子仿真模型符合要求,进入步骤S2;
若|T1-T2|的值不在预设范围内,则复合绝缘子仿真模型不符合要求,返回步骤S1,重新建立复合绝缘子运行情况的仿真模型。
9.根据权利要求8所述的一种复合绝缘子实时状态检测方法,其特征在于:
对运行状态下的复合绝缘子表面温度进行测试后,将测试得到的复合绝缘子表面温度及与其对相应的复合绝缘子的材料参数、运行环境参数构建成验证矩阵数组;
完成所述步骤S3后,通过验证矩阵数组对训练好的神经网络模型的预测精度进行验证。
CN202210001946.4A 2022-01-04 2022-01-04 一种复合绝缘子实时状态检测方法 Active CN114386598B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210001946.4A CN114386598B (zh) 2022-01-04 2022-01-04 一种复合绝缘子实时状态检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210001946.4A CN114386598B (zh) 2022-01-04 2022-01-04 一种复合绝缘子实时状态检测方法

Publications (2)

Publication Number Publication Date
CN114386598A true CN114386598A (zh) 2022-04-22
CN114386598B CN114386598B (zh) 2024-04-02

Family

ID=81200140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210001946.4A Active CN114386598B (zh) 2022-01-04 2022-01-04 一种复合绝缘子实时状态检测方法

Country Status (1)

Country Link
CN (1) CN114386598B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116451584A (zh) * 2023-04-23 2023-07-18 广东云湃科技有限责任公司 一种基于神经网络的热应力预测方法及系统
CN117828902A (zh) * 2024-03-04 2024-04-05 国网湖南省电力有限公司湘潭供电分公司 应用于复合绝缘子的防异常发热掉串方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106649972A (zh) * 2016-10-25 2017-05-10 国家电网公司 基于改进模糊神经网络的输电线路绝缘子状态检测方法
CN111047554A (zh) * 2019-11-13 2020-04-21 华南理工大学 一种基于实例分割的复合绝缘子过热缺陷检测方法
WO2021120787A1 (zh) * 2019-12-20 2021-06-24 华中科技大学 一种流域干支流大规模水库群模拟调度方法
CN113076673A (zh) * 2021-04-08 2021-07-06 江苏省送变电有限公司 基于神经网络的湿污复合绝缘子温升风险等级评估方法
CN113378939A (zh) * 2021-06-11 2021-09-10 福州大学 基于物理驱动神经网络的结构数字孪生建模与参数识别法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106649972A (zh) * 2016-10-25 2017-05-10 国家电网公司 基于改进模糊神经网络的输电线路绝缘子状态检测方法
CN111047554A (zh) * 2019-11-13 2020-04-21 华南理工大学 一种基于实例分割的复合绝缘子过热缺陷检测方法
WO2021120787A1 (zh) * 2019-12-20 2021-06-24 华中科技大学 一种流域干支流大规模水库群模拟调度方法
CN113076673A (zh) * 2021-04-08 2021-07-06 江苏省送变电有限公司 基于神经网络的湿污复合绝缘子温升风险等级评估方法
CN113378939A (zh) * 2021-06-11 2021-09-10 福州大学 基于物理驱动神经网络的结构数字孪生建模与参数识别法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何相佑;向凤红;忽建蕊;: "基于BP人工神经网络的绝缘子等值附盐密度预测", 绝缘材料, no. 04, 20 August 2008 (2008-08-20) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116451584A (zh) * 2023-04-23 2023-07-18 广东云湃科技有限责任公司 一种基于神经网络的热应力预测方法及系统
CN116451584B (zh) * 2023-04-23 2023-11-03 广东云湃科技有限责任公司 一种基于神经网络的热应力预测方法及系统
CN117828902A (zh) * 2024-03-04 2024-04-05 国网湖南省电力有限公司湘潭供电分公司 应用于复合绝缘子的防异常发热掉串方法和装置
CN117828902B (zh) * 2024-03-04 2024-05-28 湖南防灾科技有限公司 应用于复合绝缘子的防异常发热掉串方法和装置

Also Published As

Publication number Publication date
CN114386598B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
CN114386598B (zh) 一种复合绝缘子实时状态检测方法
Mba et al. Application of artificial neural network for predicting hourly indoor air temperature and relative humidity in modern building in humid region
Bradley A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness
CN108875719B (zh) 基于深度学习与红外图像识别的空冷器积灰状态感知系统与计算方法
Dai et al. A new model for atmospheric radiation under clear sky condition at various altitudes
CN108051364A (zh) 一种epr核能电缆剩余寿命评估方法与预测epr核能电缆剩余使用寿命方法
Catarelli et al. Automated terrain generation for precise atmospheric boundary layer simulation in the wind tunnel
CN103901291A (zh) 一种变电设备内部绝缘缺陷的诊断方法
CN112215950A (zh) 一种室内有毒有害气体浓度的三维重建方法
CN113076673B (zh) 基于神经网络的湿污复合绝缘子温升风险等级评估方法
CN110362902B (zh) 一种基于区间逐维分析的单源动载荷识别方法
CN115811044A (zh) 光伏功率突变预测方法
CN112798143A (zh) 一种基于集成光纤传感器的型架状态监控方法
CN112326187A (zh) 一种应用液晶涂层和深度学习算法测量摩擦力场的方法
CN109655483B (zh) 一种基于深度学习算法的材料微观结构缺陷检测方法
CN114371519B (zh) 一种基于无偏差亮温的地基微波辐射计大气温湿廓线反演方法
CN115840908B (zh) 基于lstm模型的微波链路构建pm2.5三维动态监测场的方法
Downey et al. Fusion of sensor geometry into additive strain fields measured with sensing skin
CN116611561A (zh) 空气质量预测方法及系统
US5165794A (en) Method for the thermal characterization, visualization, and integrity evaluation of conducting material samples or complex structures
CN105699043B (zh) 一种提高风洞传感器测量稳定性和精准度的方法
CN113204887A (zh) 一种电力装备的多物理场多参数反演方法
Shannon et al. Convection from a simulated NACA 0012 airfoil with realistic ice accretion roughness variations
Xiao et al. Study on the deformation measurement of structure based on fiber Bragg grating sensor
Koshak et al. Retrieving storm electric fields from aircraft field mill data. Part II: applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant