CN114377682B - 一种自支撑电催化材料及其制备方法 - Google Patents

一种自支撑电催化材料及其制备方法 Download PDF

Info

Publication number
CN114377682B
CN114377682B CN202111160250.8A CN202111160250A CN114377682B CN 114377682 B CN114377682 B CN 114377682B CN 202111160250 A CN202111160250 A CN 202111160250A CN 114377682 B CN114377682 B CN 114377682B
Authority
CN
China
Prior art keywords
self
niooh
electrocatalytic material
copper
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111160250.8A
Other languages
English (en)
Other versions
CN114377682A (zh
Inventor
黄剑锋
海国娟
曹丽云
冯亮亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Publication of CN114377682A publication Critical patent/CN114377682A/zh
Application granted granted Critical
Publication of CN114377682B publication Critical patent/CN114377682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明涉及一种自支撑电催化材料及其制备方法,所述自支撑电催化材料为Cu2O/WO3/CF自支撑电催化材料,该Cu2O/WO3/CF自支撑电催化材料包括:泡沫铜基材,以及原位生长在泡沫铜基材中的Cu2O和WO3

Description

一种自支撑电催化材料及其制备方法
技术领域
本发明涉及一种自支撑电催化材料,具体涉及Cu2O/WO3/CF自支撑电催化材料和NiOOH/Cu2O/WO3/CF自支撑电催化材料及其制备方法,属于复合材料技术领域。
背景技术
将水电化学分解成氢和氧是一种从根本上实现可再生能源转换和存储的战略,解决全球能源和环境问题的有效方法。在此过程中,转换效率受到高的过电位的限制。目前,贵金属Pt基材料被认为是最有效的HER电催化剂,Ir/Ru及其氧化物被认为在酸性和碱性电解液中均表现出优异的OER电催化剂。然而,由于这些贵金属材料在地壳中含量较少,而且成本较高,其商业化大规模应用受到了限制。开发新型具有低成本和高效益的可持续非贵金属电催化材料是关键。
WO3属于n型半导体,其由正八面体的钙钛矿单元组成,具有独特的光学、电子以及化学性质,近年来被广泛应用于传感器、催化、电致变色等领域。WO3材料具有快速的电子转移速度(12cm2V-1s-1)、合适的空穴扩散长度(150nm)和较宽的光吸收范围(12%),因此,WO3是一种具有发展前景的光电催化材料。然而,目前研究制备得到的WO3纳米材料存在比表面积小、催化活性位点少、产氢和产氧过电势较高且不稳定等缺点,使得其催化活性受到限制。金属氧化物中的氧缺陷作为活性位点可以改善电导率并有利于水分子或中间反应物质的吸附和解吸(例如,HER中的·H;OER中得·OH和·OOH),由此进一步说明在WO3材料中引入氧缺陷有望提升WO3材料的电催化性能。同时,通过复合等工艺,调整WO3电子结构,可以有效提升氧缺陷含量,从而增加电催化活性位点,优化电催化性能。
目前,铜基材料用于析氧催化剂被广泛关注,铜基材料具有储量丰富、成本低、其化合物合成简单等优点。Cu基金属氧化物是很好的电极材料。然而,尽管氧化亚铜(Cu2O)材料被用于光催化材料,但其用于电催化的研究相对较少。因此,有必要进一步研究和探索Cu2O电催化材料。另外,为了避免在制备工作电极期间粘合剂对催化剂的导电性和活性面积的影响,在导电基底上直接合成WO3纳米结构催化剂可以有效地提高电催化性能。具有高丰度和较低价格的泡沫铜引起了广泛关注,其因较大的比表面积,较高的电子传导性和理想的3D开孔结构而被广泛用作电极材料的支撑体系。
泡沫铜是一种在铜基体中均匀分布着大量连通或不连通孔洞的新型多功能材料。泡沫铜的导电性和延展性好,且制备成本比泡沫镍低,导电性能比泡沫镍更好,是一种制备电池负极材料、催化剂和电磁屏蔽材料的潜在多维载体。与金属材料相比,利用高导电性的碳材料(如碳纤维、碳布、碳纸等)作为载体具有很多优点,例如它们重量轻、化学性能稳定、环境友好等等。然而,正由于其良好的化学惰性,碳材料与各种无机材料之间的兼容性较差,因此很难直接有效地在其表面生长活性物质。因此,发展一种有效的方法直接在泡沫铜导电基底上生长具有高活性的复合材料,并将其直接用于电催化产氢具有重大意义。
发明内容
针对上述问题,本发明提供了一种全新的自支撑电催化材料及其制备方法。本发明的目的是采用多步法合成高效HER电催化材料,且所制备合成的自支撑电催化材料结构可控,产物同时存在纳米线(WO3)正四面体(Cu2O)和超小纳米颗粒(NiOOH)结构,且纳米线、正四面体和超小纳米颗粒结构均匀分布。所制备材料在中性溶液中表现出较好的电催化性能。
第一方面,本发明提供了一种所述Cu2O/WO3/CF自支撑电催化材料包括:泡沫铜基材,以及原位生长在泡沫铜基材中的Cu2O和WO3
本发明中,首次以泡沫铜为铜源,通过一步法原位在泡沫铜基材表面生长出Cu2O四面体结构和WO3纳米线结构,既避免了在制备工作电极期间粘合剂对催化剂的导电性和活性的影响,又可以有效地提高电催化性能。
较佳的,所述Cu2O、WO3的总担载量为0.5~4mg/cm2
较佳的,所述WO3和Cu2O摩尔比为1:(0.5~1)。
第二方面,本发明提供了一种Cu2O/WO3/CF自支撑电催化材料,所述Cu2O/WO3/CF自支撑电催化材料还包括原位生长在泡沫铜基材中的NiOOH,计为NiOOH/Cu2O/WO3/CF自支撑电催化材料。也就是说,所述NiOOH/Cu2O/WO3/CF自支撑电催化材料包括:泡沫铜基材,以及生长在泡沫铜基材中的NiOOH、Cu2O和WO3。其中,在Cu2O和WO3中都分布NiOOH纳米颗粒。
在本发明中,泡沫铜基材(CF)由于其具有高比表面,高电子传导性和3D开孔结构可以提高产物活性位点的暴露,有利于电催化性能的提高。因此,本发明首次以泡沫铜为铜源原位生长出Cu2O四面体结构,同时再将NiOOH和WO3直接生长在泡沫铜基材(CF)上,利用协同作用,既避免了在制备工作电极期间粘合剂对催化剂的导电性和活性的影响,又可以有效地提高电催化性能。
较佳的,所述Cu2O、WO3和NiOOH的总担载量为0.5~4mg/cm2
较佳的,所述WO3、Cu2O和NiOOH摩尔比为1:(0.5~1):(0.01~0.05)。
第三方面,本发明还提供了一种上述的Cu2O/WO3/CF自支撑电催化材料的制备方法,包括:
(1)将钨源溶于无水乙醇中,得到溶液B;
(2)将泡沫铜浸渍于含有溶液B的高压反应釜中,然后在100~200℃下反应1~36h,再经离心、洗涤和干燥,得到所述Cu2O/WO3/CF自支撑电催化材料。
较佳的,所述钨源选自钨酸铵(NH4)6W7O24·6H2O、仲钨酸铵(NH4)10[H2W12O42]、偏钨酸铵(NH4)6H2W12O40和异丙醇钨W(OCH(CH3)2)6、六氯化钨WCl6中的至少一种;所述溶液B中钨源的浓度为0.01~5mol/L。
较佳的,所述含有溶液B的高压反应釜的体积填充比为20~60%。
第四方面,本发明还提供了一种上述的NiOOH/Cu2O/WO3/CF自支撑电催化材料的制备方法,包括:
(1)将钨源溶于无水乙醇中,得到溶液B;
(2)将生长有NiOOH和Cu2O的泡沫铜浸渍于含有溶液B的高压反应釜中,然后在100~200℃下反应1~36h,再经离心、洗涤和干燥,得到生长有NiOOH/Cu2O/WO3的泡沫铜,即NiOOH/Cu2O/WO3/CF自支撑电催化材料。在此过程中,产物晶体结构发生过重结晶,基于溶剂热过程加热,动力学增加NiOOH重新分布,使得其在Cu2O和WO3中同时分布。
较佳的,所述溶液B中钨源的浓度为0.01~5mol/L。
较佳的,所述钨源选自钨酸铵(NH4)6W7O24·6H2O、仲钨酸铵(NH4)10[H2W12O42]、偏钨酸铵(NH4)6H2W12O40和异丙醇钨W(OCH(CH3)2)6、六氯化钨WCl6中的至少一种。
较佳的,所述含有溶液B的高压反应釜的体积填充比为20~60%。
较佳的,所述生长有NiOOH和Cu2O的泡沫铜的制备方法包括:
(1)将镍源溶于水中,得到溶液A;
(2)将泡沫铜浸渍于含有溶液A的高压反应釜中,然后在160~200℃下反应6~12h,再经洗涤和干燥,得到生长有NiOOH和Cu2O的泡沫铜,即NiOOH/Cu2O/CF。
又,较佳的,所述镍源选自乙酸镍Ni(CH3COO)2、二水合草酸镍NiC2O4·2H2O、六水合氯化镍NiCl2·6H2O和六水合硝酸镍NiN2O6·6H2O中的至少一种所述镍源的浓度为0.01~5mol/L。
较佳的,所述含有溶液A的高压反应釜的体积填充比为20~80%。
有益效果:
(1)本发明通过两步法合成NiOOH/Cu2O/WO3复合材料,Cu2O为以泡沫铜为原料原位合成,且此复合材料直接生长在泡沫铜基体上;同时,本发明通过一步法直接在泡沫铜上原位生长Cu2O和WO3
(2)本发明的反应条件温和,易于实现,过程易控;
(3)本发明制备的复合材料存在大量氧缺陷;
(4)本发明制得的NiOOH/Cu2O/WO3自支撑电催化材料,在中性电解液中表现出较好的电催化性能。
附图说明
图1为实施例1、对比例1和实施例5条件下所制备的NiOOH/Cu2O/WO3/CF、Cu2O/WO3/CF和NiOOH/Cu2O/CF的XRD图谱,其中横坐标为2θ,纵坐标为强度(Intensity);
图2为对比例1和实施例5条件下所制备的(a-b)NiOOH/Cu2O/CF和(c-d)Cu2O/WO3/CF的SEM照片;
图3为实施例1条件下所制备的NiOOH/Cu2O/WO3/CF的SEM照片;
图4为实施例1条件下所制备的NiOOH/Cu2O/WO3/CF的TEM和HRTEM照片;
图5为实施例1条件下所制备的NiOOH/Cu2O/WO3/CF的对应元素分布图;
图6为实施例1、对比例1和实施例5条件下所制备的NiOOH/Cu2O/WO3/CF、Cu2O/WO3/CF和NiOOH/Cu2O/CF的O1s图谱,其中横坐标为结合能(Binding Energy),纵坐标为强度(Intensity);
图7为实施例1、对比例1和实施例5条件下所制备的NiOOH/Cu2O/WO3/CF、Cu2O/WO3/CF、NiOOH/Cu2O/CF和CF在不同电流密度下的电催化产氢过电势对比图;
图8为实施例1条件下所制备的NiOOH/CuO2/WO3/CF的拉曼光谱图(其中横坐标为拉曼位移(Raman shift),纵坐标为强度(Intensity)),从图中可知,在474cm-1和554cm-1处的峰与NiOOH的Ni-O键振动有关,结合TEM分析,进一步证实了产物中NiOOH的存在。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,首次NiOOH、Cu2O和WO3复合,通过两步法直接生长在泡沫铜,制备得到富含氧缺陷的NiOOH/Cu2O/WO3/CF自支撑电催化材料。其中,NiOOH/Cu2O/WO3的最佳总担载量为0.5~4mg/cm2。所述WO3、Cu2O和NiOOH摩尔比为1:(0.5~1):(0.01~0.05)。
以下示例性地说明NiOOH/Cu2O/WO3/CF自支撑电催化材料的制备方法。
泡沫铜基材的清洗。取50mL的烧杯,将长为3~7cm,宽为1~2cm的泡沫铜依次完全浸入丙酮、2~6mol/L的HCl溶液、去离子水、无水乙醇中,并分别超声处理15~30min。
生长有NiOOH/Cu2O的泡沫铜的制备。本发明中所选的镍源种类、浓度和反应温度至关重要,选择不适所制备的目标产物物相无法合成,产物担载量过大或者过小,使得后续复合合成阶段产物不易在泡沫铜上直接生长或造成复合产物从泡沫铜上脱落。
将分析纯乙酸镍Ni(CH3COO)2作为镍源加入到20~80mL的去离子水中,并搅拌20~60min,形成均匀混合的溶液A。其中,镍源还可选自乙酸镍Ni(CH3COO)2、二水合草酸镍NiC2O4·2H2O、六水合氯化镍NiCl2·6H2O和六水合硝酸镍NiN2O6·6H2O等。溶液A中Ni源的浓度可为0.01~5mol/L。
将泡沫铜浸渍于含有溶液A的聚四氟乙烯内衬的高压反应釜中并进行密封,保持体积填充比在20%~80%之间。将密封好的高压反应釜放入均相水热反应仪中,设置温度参数可为160~200℃,反应时间可为6~12h。
反应结束后冷却至室温,再经离心、洗涤和干燥,得到表面生长有NiOOH/Cu2O的泡沫铜。其中,洗涤包括:用去离子水洗涤3~5次。其中,干燥包括:将洗涤后的泡沫铜放入50~70℃真空烘箱中干燥5~8h,或者放入-40~-60℃的冷冻干燥箱中干燥5~8h。
将分析纯钨酸铵(NH4)6W7O24·6H2O作为钨源溶于加入到20~80mL的无水乙醇中,并搅拌20~60min,形成均匀混合的溶液B。其中,钨源还可选自钨酸铵(NH4)6W7O24·6H2O、仲钨酸铵(NH4)10[H2W12O42]xH2O、偏钨酸铵(NH4)6H2W12O40·XH2O和异丙醇钨W(OCH(CH3)2)6、六氯化钨WCl6等中的一种。溶液B中钨源的浓度可为0.01~5mol/L。
将生长有NiOOH/Cu2O的泡沫铜或纯泡沫铜浸渍于含有溶液B的聚四氟乙烯内衬的高压反应釜中并进行密封,保持体积填充比在20%~60%之间。将密封好的高压反应釜放入均相水热反应仪中,设置温度参数可为100~200℃,反应时间可为1~36小时。
反应结束后冷却至室温,再经离心、洗涤和干燥,得到生长有NiOOH/Cu2O/WO3的泡沫铜或生长有Cu2O/WO3的泡沫铜。其中,洗涤包括:用去离子水洗涤3~5次。其中,干燥包括:将洗涤后的泡沫铜放入50~70℃真空烘箱中干燥5~8h,或者放入-40~-60℃的冷冻干燥箱中干燥5~8h。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1:
(1)配制浓度为0.05mol/L的乙酸镍Ni(CH3COO)2·4H2O溶液A。具体来说,将Ni(CH3COO)2·4H2O加入到40mL的去离子水中,并搅拌30min,形成均匀混合的溶液A;
(2)将溶液A装入聚四氟乙烯内衬高压反应釜中,保持体积填充比在40%。
(3)取50mL的烧杯,将长为6cm,宽为1cm的泡沫铜依次完全浸入丙酮、3mol/L的HCl溶液、去离子水、无水乙醇中,并分别超声处理30min。将处理好的泡沫铜放入含有溶液A的聚四氟乙烯反应釜中;将密封好的反应釜放入均相水热反应仪中,设置温度参数为160℃,反应时间为12h;
(4)反应结束后冷却至室温,将反应后的泡沫铜取出分别用无水乙醇和去离子水洗涤3次。放入60℃真空烘箱或者冷冻干燥箱中干燥6h,得到生长有NiOOH/Cu2O的泡沫铜;
(5)配制浓度为0.05mol/L的六氯化钨WCl6溶液B。具体来说,将WCl6加入到40mL的去离子水中,并搅拌30min,形成均匀混合的溶液B;
(6)将生长NiOOH/Cu2O的泡沫铜浸渍于含有溶液B的聚四氟乙烯内衬的高压反应釜中并进行密封,保持体积填充比在40%。将密封好的高压反应釜放入均相水热反应仪中,设置温度参数为160℃,反应时间为12h;
(7)反应结束后冷却至室温,将反应后的泡沫铜取出分别用无水乙醇和去离子水洗涤3次。放入60℃真空烘箱或者冷冻干燥箱中干燥6h,得到NiOOH/Cu2O/WO3/CF自支撑电催化材料。其中NiOOH/Cu2O/WO3的总担载量为0.86mg/cm2。所述WO3和Cu2O的摩尔比为1:0.5。所述WO3、Cu2O和NiOOH摩尔比为1:0.5:0.01。
实施例2
(1)配制浓度为1mol/L的乙酸镍Ni(CH3COO)2·4H2O溶液A。具体来说,将Ni(CH3COO)2·4H2O加入到60mL的去离子水中,并搅拌30min,形成均匀混合的溶液A;
(2)将溶液A装入聚四氟乙烯内衬高压反应釜中,保持体积填充比在60%;
(3)取50mL的烧杯,将长为6cm,宽为2cm的泡沫铜依次完全浸入丙酮、4mol/L的HCl溶液、去离子水、无水乙醇中,并分别超声处理30min。将处理好的泡沫铜放入含有溶液A的聚四氟乙烯反应釜中;将密封好的反应釜放入均相水热反应仪中,设置温度参数为200℃,反应时间为12h;
(4)反应结束后冷却至室温,将反应后的泡沫铜取出分别用无水乙醇和去离子水洗涤3次。放入60℃真空烘箱或者冷冻干燥箱中干燥6h,得到生长有NiOOH/Cu2O的泡沫铜;
(5)配制浓度为1mol/L的钨酸铵(NH4)6W7O24·6H2O溶液B。具体来说,将(NH4)6W7O24·6H2O加入到40mL的去离子水中,并搅拌30min,形成均匀混合的溶液B;
(6)将生长有NiOOH/Cu2O的泡沫铜浸渍于含有溶液B的聚四氟乙烯内衬的高压反应釜中并进行密封,保持体积填充比在40%。将密封好的高压反应釜放入均相水热反应仪中,设置温度参数为140℃,反应时间为24h;
(7)反应结束后冷却至室温,将反应后的泡沫铜取出分别用无水乙醇和去离子水洗涤3次。放入60℃真空烘箱或者冷冻干燥箱中干燥6h,得到NiOOH/Cu2O/WO3/CF自支撑电催化材料。所得NiOOH/Cu2O/WO3/CF自支撑电催化材料中NiOOH/Cu2O/WO3的总担载量为1.5mg/cm2。所述WO3、Cu2O和NiOOH摩尔比为1:0.3:0.03。
实施例3:
(1)配制浓度为3mol/L的二水合草酸镍NiC2O4·2H2O溶液A。具体来说,将NiC2O4·2H2O加入到50mL的去离子水中,并搅拌30min,形成均匀混合的溶液A;
(2)将溶液A装入聚四氟乙烯内衬高压反应釜中,保持体积填充比在50%;
(3)取50mL的烧杯,将长为7cm,宽为1cm的泡沫铜依次完全浸入丙酮、3mol/L的HCl溶液、去离子水、无水乙醇中,并分别超声处理30min。将处理好的泡沫铜放入含有溶液A的聚四氟乙烯反应釜中;将密封好的反应釜放入均相水热反应仪中,设置温度参数为180℃,反应时间为18h;
(4)反应结束后冷却至室温,将反应后的泡沫铜取出分别用无水乙醇和去离子水洗涤3次。放入60℃真空烘箱或者冷冻干燥箱中干燥6h,得到生长有NiOOH/Cu2O的泡沫铜;
(5)配制浓度为4mol/L的六氯化钨WCl6溶液B。具体来说,将WCl6加入到60mL的去离子水中,并搅拌30min,形成均匀混合的溶液B;
(6)将生长有NiOOH/Cu2O的泡沫铜浸渍于含有溶液B的聚四氟乙烯内衬的高压反应釜中并进行密封,保持体积填充比在60%。将密封好的高压反应釜放入均相水热反应仪中,设置温度参数为140℃,反应时间为30h;
(7)反应结束后冷却至室温,将反应后的泡沫铜取出分别用无水乙醇和去离子水洗涤3次。放入60℃真空烘箱或者冷冻干燥箱中干燥6h,得到NiOOH/Cu2O/WO3/CF自支撑电催化材料。所述NiOOH/Cu2O/WO3的总担载量为3mg/cm2。所述WO3、Cu2O和NiOOH摩尔比为1:0.6:0.05。
实施例4:
(1)配制浓度为4mol/L的六水合硝酸镍NiN2O6·6H2O溶液A。具体来说,将NiN2O6·6H2O加入到80mL的去离子水中,并搅拌30min,形成均匀混合的溶液A;
(2)将溶液A装入聚四氟乙烯内衬高压反应釜中,保持体积填充比在80%;
(3)取50mL的烧杯,将长为5cm,宽为2cm的泡沫铜依次完全浸入丙酮、6mol/L的HCl溶液、去离子水、无水乙醇中,并分别超声处理30min。将处理好的泡沫铜放入含有溶液A的聚四氟乙烯反应釜中;将密封好的反应釜放入均相水热反应仪中,设置温度参数为160℃,反应时间为6h;
(4)反应结束后冷却至室温,将反应后的泡沫铜取出分别用无水乙醇和去离子水洗涤3次。放入60℃真空烘箱或者冷冻干燥箱中干燥6h,得到生长有NiOOH/Cu2O的泡沫铜;
(5)配制浓度为2mol/L的异丙醇钨W(OCH(CH3)2)6溶液B。具体来说,将W(OCH(CH3)2)6加入到40mL的去离子水中,并搅拌30min,形成均匀混合的溶液B;
(6)将生长有NiOOH/Cu2O的泡沫铜浸渍于含有溶液B的聚四氟乙烯内衬的高压反应釜中并进行密封,保持体积填充比在40%。将密封好的高压反应釜放入均相水热反应仪中,设置温度参数为160℃,反应时间为24h;
(7)反应结束后冷却至室温,将反应后的泡沫铜取出分别用无水乙醇和去离子水洗涤3次。放入60℃真空烘箱或者冷冻干燥箱中干燥6h,得到NiOOH/Cu2O/WO3/CF自支撑电催化材料。其中,NiOOH/Cu2O/WO3的总担载量为2.8mg/cm2。所述WO3、Cu2O和NiOOH摩尔比为1:0.55:0.03。
实施例5
本实施例5中Cu2O/WO3/CF电催化材料的制备过程参见实施例1,区别在于:只通过一步溶剂热法得到生长有Cu2O/WO3的泡沫铜,即只进行实施例1中的5-7步骤,且在步骤6中加入的是未生长有任何东西的泡沫铜。所得Cu2O/WO3/CF自支撑电催化材料中,Cu2O/WO3的担载量为0.7mg/cm2,WO3和Cu2O的摩尔比为1:0.5。
对比例1
本对比例1中NiOOH/Cu2O/CF自支撑电催化材料的制备过程参见实施例1,区别在于:只通过一步水热法得到生长有NiOOH/Cu2O的泡沫铜,即只进行实施例1中的1-4步骤,未进行5-7的溶剂热反应过程。所得NiOOH/Cu2O/CF自支撑电催化材料中,NiOOH/Cu2O的担载量为0.28mg/cm2。其中NiOOH和Cu2O的摩尔比为0.02:1。
图1为实施例1、对比例1和实施例5条件下所制备的NiOOH/Cu2O/WO3/CF、Cu2O/WO3/CF和NiOOH/Cu2O/CF的XRD图谱,从图中可知本发明所合成的物相中无其他杂相存在;
图2为对比例1和实施例5条件下所制备的NiOOH/Cu2O/CF和Cu2O/WO3/CF的SEM照片,可以看出对比例1中的NiOOH/Cu2O为由许多小纳米颗粒团聚生成的大颗粒分散在粗糙的表面结构中。实施例5中的Cu2O/WO3为由WO3纳米线和Cu2O四面体均匀分散的复合结构。这些四面体大小相同,同时被相互交织的纳米线结构缠绕;
图3-5分别为实施例1条件下所制备的NiOOH/Cu2O/WO3/CF的SEM照片,以及NiOOH/Cu2O/WO3/CF结构中四面体和纳米线结构分别的元素分布。可以看出NiOOH/Cu2O/WO3在泡沫铜中生长的微观结构与Cu2O/WO3相似(图3),四面体主要元素为Cu和O,由此结合XRD进一步证明,四面体结构为Cu2O,纳米线结构为WO3(图5);此外,从图4中进一步看出材料中还均匀分散着NiOOH和Cu2O纳米粒子。这种WO3/Cu2O/NiOOH多级结构所形成的异质结面对于电催化性能的提高至关重要。
图6为实施例1、对比例1和实施例5条件下所制备的NiOOH/Cu2O/WO3/CF、Cu2O/WO3/CF和NiOOH/Cu2O/CF的O1s图谱,可以发现,将NiOOH、氧化亚铜和氧化钨通过两步法原位生长在泡沫铜上,产物中的氧缺陷明显增加,比较Cu2O/WO3/CF和NiOOH/Cu2O/WO3/CF复合材料,也进一步证明了NiOOH对于氧缺陷含量的增加至关重要;
图7为实施例1、对比例1和实施例5条件下所制备的NiOOH/Cu2O/WO3/CF、Cu2O/WO3/CF、NiOOH/Cu2O/CF和CF在不同电流密度下的电催化产氢过电势对比。所得电催化材料分别置于中性电解液(1M KH2PO4+1M K2HPO4)中进行电催化测试。可以看出本专利所制备的氧缺陷丰富的NiOOH/Cu2O/WO3/CF电催化复合材料其过电势不同电流密度下最小,表面其产氢性能最好。其在100、200、300、400和500mA/cm2的大电流密度下,其过电势分别为294、386、464、533和589mV。

Claims (10)

1.一种Cu2O/WO3/CF自支撑电催化材料,其特征在于,所述Cu2O/WO3/CF自支撑电催化材料包括:泡沫铜基材,以及原位生长在泡沫铜基材中的Cu2O和WO3;所述Cu2O/WO3/CF自支撑电催化材料的制备方法包括:
(1)将钨源溶于无水乙醇中,得到溶液B;
(2)将泡沫铜浸渍于含有溶液B的高压反应釜中,然后在100~200 ℃下反应1~36 h,再经离心、洗涤和干燥,得到所述Cu2O/WO3/CF自支撑电催化材料。
2. 根据权利要求1所述的Cu2O/WO3/CF自支撑电催化材料,其特征在于,所述Cu2O和WO3的总担载量为0.5~4 mg/cm2
3.根据权利要求1所述的Cu2O/WO3/CF自支撑电催化材料,其特征在于,所述WO3和Cu2O的摩尔比为1:(0.5~1)。
4.根据权利要求1所述的Cu2O/WO3/CF自支撑电催化材料,其特征在于,所述Cu2O/WO3/CF自支撑电催化材料还包括原位生长在泡沫铜基材中的NiOOH;所述Cu2O/WO3/CF自支撑电催化材料的制备方法包括:
(1)将钨源溶于无水乙醇中,得到溶液B;
(2)将生长有NiOOH和Cu2O的泡沫铜浸渍于含有溶液B的高压反应釜中,然后在100~200℃下反应1~36 h,再经离心、洗涤和干燥,得到NiOOH/Cu2O/WO3/CF自支撑电催化材料。
5. 根据权利要求4所述的Cu2O/WO3/CF自支撑电催化材料,其特征在于,所述Cu2O/WO3/CF自支撑电催化材料中NiOOH、Cu2O和WO3的总担载量为0.5~4 mg/cm2
6.根据权利要求4所述的Cu2O/WO3/CF自支撑电催化材料,其特征在于,所述WO3、Cu2O和NiOOH摩尔比为1:(0.5~1):(0.01~0.05)。
7.根据权利要求4所述的Cu2O/WO3/CF自支撑电催化材料,其特征在于,所述生长有NiOOH和Cu2O的泡沫铜的制备方法包括:
(1)将镍源溶于水中,得到溶液A;
(2)将泡沫铜浸渍于含有溶液A的高压反应釜中,然后在160~200 ℃下反应6~12 h,再经洗涤和干燥,得到生长有NiOOH和Cu2O的泡沫铜。
8. 根据权利要求7所述的Cu2O/WO3/CF自支撑电催化材料,其特征在于,所述镍源选自乙酸镍 Ni(CH3COO)2、二水合草酸镍 NiC2O4·2H2O、六水合氯化镍 NiCl2·6H2O和六水合硝酸镍 NiN2O6·6H2O中的至少一种;所述镍源的浓度为0.01~5 mol/L;所述含有溶液A的高压反应釜的体积填充比为20~80%。
9. 根据权利要求1或4所述的Cu2O/WO3/CF自支撑电催化材料,其特征在于,所述钨源选自钨酸铵 (NH4)6W7O24·6H2O、仲钨酸铵 (NH4)10[H2W12O42]、偏钨酸铵 (NH4)6H2W12O40和异丙醇钨 W(OCH(CH3)2)6、六氯化钨WCl6中的至少一种;所述溶液B中钨源的浓度为0.01~5mol/L。
10.根据权利要求1或4所述的Cu2O/WO3/CF自支撑电催化材料,其特征在于,所述含有溶液B的高压反应釜的体积填充比为20~60%。
CN202111160250.8A 2020-10-22 2021-09-30 一种自支撑电催化材料及其制备方法 Active CN114377682B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020111390533 2020-10-22
CN202011139053 2020-10-22

Publications (2)

Publication Number Publication Date
CN114377682A CN114377682A (zh) 2022-04-22
CN114377682B true CN114377682B (zh) 2023-06-30

Family

ID=81194745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111160250.8A Active CN114377682B (zh) 2020-10-22 2021-09-30 一种自支撑电催化材料及其制备方法

Country Status (2)

Country Link
US (1) US11879177B2 (zh)
CN (1) CN114377682B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1425492A (zh) * 2001-12-10 2003-06-25 松下电器产业株式会社 废气净化催化剂和废气净化材料
WO2009136870A1 (en) * 2008-05-05 2009-11-12 Nanyang Technological University Proton exchange membrane for fuel cell applications
CN102266774A (zh) * 2011-06-07 2011-12-07 广东工业大学 一种半导体纳米光催化材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180087164A1 (en) * 2016-09-28 2018-03-29 California Institute Of Technology Tuning electrode surface electronics with thin layers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1425492A (zh) * 2001-12-10 2003-06-25 松下电器产业株式会社 废气净化催化剂和废气净化材料
WO2009136870A1 (en) * 2008-05-05 2009-11-12 Nanyang Technological University Proton exchange membrane for fuel cell applications
CN102266774A (zh) * 2011-06-07 2011-12-07 广东工业大学 一种半导体纳米光催化材料及其制备方法

Also Published As

Publication number Publication date
CN114377682A (zh) 2022-04-22
US20220127737A1 (en) 2022-04-28
US11879177B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
Chen et al. Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range
Huang et al. ZnxCd1-xS based materials for photocatalytic hydrogen evolution, pollutants degradation and carbon dioxide reduction
Wang et al. Nickel-based cocatalysts for photocatalysis: hydrogen evolution, overall water splitting and CO2 reduction
Wang et al. Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides
Su et al. Synthesis and application of transition metal phosphides as electrocatalyst for water splitting
Wang et al. Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting
Chen et al. Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction
CN110841661A (zh) 1t-2h二硫化钼@硫化镉复合纳米材料的制备方法及其应用
Zhang et al. g‐C3N4 Nanosheet Nanoarchitectonics: H2 Generation and CO2 Reduction
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
Wang et al. NiSx modified Mn0. 5Cd0. 5S twinned homojunctions for efficient photocatalytic hydrogen evolution
Kumar et al. Metallic and bimetallic phosphides-based nanomaterials for photocatalytic hydrogen production and water detoxification: a review
Xing et al. Engineering interfacial coupling between 3D net-like Ni3 (VO4) 2 ultrathin nanosheets and MoS2 on carbon fiber cloth for boostinghydrogen evolution reaction
Yao et al. A novel hierarchical CdS-DETA@ CoP composite as highly stable photocatalyst for efficient H2 evolution from water splitting under visible light irradiation
Yang et al. A robust octahedral NiCoOxSy core-shell structure decorated with NiWO4 nanoparticles for enhanced electrocatalytic hydrogen evolution reaction
CN107651656B (zh) 一种Ni2P4O12纳米颗粒材料及其制备方法和应用
Ma et al. Metal–oxide heterointerface synergistic effects of copper–zinc systems for highly selective CO 2-to-CH 4 electrochemical conversion
Meng et al. Construction of ZnCdS@ CAU-17 heterostructures containing intermediate mediator Bi2S3 as a highly efficient photocatalyst for nitrogen reduction reaction
CN114377682B (zh) 一种自支撑电催化材料及其制备方法
Zhao et al. Recent advances in design and engineering of MXene-based heterostructures for sustainable energy conversion
CN114452982B (zh) 一种W18O49/CoO/CoWO4/NF自支撑电催化材料及其制备方法
CN115404513A (zh) 一种碳包覆型异质结构电催化剂及其制备与应用
CN112058281B (zh) 锗钼多酸钴配合物衍生的双金属硫化物晶体的制备和应用
Xin et al. Surpassing Pt hydrogen production from {200} facet-riched polyhedral Rh2P nanoparticles by one-step synthesis
CN111863932B (zh) 一种基于富缺陷氧族化合物的肖特基结及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant