CN114374503A - A Long-distance Key Distribution System Based on Chaos Synchronization - Google Patents
A Long-distance Key Distribution System Based on Chaos Synchronization Download PDFInfo
- Publication number
- CN114374503A CN114374503A CN202210218423.5A CN202210218423A CN114374503A CN 114374503 A CN114374503 A CN 114374503A CN 202210218423 A CN202210218423 A CN 202210218423A CN 114374503 A CN114374503 A CN 114374503A
- Authority
- CN
- China
- Prior art keywords
- party
- signal
- arbitrary waveform
- waveform generator
- digital
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 98
- 230000000739 chaotic effect Effects 0.000 claims abstract description 38
- 239000000835 fiber Substances 0.000 claims description 73
- 239000004065 semiconductor Substances 0.000 claims description 43
- 239000013307 optical fiber Substances 0.000 claims description 20
- 230000010287 polarization Effects 0.000 claims description 18
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000004891 communication Methods 0.000 abstract description 21
- 230000005540 biological transmission Effects 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 10
- 230000001360 synchronised effect Effects 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- 230000002452 interceptive effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/001—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/54—Intensity modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/80—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
- H04B10/801—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
- H04B10/802—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections for isolation, e.g. using optocouplers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Computer Security & Cryptography (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
Abstract
Description
技术领域technical field
本申请是申请号为202110508221.X的专利申请的分案申请,原申请的申请日为2021年05月11日,原申请的发明创造名称为一种基于混沌同步的长距离密钥分发系统。This application is a divisional application of the patent application with application number 202110508221.X. The application date of the original application is May 11, 2021. The name of the invention-creation of the original application is a long-distance key distribution system based on chaos synchronization.
本发明属于保密光通信的技术领域,具体为一种基于混沌同步的长距离密钥分发系统。The invention belongs to the technical field of secure optical communication, in particular to a long-distance key distribution system based on chaotic synchronization.
背景技术Background technique
保密通信事关国家安定、社会安全、隐私保护等诸多方面。在当今时代保密通信正朝大容量、长距离的方向发展。保密通信主要分为两类:对信道加密,对信息加密。信息加密的安全性依赖密钥的安全性。现有保密通信距离受限于密钥分发距离,因此,安全长距离的将密钥分发给合法通信双方是实现长距离保密通信的一个重要研究内容。Confidential communications are related to national stability, social security, privacy protection and many other aspects. In today's era, secure communication is developing in the direction of large capacity and long distance. Confidential communication is mainly divided into two categories: encryption of the channel and encryption of information. The security of information encryption depends on the security of the key. The existing secure communication distance is limited by the key distribution distance. Therefore, safe and long-distance key distribution to legitimate communication parties is an important research content to realize long-distance secure communication.
现有基于混沌同步的密钥分发方案是合法用户利用同步的混沌激光器作为相关信号源并利用独立随机的私钥对收发机进行键控,最后通过筛选相同私钥调制下的混沌时序提取一致密钥,实现密钥分发。2016年,Porte等利用互耦合同步实验实现了背靠背密钥分发(Optics letters 41.12 (2016): 2871-2874.),但此方案中,混沌载波暴露在公共信道中,安全性较低。2012 年日本NTT通信实验室Yoshimura等提出混沌共驱同步密钥生成方案(Physical review letters 108.7 (2012): 070602.),实验实现了距离120km的密钥分发。然而受到同步质量的限制,密钥分发距离难以提高。The existing key distribution scheme based on chaotic synchronization is that the legitimate user uses the synchronized chaotic laser as the relevant signal source and uses the independent random private key to key the transceiver, and finally extracts a password by filtering the chaotic timing modulated by the same private key. key for key distribution. In 2016, Porte et al. realized back-to-back key distribution using mutual coupling synchronization experiments ( Optics letters 41.12 (2016): 2871-2874.), but in this scheme, the chaotic carrier is exposed to the public channel, and the security is low. In 2012, Yoshimura of Japan's NTT Communication Laboratory proposed a chaotic co-drive synchronization key generation scheme ( Physical review letters 108.7 (2012): 070602.), and the experiment achieved key distribution at a distance of 120km. However, limited by the synchronization quality, it is difficult to increase the key distribution distance.
综上,现有密钥分发方案存在或安全性低、或分发距离短的问题,而且现有的密钥分发方案通常使用模拟信号作为驱动源,但是模拟信号容易受杂讯影响,因此有必要发明一种抗干扰能力强、安全、可长距离传输的密钥分发技术。To sum up, the existing key distribution schemes have problems of low security or short distribution distance, and the existing key distribution schemes usually use analog signals as the driving source, but the analog signals are easily affected by noise, so it is necessary to A key distribution technology with strong anti-interference ability, security and long-distance transmission is invented.
发明内容SUMMARY OF THE INVENTION
本发明旨在解决现有密钥分发方案存在或安全性低或分发距离短,使用模拟信号作为驱动源因此容易受到杂讯影响的技术问题,提供了一种抗干扰能力强、安全、可长距离传输的基于混沌同步的长距离密钥分发系统。The invention aims to solve the technical problems that the existing key distribution scheme has low security or short distribution distance, and uses an analog signal as a driving source, so it is easily affected by noise. Long-distance key distribution system based on chaos synchronization with distance transmission.
本发明解决其技术问题采用的第一种技术手段是:一种基于混沌同步的长距离密钥分发系统,包括A方、B方和一个驱动部分,驱动部分同时作为A方和B方的驱动源形成“一驱二”结构,驱动部分包括依次相连的窄线宽激光器、第一偏振控制器、第一掺铒光纤放大器、强度调制器、隔离器和第一光纤耦合器,第一光纤耦合器包括一个输入端和两个输出端,强度调制器的未与第一掺铒光纤放大器相连的另一个输入端连接有第一任意波形发生器,第一任意波形发生器输出的数字信号由强度调制器调制到窄线宽激光器发出的光信号上形成数字光信号;A方和B方分别包括A方光衰减器和B方光衰减器,第一光纤耦合器的两个输出端分别连接至A方光衰减器和B方光衰减器;第一光纤耦合器与A方光衰减器之间设置有A方长距离光纤,第一光纤耦合器与B方光衰减器之间设置有B方长距离光纤;A方光衰减器的输出端依次相连接有A方相位调制器、第二A方偏振控制器、A方1×2光纤耦合器和A方半导体激光器,A方相位调制器的未与A方光衰减器相连的另一个输入端连接有第二A方任意波形发生器,A方相位调制器通过第二A方任意波形发生器发送的01随机序列来键控数字光信号的相位,第二A方任意波形发生器的用于控制数字光信号相位的01随机序列即为A方私钥,A方1×2光纤耦合器的未与A方半导体激光器相连的另一个输出端连接有A方光电探测器,A方光电探测器的输出端还依次连接有A方模数转换器和A方存储器,数字光信号发射至A方半导体激光器后,A方半导体激光器发射出混沌信号,混沌信号经过A方光电探测器处理后转化成电信号,电信号再通过A方模数转换器处理后转换为二进制码存储至A方存储器中,第二A方任意波形发生器的输出端与A方存储器相连用以将A方私钥发送至A方存储器中进行存储;B方光衰减器的输出端依次连接有B方相位调制器、第二B方偏振控制器、B方1×2光纤耦合器和B方半导体激光器,B方相位调制器的未与B方光衰减器相连的另一个输入端连接有第二B方任意波形发生器,B方相位调制器通过第二B方任意波形发生器发送01随机序列来键控数字光信号的相位,第二B方任意波形发生器的用于控制数字光信号相位的01随机序列即为B方私钥,B方1×2光纤耦合器的未与B方半导体激光器相连的另一个输出端连接有B方光电探测器,B方光电探测器的输出端还依次连接有B方模数转换器和B方存储器,数字光信号发射至B方半导体激光器后,B方半导体激光器发射出混沌信号,混沌信号经过B方光电探测器处理后转化成电信号,电信号再通过B方模数转换器处理后转换为二进制码存储至B方存储器中,第二B方任意波形发生器的输出端与B方存储器相连用以将B方私钥发送至B方存储器中进行存储;A方存储器和B方存储器之间连接有用于交换A方私钥和B方私钥的公共信道,A方和B方均将己方的私钥即01随机序列与对方私钥进行对比,选出相位一致时对应的二进制码作为A、B双方的一致密钥。The first technical means adopted by the present invention to solve the technical problem is: a long-distance key distribution system based on chaotic synchronization, including party A, party B and a driving part, and the driving part serves as the driving part of party A and party B at the same time The source forms a "one-drive-two" structure, and the driving part includes a narrow linewidth laser, a first polarization controller, a first erbium-doped fiber amplifier, an intensity modulator, an isolator, and a first fiber coupler, which are connected in sequence. The first fiber coupler The device includes an input end and two output ends. The other input end of the intensity modulator, which is not connected to the first erbium-doped fiber amplifier, is connected with a first arbitrary waveform generator, and the digital signal output by the first arbitrary waveform generator is determined by the intensity The modulator modulates the optical signal emitted by the narrow linewidth laser to form a digital optical signal; the A-side and the B-side respectively include an A-side optical attenuator and a B-side optical attenuator, and the two output ends of the first fiber coupler are respectively connected to A-side optical attenuator and B-side optical attenuator; A-side long-distance optical fiber is arranged between the first fiber coupler and A-side optical attenuator, and B-side optical attenuator is arranged between the first fiber coupler and B-side optical attenuator Long-distance fiber; the output end of the A-side optical attenuator is sequentially connected with the A-side phase modulator, the second A-side polarization controller, the
A方和B方为通信的双方。为了实现信号同步,故A方和B方的结构组成以及各部分设置的参数应当保持一致,这是本领域技术人员所熟知的。数字信号只有0、1两个状态,在均值以下记为0,以上记为1。即使混入了其他干扰信号,只要干扰信号的值不超过阈值范围,就可以再现原始信号。即使因干扰信号的值超过阈值范围而出现了误码,只要采用一定的编码技术,例如纠错码技术(ECC/FEC/RS),也可将误码检测并予以纠正。因此,与模拟信号相比,数字信号在传输过程中具有更好的抗干扰能力、失真幅度小,具有远距离传输潜力。本发明中利用数字信号作为驱动信号可提高混沌同步的质量。利用私钥对注入光的相位进行键控响应半导体激光器输出信号的同步状态,当通信双方私钥相同时,可实现混沌同步;当双方私钥不同时,通信双方不同步。A方长距离光纤位于第一光纤耦合器与A方光衰减器之间,B方长距离光纤位于第一光纤耦合器与B方光衰减器之间,此过程中数字光信号作为驱动信号长距离传输,而数字信号受链路中杂讯影响低,提高了同步质量,进而增加了密钥分发距离。Party A and Party B are both parties of the communication. In order to achieve signal synchronization, the structural composition of the A party and the B party and the parameters set by each part should be consistent, which is well known to those skilled in the art. The digital signal has only two states, 0 and 1. The mean value is denoted as 0, and the above value is denoted as 1. Even if other interfering signals are mixed in, the original signal can be reproduced as long as the value of the interfering signal does not exceed the threshold range. Even if a bit error occurs because the value of the interference signal exceeds the threshold range, the bit error can be detected and corrected as long as a certain coding technique is used, such as an error correction code technique (ECC/FEC/RS). Therefore, compared with the analog signal, the digital signal has better anti-interference ability and smaller distortion amplitude during the transmission process, and has the potential for long-distance transmission. Using the digital signal as the driving signal in the present invention can improve the quality of chaotic synchronization. The phase of the injected light is keyed by the private key in response to the synchronization state of the output signal of the semiconductor laser. When the private keys of both parties are the same, chaos synchronization can be achieved; when the private keys of the two parties are different, the two parties are not synchronized. The A-side long-distance optical fiber is located between the first fiber coupler and the A-side optical attenuator, and the B-side long-distance optical fiber is located between the first optical fiber coupler and the B-side optical attenuator. In this process, the digital optical signal is used as the driving signal. Distance transmission, while digital signals are less affected by noise in the link, which improves synchronization quality and increases key distribution distance.
优选的,A方光衰减器与A方长距离光纤之间还设置有第二A方掺铒光纤放大器,B方光衰减器与B方长距离光纤之间还设置有第二B方掺铒光纤放大器。设置第二A方掺铒光纤放大器和第二B方掺铒光纤放大器能增加信号传输的安全性。Preferably, a second A-side erbium-doped fiber amplifier is further arranged between the A-side optical attenuator and the A-side long-distance optical fiber, and a second B-side erbium-doped fiber amplifier is also arranged between the B-side optical attenuator and the B-side long-distance optical fiber. optical fiber amplifier. Setting the second A-side erbium-doped fiber amplifier and the second B-side erbium-doped fiber amplifier can increase the security of signal transmission.
本发明解决其技术问题采用的第二种技术手段是:包括A方、B方、第一任意波形发生器以及结构一致的第一驱动部分和第二驱动部分,第一、二驱动部分分为作为A方和B方的驱动源形成“二驱二”结构,第一、二驱动部分均包括依次相连的窄线宽激光器、第一偏振控制器、第一掺铒光纤放大器、强度调制器、隔离器和第一光纤耦合器,第一光纤耦合器包括一个输入端和一个输出端,第一任意波形发生器的两个输出端分别通过长距离光纤连接至第一、二驱动部分中强度调制器的未与第一掺铒光纤放大器相连的另一个输入端,第一任意波形发生器输出的数字信号通过长距离传输后再由强度调制器调制到各自的窄线宽激光器发出的光信号上形成数字光信号;A方和B方分别包括A方光衰减器和B方光衰减器,第一、二驱动部中的第一光纤耦合器的输出端分别与A方光衰减器和B方光衰减器相连,A方光衰减器的输出端还依次连接有A方相位调制器、第二A方偏振控制器、A方1×2光纤耦合器和A方半导体激光器,A方相位调制器的未与A方光衰减器相连的另一个输入端连接有第二A方任意波形发生器,A方相位调制器通过第二A方任意波形发生器发送的01随机序列来键控数字光信号的相位,第二A方任意波形发生器的用于控制数字光信号相位的01随机序列即为A方私钥,A方1×2光纤耦合器的未与A方半导体激光器相连的另一个输出端连接有A方光电探测器,A方光电探测器的输出端还依次连接有A方模数转换器和A方存储器,数字光信号发射至A方半导体激光器后,A方半导体激光器发射出混沌信号,混沌信号经过A方光电探测器处理后转化成电信号,电信号再通过A方模数转换器处理后转换为二进制码存储至A方存储器中,第二A方任意波形发生器的输出端与A方存储器相连,第二A方任意波形发生器将A方私钥发送至A方存储器中进行存储;B方光衰减器的输出端还依次连接有B方相位调制器、第二B方偏振控制器、B方1×2光纤耦合器和B方半导体激光器,B方相位调制器的未与B方光衰减器相连的另一个输入端连接有第二B方任意波形发生器,B方相位调制器通过第二B方任意波形发生器发送的01随机序列来键控数字光信号的相位,第二B方任意波形发生器的用于控制数字光信号相位的01随机序列即为B方私钥,B方1×2光纤耦合器的未与B方半导体激光器相连的另一个输出端连接有B方光电探测器,B方光电探测器的输出端还依次连接有B方模数转换器和B方存储器,数字光信号发射至B方半导体激光器后,B方半导体激光器发射出混沌信号,混沌信号经过B方光电探测器处理后转化成电信号,电信号再通过B方模数转换器处理后转换为二进制码存储至B方存储器中,第二B方任意波形发生器的输出端与B方存储器相连,第二B方任意波形发生器将B方私钥发送至B方存储器中进行存储;A方存储器和B方存储器之间连接有用于交换A方私钥和B方私钥的公共信道,A方和B方均将己方的私钥即01随机序列与对方私钥进行对比,选出相位一致时对应的二进制码作为A、B双方的一致密钥。该结构中,采用二驱二结构,驱动与响应是在一起的,即可将第一驱动部分与A方统称A通信方,第二驱动部分与B方统称B通信方,将长距离光纤设置在强度调制器和第一任意波形发生器之间,此过程中数字信号作为驱动信号长距离传输,而且驱动信号并没有在公共信道中传输,因此安全性更高,而数字信号受链路中杂讯影响低,提高了同步质量,进而增加了密钥分发距离。为了实现信号同步,故A通信方和B通信方结构组成以及各个部分设置的参数应当保持一致,这是本领域技术人员所熟知的。The second technical means adopted by the present invention to solve the technical problem is: including A side, B side, a first arbitrary waveform generator, and a first driving part and a second driving part with the same structure, the first and second driving parts are divided into As the driving source of the A side and the B side to form a "two-drive-two" structure, the first and second driving parts each include a narrow linewidth laser, a first polarization controller, a first erbium-doped fiber amplifier, an intensity modulator, The isolator and the first fiber coupler, the first fiber coupler includes an input end and an output end, and the two output ends of the first arbitrary waveform generator are respectively connected to the intensity modulation in the first and second driving parts through long-distance optical fibers The other input end of the device that is not connected to the first erbium-doped fiber amplifier, the digital signal output by the first arbitrary waveform generator is transmitted over a long distance and then modulated by the intensity modulator to the optical signal emitted by the respective narrow linewidth lasers A digital optical signal is formed; the A-side and the B-side respectively include the A-side optical attenuator and the B-side optical attenuator, and the output ends of the first fiber couplers in the first and second driving parts are respectively connected with the A-side optical attenuator and the B-side optical attenuator. The optical attenuator is connected, and the output end of the A-side optical attenuator is also connected with the A-side phase modulator, the second A-side polarization controller, the
本发明的有益效果是:利用数字光信号作为驱动信号,通过键控注入光的相位调控响应激光器输出信号的同步状态,此过程中数字信号作为驱动信号长距离传输,而数字信号受链路中杂讯影响低,提高了同步质量,进而增加了密钥分发距离,可用于更远距离的传输,提高远距离同步质量。The beneficial effects of the present invention are: using the digital optical signal as the driving signal, and responding to the synchronous state of the laser output signal through the phase control of the keyed injected light, in this process, the digital signal is used as the driving signal for long-distance transmission, and the digital signal is received in the link. The influence of noise is low, the synchronization quality is improved, and the key distribution distance is increased, which can be used for longer-distance transmission and improve the long-distance synchronization quality.
附图说明Description of drawings
图1为本发明实施例1中所述的一种基于混沌同步的长距离密钥分发系统的结构示意图。FIG. 1 is a schematic structural diagram of a long-distance key distribution system based on chaotic synchronization described in
图2为本发明实施例2中所述的一种基于混沌同步的长距离密钥分发系统的结构示意图。FIG. 2 is a schematic structural diagram of a long-distance key distribution system based on chaotic synchronization described in
图中:1-窄线宽激光器;2-第一偏振控制器;3-第一掺铒光纤放大器;4-强度调制器;5-隔离器;6-第一光纤耦合器;7-第一任意波形发生器;8a-A方光衰减器;9a-A方长距离光纤;10a-A方相位调制器;11a-第二A方偏振控制器;12a-A方1×2光纤耦合器;13a-A方半导体激光器;14a-第二A方任意波形发生器;15a-A方光电探测器;16a-A方模数转换器;17a-A方存储器;18a-第二A方掺铒光纤放大器;8b-B方光衰减器;9b-B方长距离光纤;10b-B方相位调制器;11b-第二B方偏振控制器;12b-B方1×2光纤耦合器;13b-B方半导体激光器;14b-第二B方任意波形发生器;15b-B方光电探测器;16b-B方模数转换器;17b-B方存储器;18b-第二B方掺铒光纤放大器;19-公共信道;20-长距离光纤。In the figure: 1-narrow linewidth laser; 2-first polarization controller; 3-first erbium-doped fiber amplifier; 4-intensity modulator; 5-isolator; 6-first fiber coupler; 7-first Arbitrary waveform generator; 8a-A square optical attenuator; 9a-A square long-distance fiber; 10a-A square phase modulator; 11a-second A square polarization controller; 12a-A square 1×2 fiber coupler; 13a-A-Side Semiconductor Laser; 14a-Second A-Side Arbitrary Waveform Generator; 15a-A-Side Photodetector; 16a-A-Side Analog-to-Digital Converter; 17a-A-Side Memory; 18a-Second A-Side Erbium-Doped Fiber Amplifier; 8b-B-side optical attenuator; 9b-B-side long-distance fiber; 10b-B-side phase modulator; 11b-Second B-side polarization controller; 12b-B-
具体实施方式Detailed ways
参照图1、2,对本发明所述的一种基于混沌同步的长距离密钥分发系统进行详细说明。1 and 2, a long-distance key distribution system based on chaotic synchronization according to the present invention will be described in detail.
实施例1:一种基于混沌同步的长距离密钥分发系统,如图1所示,包括A方、B方和一个驱动部分,驱动部分同时作为A方和B方的驱动源形成“一驱二”结构,驱动部分包括依次相连的窄线宽激光器1、第一偏振控制器2、第一掺铒光纤放大器3、强度调制器4、隔离器5和第一光纤耦合器6,第一光纤耦合器6包括一个输入端和两个输出端,强度调制器4的未与第一掺铒光纤放大器3相连的另一个输入端连接有第一任意波形发生器7,第一任意波形发生器7输出的数字信号由强度调制器4调制到窄线宽激光器1发出的光信号上形成数字光信号;A方和B方分别包括A方光衰减器8a和B方光衰减器8b,第一光纤耦合器6的两个输出端分别连接至A方光衰减器8a和B方光衰减器8b;第一光纤耦合器6与A方光衰减器8a之间设置有A方长距离光纤9a,第一光纤耦合器6与B方光衰减器8b之间设置有B方长距离光纤9b;A方光衰减器8a的输出端依次相连接有A方相位调制器10a、第二A方偏振控制器11a、A方1×2光纤耦合器12a和A方半导体激光器13a,A方相位调制器10a的未与A方光衰减器8a相连的另一个输入端连接有第二A方任意波形发生器14a,A方相位调制器10a通过第二A方任意波形发生器14a发送的01随机序列来键控数字光信号的相位,第二A方任意波形发生器14a的用于控制数字光信号相位的01随机序列即为A方私钥,A方1×2光纤耦合器12a的未与A方半导体激光器13a相连的另一个输出端连接有A方光电探测器15a,A方光电探测器15a的输出端还依次连接有A方模数转换器16a和A方存储器17a,数字光信号发射至A方半导体激光器13a后,A方半导体激光器13a发射出混沌信号,混沌信号经过A方光电探测器15a处理后转化成电信号,电信号再通过A方模数转换器16a处理后转换为二进制码存储至A方存储器17a中,第二A方任意波形发生器14a的输出端与A方存储器17a相连用以将A方私钥发送至A方存储器17a中进行存储;B方光衰减器8b的输出端依次连接有B方相位调制器10b、第二B方偏振控制器11b、B方1×2光纤耦合器12b和B方半导体激光器13b,B方相位调制器10b的未与B方光衰减器8b相连的另一个输入端连接有第二B方任意波形发生器14b,B方相位调制器10b通过第二B方任意波形发生器14b发送01随机序列来键控数字光信号的相位,第二B方任意波形发生器14b的用于控制数字光信号相位的01随机序列即为B方私钥,B方1×2光纤耦合器12b的未与B方半导体激光器13b相连的另一个输出端连接有B方光电探测器15b,B方光电探测器15b的输出端还依次连接有B方模数转换器16b和B方存储器17b,数字光信号发射至B方半导体激光器13b后,B方半导体激光器13b发射出混沌信号,混沌信号经过B方光电探测器15b处理后转化成电信号,电信号再通过B方模数转换器16b处理后转换为二进制码存储至B方存储器17b中,第二B方任意波形发生器14b的输出端与B方存储器17b相连用以将B方私钥发送至B方存储器17b中进行存储;A方存储器17a和B方存储器17b之间连接有用于交换A方私钥和B方私钥的公共信道19,A方和B方均将己方的私钥即01随机序列与对方私钥进行对比,选出相位一致时对应的二进制码作为A、B双方的一致密钥。Embodiment 1: A long-distance key distribution system based on chaotic synchronization, as shown in Figure 1, includes party A, party B and a driving part, and the driving part acts as the driving source of party A and party B at the same time to form a "one-drive system". 2" structure, the driving part includes a
A方和B方为通信的双方。为了实现信号同步,故A方和B方的结构组成以及各部分设置的参数应当保持一致,这是本领域技术人员所熟知的。数字信号只有0、1两个状态,在均值以下记为0,以上记为1。即使混入了其他干扰信号,只要干扰信号的值不超过阈值范围,就可以再现原始信号。即使因干扰信号的值超过阈值范围而出现了误码,只要采用一定的编码技术,例如纠错码技术,比如ECC/FEC/RS,也可将误码检测并予以纠正。因此,与模拟信号相比,数字信号在传输过程中具有更好的抗干扰能力、失真幅度小,具有远距离传输潜力。本发明中利用数字信号作为驱动信号可提高混沌同步的质量。利用私钥对注入光的相位进行键控响应半导体激光器输出信号的同步状态,当通信双方私钥相同时,可实现混沌同步;当双方私钥不同时,通信双方不同步。A方长距离光纤9a位于第一光纤耦合器6与A方光衰减器8a之间,B方长距离光纤9b位于第一光纤耦合器6与B方光衰减器8b之间,此过程中数字光信号作为驱动信号长距离传输,而数字信号受链路中杂讯影响低,提高了同步质量,进而增加了密钥分发距离。Party A and Party B are both parties of the communication. In order to achieve signal synchronization, the structural composition of the A party and the B party and the parameters set by each part should be consistent, which is well known to those skilled in the art. The digital signal has only two states, 0 and 1. The mean value is denoted as 0, and the above value is denoted as 1. Even if other interfering signals are mixed in, the original signal can be reproduced as long as the value of the interfering signal does not exceed the threshold range. Even if a bit error occurs because the value of the interference signal exceeds the threshold range, the bit error can be detected and corrected as long as a certain coding technique, such as an error correction code technique, such as ECC/FEC/RS is adopted. Therefore, compared with the analog signal, the digital signal has better anti-interference ability and smaller distortion amplitude during the transmission process, and has the potential for long-distance transmission. Using the digital signal as the driving signal in the present invention can improve the quality of chaotic synchronization. The phase of the injected light is keyed by the private key in response to the synchronization state of the output signal of the semiconductor laser. When the private keys of both parties are the same, chaos synchronization can be achieved; when the private keys of the two parties are different, the two parties are not synchronized. The A-side long-distance
进一步的,作为实施例1中所述一种基于混沌同步的长距离密钥分发系统的一种具体实施方式,A方光衰减器8a与A方长距离光纤9a之间还设置有第二A方掺铒光纤放大器18a,B方光衰减器8b与B方长距离光纤9b之间还设置有第二B方掺铒光纤放大器18b。设置第二A方掺铒光纤放大器18a和第二B方掺铒光纤放大器18b能增加信号传输的安全性。Further, as a specific implementation of the long-distance key distribution system based on chaotic synchronization described in
进一步的,作为实施例1中所述一种基于混沌同步的长距离密钥分发系统的一种具体实施方式,第一光纤耦合器6、A方1×2光纤耦合器12a和B方1×2光纤耦合器12b的耦合比均为50:50。Further, as a specific implementation of the long-distance key distribution system based on chaotic synchronization described in
实施例2:一种基于混沌同步的长距离密钥分发系统,如图2所示,包括A方、B方、第一任意波形发生器7以及结构一致的第一驱动部分和第二驱动部分,第一、二驱动部分分为作为A方和B方的驱动源形成“二驱二”结构,第一、二驱动部分均包括依次相连的窄线宽激光器1、第一偏振控制器2、第一掺铒光纤放大器3、强度调制器4、隔离器5和第一光纤耦合器6,第一光纤耦合器6包括一个输入端和一个输出端,第一任意波形发生器7的两个输出端分别通过长距离光纤20连接至第一、二驱动部分中强度调制器4的未与第一掺铒光纤放大器3相连的另一个输入端,第一任意波形发生器7输出的数字信号通过长距离传输后再由强度调制器4调制到各自的窄线宽激光器1发出的光信号上形成数字光信号;A方和B方分别包括A方光衰减器8a和B方光衰减器8b,第一、二驱动部中的第一光纤耦合器6的输出端分别与A方光衰减器8a和B方光衰减器8b相连,A方光衰减器8a的输出端还依次连接有A方相位调制器10a、第二A方偏振控制器11a、A方1×2光纤耦合器12a和A方半导体激光器13a,A方相位调制器10a的未与A方光衰减器8a相连的另一个输入端连接有第二A方任意波形发生器14a,A方相位调制器10a通过第二A方任意波形发生器14a发送的01随机序列来键控数字光信号的相位,第二A方任意波形发生器14a的用于控制数字光信号相位的01随机序列即为A方私钥,A方1×2光纤耦合器12a的未与A方半导体激光器13a相连的另一个输出端连接有A方光电探测器15a,A方光电探测器15a的输出端还依次连接有A方模数转换器16a和A方存储器17a,数字光信号发射至A方半导体激光器13a后,A方半导体激光器13a发射出混沌信号,混沌信号经过A方光电探测器15a处理后转化成电信号,电信号再通过A方模数转换器16a处理后转换为二进制码存储至A方存储器17a中,第二A方任意波形发生器14a的输出端与A方存储器17a相连,第二A方任意波形发生器14a将A方私钥发送至A方存储器17a中进行存储;B方光衰减器8b的输出端还依次连接有B方相位调制器10b、第二B方偏振控制器11b、B方1×2光纤耦合器12b和B方半导体激光器13b,B方相位调制器10b的未与B方光衰减器8b相连的另一个输入端连接有第二B方任意波形发生器14b,B方相位调制器10b通过第二B方任意波形发生器14b发送的01随机序列来键控数字光信号的相位,第二B方任意波形发生器14b的用于控制数字光信号相位的01随机序列即为B方私钥,B方1×2光纤耦合器12b的未与B方半导体激光器13b相连的另一个输出端连接有B方光电探测器15b,B方光电探测器15b的输出端还依次连接有B方模数转换器16b和B方存储器17b,数字光信号发射至B方半导体激光器13b后,B方半导体激光器13b发射出混沌信号,混沌信号经过B方光电探测器15b处理后转化成电信号,电信号再通过B方模数转换器16b处理后转换为二进制码存储至B方存储器17b中,第二B方任意波形发生器14b的输出端与B方存储器17b相连,第二B方任意波形发生器14b将B方私钥发送至B方存储器17b中进行存储;A方存储器17a和B方存储器17b之间连接有用于交换A方私钥和B方私钥的公共信道19,A方和B方均将己方的私钥即01随机序列与对方私钥进行对比,选出相位一致时对应的二进制码作为A、B双方的一致密钥。该结构中,采用二驱二结构,驱动与响应是在一起的,即可将第一驱动部分与A方统称A通信方,第二驱动部分与B方统称B通信方,将长距离光纤20设置在强度调制器4和第一任意波形发生器7之间,此过程中数字信号作为驱动信号长距离传输,而且驱动信号并没有在公共信道19中传输,因此安全性更高,而数字信号受链路中杂讯影响低,提高了同步质量,进而增加了密钥分发距离.Embodiment 2: A long-distance key distribution system based on chaotic synchronization, as shown in FIG. 2, including party A, party B, a first arbitrary waveform generator 7, and a first driving part and a second driving part with the same structure , the first and second driving parts are divided into the driving sources of the A side and the B side to form a "two driving two" structure. The first and second driving parts both include a
进一步的,作为实施例2中所述一种基于混沌同步的长距离密钥分发系统的一种具体实施方式,第一光纤耦合器6、A方1×2光纤耦合器12a和B方1×2光纤耦合器12b的耦合比均为50:50。Further, as a specific implementation of the long-distance key distribution system based on chaotic synchronization described in
以上具体结构是对本发明的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或者替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。The above specific structure is a specific description of the preferred embodiment of the present invention, but the invention is not limited to the embodiment, and those skilled in the art can make various equivalents without departing from the spirit of the present invention. Modifications or substitutions, and these equivalent modifications or substitutions are all included within the scope defined by the claims of the present application.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210218423.5A CN114374503A (en) | 2021-05-11 | 2021-05-11 | A Long-distance Key Distribution System Based on Chaos Synchronization |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110508221.XA CN113193949B (en) | 2021-05-11 | 2021-05-11 | Long-distance key distribution system based on chaotic synchronization |
CN202210218423.5A CN114374503A (en) | 2021-05-11 | 2021-05-11 | A Long-distance Key Distribution System Based on Chaos Synchronization |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110508221.XA Division CN113193949B (en) | 2021-05-11 | 2021-05-11 | Long-distance key distribution system based on chaotic synchronization |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114374503A true CN114374503A (en) | 2022-04-19 |
Family
ID=76980985
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110508221.XA Active CN113193949B (en) | 2021-05-11 | 2021-05-11 | Long-distance key distribution system based on chaotic synchronization |
CN202210218423.5A Pending CN114374503A (en) | 2021-05-11 | 2021-05-11 | A Long-distance Key Distribution System Based on Chaos Synchronization |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110508221.XA Active CN113193949B (en) | 2021-05-11 | 2021-05-11 | Long-distance key distribution system based on chaotic synchronization |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN113193949B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116722932A (en) * | 2023-08-10 | 2023-09-08 | 山西工程科技职业大学 | Physical key distribution system and method based on DFB laser synchronous keying |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114944875B (en) * | 2022-05-06 | 2023-05-16 | 中国地质大学(武汉) | A hyper-orthogonal electro-optical chaos secure communication system and communication method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105763313A (en) * | 2016-04-13 | 2016-07-13 | 电子科技大学 | Chaotic signal dynamic synchronization-based key distribution method and system |
EP3306464B1 (en) * | 2016-10-09 | 2021-09-29 | Université de Genève | Method and device for quantum random number generation |
CN108880780B (en) * | 2018-05-23 | 2020-12-18 | 太原理工大学 | Key security distribution system and method based on the characteristics of chaotic synchronous public channel |
CN108768644B (en) * | 2018-07-03 | 2020-10-30 | 太原理工大学 | High-speed key security distribution system and method based on aperiodic chaotic synchronization |
CN110601828B (en) * | 2019-09-12 | 2020-10-30 | 太原理工大学 | High-speed key secure distribution system and method based on multi-state superposition keying synchronization |
CN111147234B (en) * | 2019-12-06 | 2022-05-13 | 太原理工大学 | High-speed physical key distribution system and method based on multimode laser chaotic synchronization |
CN112260824B (en) * | 2020-09-18 | 2022-05-13 | 太原理工大学 | A Gbps Physical Key Security Distribution System |
CN112291008B (en) * | 2020-11-04 | 2022-08-05 | 山西财经大学 | Safe and high-speed key distribution system and method based on optical time domain differentiation |
CN112653545B (en) * | 2020-12-08 | 2022-08-16 | 太原理工大学 | Key distribution system based on DFB laser injection light power keying |
CN112615710B (en) * | 2020-12-08 | 2022-06-21 | 太原理工大学 | Key distribution system based on DBR laser wavelength keying synchronization |
-
2021
- 2021-05-11 CN CN202110508221.XA patent/CN113193949B/en active Active
- 2021-05-11 CN CN202210218423.5A patent/CN114374503A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116722932A (en) * | 2023-08-10 | 2023-09-08 | 山西工程科技职业大学 | Physical key distribution system and method based on DFB laser synchronous keying |
CN116722932B (en) * | 2023-08-10 | 2023-10-10 | 山西工程科技职业大学 | Physical key distribution system and method based on DFB laser synchronous keying |
Also Published As
Publication number | Publication date |
---|---|
CN113193949A (en) | 2021-07-30 |
CN113193949B (en) | 2022-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111277337B (en) | A Physical Layer Security Optical Fiber Communication System Based on Chaotic Phase Encryption | |
CN111147234B (en) | High-speed physical key distribution system and method based on multimode laser chaotic synchronization | |
CN113193949B (en) | Long-distance key distribution system based on chaotic synchronization | |
CN112260816B (en) | A high-speed physical key distribution system with enhanced security | |
CN104737491A (en) | Quantum key distribution | |
CN111313978B (en) | A Physical Layer Secure Optical Fiber Communication System Based on Chaos Spectrum Phase Encryption | |
CN107086891B (en) | A Phase Compensation Method for Continuous Variable Quantum Key Distribution System | |
CN112260824B (en) | A Gbps Physical Key Security Distribution System | |
CN108965344B (en) | A system and method for safe backup of remote data | |
CN112615710B (en) | Key distribution system based on DBR laser wavelength keying synchronization | |
US20220045857A1 (en) | Key distribution method and system based on synchronized broadband physical random sources | |
CN114172642B (en) | Key distribution system based on double-terminal output integrated coupled cavity semiconductor laser | |
CN113411136B (en) | A quadrature modulation secure optical communication device and method | |
CN114244500B (en) | A quantum key agreement method, system, quantum digital signature method, system | |
CN116455552A (en) | High-capacity free space chaotic secure communication system based on orbital angular momentum multiplexing | |
CN116192284B (en) | Device and method for traceless encryption in physical layer of optical communication system | |
CN114050868B (en) | Quantum-safe direct communication method based on send-or-not-send method | |
CN115996093A (en) | Physical layer encryption system and method based on optical carrier driving chaotic laser synchronization | |
CN116527251A (en) | Device-independent two-field quantum key distribution device and method for measuring sideband interference | |
CN118353598A (en) | Chaotic key distribution method and system based on wireless channel | |
CN114584296A (en) | A high-speed key distribution technology based on chaotic self-carrier phase modulation | |
Jamshidi et al. | Statistical analysis of coherent ultrashort light pulse CDMA with multiple optical amplifiers using additive noise model | |
CN221428933U (en) | DDI-QKD system of time division multiplexing | |
CN115396094B (en) | A hardware-secure optical fiber communication system based on dispersion-cascade feedback encryption | |
CN118353600A (en) | Wireless chaos hiding transmission method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |