CN114373580A - A flexible transmission line and its application - Google Patents
A flexible transmission line and its application Download PDFInfo
- Publication number
- CN114373580A CN114373580A CN202111540441.7A CN202111540441A CN114373580A CN 114373580 A CN114373580 A CN 114373580A CN 202111540441 A CN202111540441 A CN 202111540441A CN 114373580 A CN114373580 A CN 114373580A
- Authority
- CN
- China
- Prior art keywords
- liquid crystal
- transmission line
- layer
- flexible transmission
- crystal polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 103
- 229920000106 Liquid crystal polymer Polymers 0.000 claims abstract description 94
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 claims abstract description 92
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 25
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 239000010949 copper Substances 0.000 claims abstract description 5
- 239000010931 gold Substances 0.000 claims abstract description 5
- 229910052737 gold Inorganic materials 0.000 claims abstract description 5
- 229910052709 silver Inorganic materials 0.000 claims abstract description 5
- 239000004332 silver Substances 0.000 claims abstract description 5
- 239000002994 raw material Substances 0.000 claims abstract description 3
- 239000010410 layer Substances 0.000 claims description 115
- 239000000463 material Substances 0.000 claims description 43
- 239000012790 adhesive layer Substances 0.000 claims description 16
- 238000004891 communication Methods 0.000 claims description 8
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 claims description 3
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 claims description 3
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 claims description 3
- 239000000758 substrate Substances 0.000 abstract description 20
- 229920000642 polymer Polymers 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 35
- 239000002585 base Substances 0.000 description 22
- 238000010586 diagram Methods 0.000 description 18
- 238000003780 insertion Methods 0.000 description 11
- 230000037431 insertion Effects 0.000 description 11
- 210000002858 crystal cell Anatomy 0.000 description 9
- 239000003822 epoxy resin Substances 0.000 description 8
- 239000003365 glass fiber Substances 0.000 description 8
- 229920000647 polyepoxide Polymers 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000004831 Hot glue Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 230000008054 signal transmission Effects 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- JLYXXMFPNIAWKQ-UHFFFAOYSA-N γ Benzene hexachloride Chemical compound ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl JLYXXMFPNIAWKQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
Landscapes
- Structure Of Printed Boards (AREA)
Abstract
Description
技术领域technical field
本发明涉及材料领域,具体涉及一种柔性传输线及其应用。The invention relates to the field of materials, in particular to a flexible transmission line and its application.
背景技术Background technique
近年来,通信技术飞速发展,为了适应通信速率不断提高的需求,柔性电子设备的工作频段越来越高,从4G时代的几GHz频段,逐步扩展到毫米波、太赫兹波的几十、几百GHz频段,作为信号传输的关键途径,柔性电子设备中印刷电路板上的传输线是实现高频信号传输的主要部分。目前全球对高速通信应用需求日益增大,高精度、低延迟的自动驾驶、远程医疗、智慧城市等各个“5G行业”都需要研究高速度、低损耗的新型传输线。高速度、低损耗的传输线要求传输线的介质材料具有低介电常数(Dk)和低介电损耗(Df)的特征。而基于玻璃纤维环氧树脂板的传输线在高频传输中信号损耗非常严重,对于目前的高速高频通信已经完全不适用。In recent years, with the rapid development of communication technology, in order to meet the needs of increasing communication rates, the working frequency bands of flexible electronic devices are getting higher and higher, from the frequency band of several GHz in the 4G era to the tens, several tens of millimeter waves and terahertz waves. In the 100 GHz frequency band, as a key way of signal transmission, the transmission line on the printed circuit board in flexible electronic equipment is the main part of realizing high-frequency signal transmission. At present, the global demand for high-speed communication applications is increasing, and various "5G industries" such as high-precision, low-latency autonomous driving, telemedicine, and smart cities need to study new transmission lines with high speed and low loss. High-speed, low-loss transmission lines require that the dielectric materials of the transmission line have the characteristics of low dielectric constant (Dk) and low dielectric loss (Df). However, the transmission line based on glass fiber epoxy resin board has very serious signal loss in high frequency transmission, which is completely unsuitable for the current high-speed high-frequency communication.
目前,在5G通讯技术中具有良好应用前景的材料主要包括:聚四氟乙烯(PTFE)、液晶聚合物(LCP)、改性聚苯(MPPE)以及聚酰亚胺(PI)等几类。PTFE薄膜由于弹性模量较低,难以加工成厚度较小的薄膜,再加上其线膨胀系数较高,因此不适合制作超薄线路板。此外,PTFE与金属导体等元件的粘接力较弱。MPPE表面基板介电性能优异,但实际应用中受限于其耐热性能和尺寸稳定性,在很多情况下无法满足部件的加工需求。而PI材料的介电常数比较大、损耗因子比较大、可靠性也比较差,这导致PI材质的柔性电路板(FPC)在高频端传输中,信号损耗比较严重,对于目前5G通信应用已经无法适应。而LCP具有良好的热稳定性、介电性、耐辐射性、耐腐蚀性、电绝缘性,在5G领域具有良好的应用前景。At present, materials with good application prospects in 5G communication technology mainly include: polytetrafluoroethylene (PTFE), liquid crystal polymer (LCP), modified polyphenylene (MPPE) and polyimide (PI) and other categories. Due to its low elastic modulus, PTFE film is difficult to process into a thin film with a small thickness, and its linear expansion coefficient is high, so it is not suitable for making ultra-thin circuit boards. In addition, the adhesion of PTFE to components such as metal conductors is weak. The MPPE surface substrate has excellent dielectric properties, but in practical applications, it is limited by its heat resistance and dimensional stability, and cannot meet the processing requirements of components in many cases. However, the dielectric constant of PI material is relatively large, the loss factor is relatively large, and the reliability is relatively poor, which leads to serious signal loss in the high-frequency transmission of PI material flexible circuit board (FPC). Unable to adapt. LCP has good thermal stability, dielectric properties, radiation resistance, corrosion resistance, and electrical insulation, and has good application prospects in the 5G field.
为了解决在高频传输过程信号损耗严重的问题,现需要一种在高频传输中信号损耗较低的基材材料。In order to solve the problem of serious signal loss during high-frequency transmission, a substrate material with low signal loss during high-frequency transmission is required.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术存在的问题,本发明的目的之一在于提供一种柔性传输线。In order to overcome the above-mentioned problems in the prior art, one of the objectives of the present invention is to provide a flexible transmission line.
本发明的目的之二在于提供一种柔性传输线在5G通讯材料或线路板中的应用。The second purpose of the present invention is to provide an application of a flexible transmission line in 5G communication materials or circuit boards.
为了实现上述目的,本发明所采取的技术方案是:In order to achieve the above object, the technical scheme adopted by the present invention is:
本发明第一方面提供了一种柔性传输线,包括依次层叠设置的信号层、基材层和接地层,所述信号层与基材层接触;所述信号层的材质为铜、金或银中的至少一种;所述基材层包括液晶聚合物薄膜层,所述液晶聚合物薄膜层是由包括液晶聚合物和光引发剂的原料固化而成的液晶取向膜。A first aspect of the present invention provides a flexible transmission line, comprising a signal layer, a base material layer and a grounding layer that are stacked in sequence, the signal layer is in contact with the base material layer; the material of the signal layer is copper, gold or silver At least one of the above; the base material layer includes a liquid crystal polymer film layer, and the liquid crystal polymer film layer is a liquid crystal alignment film formed by curing a raw material including a liquid crystal polymer and a photoinitiator.
优选地,所述信号层的形状为长条状、片状中的至少一种;进一步优选地,所述信号层为片状。Preferably, the shape of the signal layer is at least one of a strip shape and a sheet shape; further preferably, the signal layer is a sheet shape.
优选地,所述信号层是由一片以上的导电金属片组成,所有的导电金属片均位于同一水平面内且所有的导电金属片均与基材层接触,可以根据实际使用需要选择导电金属片的数量。导电金属片为铜箔、金箔、银箔中的至少一种。Preferably, the signal layer is composed of more than one conductive metal sheet, all the conductive metal sheets are located in the same horizontal plane and all the conductive metal sheets are in contact with the base material layer, and the conductive metal sheet can be selected according to actual needs. quantity. The conductive metal sheet is at least one of copper foil, gold foil and silver foil.
优选地,所述信号层、基材层和接地层通过胶黏剂压合而成。Preferably, the signal layer, the base material layer and the ground layer are formed by pressing an adhesive.
优选地,所述柔性传输线为5G柔性传输线;进一步优选地,所述柔性传输线为可重构的5G柔性传输线。Preferably, the flexible transmission line is a 5G flexible transmission line; further preferably, the flexible transmission line is a reconfigurable 5G flexible transmission line.
优选地,所述固化的条件为紫外光固化;进一步优选地,所述固化的条件为在365nm的紫外光诱导下固化。Preferably, the curing condition is ultraviolet light curing; further preferably, the curing condition is curing under the induction of ultraviolet light at 365 nm.
优选地,所述信号层的材质为铜、银、金中的至少一种。Preferably, the material of the signal layer is at least one of copper, silver and gold.
优选地,所述接地层的材质为铜、银、金中的至少一种。Preferably, the material of the ground layer is at least one of copper, silver and gold.
优选地,所述液晶聚合物包括E7液晶、5CB液晶、RM257液晶中的至少一种。进一步优选地,所述液晶聚合物包括RM257。RM257(HCCH,江苏和成)常温下是白色粉末状固体,其分子结构式如下:Preferably, the liquid crystal polymer includes at least one of E7 liquid crystal, 5CB liquid crystal, and RM257 liquid crystal. Further preferably, the liquid crystal polymer comprises RM257. RM257 (HCCH, Jiangsu Hecheng) is a white powdery solid at room temperature, and its molecular structure is as follows:
优选地,所述光引发剂包括2-羟基-2-甲基-1-苯基-1-丙酮、1-羟基环己基苯基甲酮中的至少一种。所述2-羟基-2-甲基-1-苯基-1-丙酮也被称为1173光引发剂,其分子式如下:Preferably, the photoinitiator includes at least one of 2-hydroxy-2-methyl-1-phenyl-1-propanone and 1-hydroxycyclohexyl phenyl ketone. The 2-hydroxy-2-methyl-1-phenyl-1-propanone is also called 1173 photoinitiator, and its molecular formula is as follows:
1-羟基环己基苯基甲酮又称为184光引发剂。1-Hydroxycyclohexyl phenyl ketone is also known as 184 photoinitiator.
优选地,所述液晶聚合物与光引发剂的质量比为(40-50):1;进一步优选地,所述液晶聚合物与光引发剂的质量比为(42-48):1;进一步优选地,所述液晶聚合物与光引发剂的质量比为(45-48):1。Preferably, the mass ratio of the liquid crystal polymer to the photoinitiator is (40-50):1; further preferably, the mass ratio of the liquid crystal polymer to the photoinitiator is (42-48):1; further Preferably, the mass ratio of the liquid crystal polymer to the photoinitiator is (45-48):1.
优选地,所述液晶聚合物薄膜层采用以下制备方法制备,包括如下几个步骤:Preferably, the liquid crystal polymer film layer is prepared by the following preparation method, including the following steps:
S1:将液晶聚合物与光引发剂避光混合;S1: mix the liquid crystal polymer and the photoinitiator in the dark;
S2:将步骤S1中的产物加入取向液晶盒内,光引发固化制得所述的液晶聚合物薄膜层。S2: adding the product in step S1 into an alignment liquid crystal cell, and photoinitiating curing to obtain the liquid crystal polymer film layer.
优选地,所述避光混合的混合温度为80~120℃;进一步优选地,所述避光混合的混合温度为90~110℃;再进一步优选地,所述避光混合的混合温度为100℃。Preferably, the mixing temperature of the light-proof mixing is 80-120°C; further preferably, the mixing temperature of the light-proof mixing is 90-110°C; still further preferably, the mixing temperature of the light-proof mixing is 100°C °C.
优选地,所述步骤S1具体为:将液晶聚合物与光引发剂加入棕色试剂瓶,将棕色试剂瓶放入装有硅油的小烧杯中,将小烧杯采用水浴加热的方法加热至80~120℃,并搅拌10~30min,使其混合均匀。Preferably, the step S1 is specifically as follows: adding the liquid crystal polymer and the photoinitiator into a brown reagent bottle, placing the brown reagent bottle into a small beaker containing silicone oil, and heating the small beaker to a temperature of 80-120 °C by heating in a water bath. ℃, and stir for 10 to 30 minutes to make it evenly mixed.
优选地,所述步骤S2具体为:将步骤S1中的产物加入在80~120℃的温度下保温的取向液晶盒中,使用2~4mW/cm2、360~370nm的紫外光引发固化2~8min,制得所述的液晶聚合物薄膜层;进一步优选地,所述步骤S2具体为:将步骤S1中的产物加入在100℃的温度下保温的取向液晶盒中,在95℃下,使用3mW/cm2、365nm的紫外光引发固化5min,制得所述的液晶聚合物薄膜层。Preferably, the step S2 is specifically as follows: adding the product in the step S1 into an oriented liquid crystal cell kept at a temperature of 80-120° C., and using 2-4 mW/cm 2 and 360-370 nm of ultraviolet light to initiate curing for 2- 8 min to prepare the liquid crystal polymer film layer; further preferably, the step S2 is specifically as follows: adding the product in step S1 into an oriented liquid crystal cell kept at a temperature of 100°C, and at 95°C, using 3 mW/cm 2 , 365 nm ultraviolet light initiates curing for 5 min to obtain the liquid crystal polymer film layer.
优选地,所述液晶聚合物薄膜层的厚度为200~400μm;进一步优选地,所述液晶聚合物薄膜层的厚度为200~350μm;再进一步优选地,所述液晶聚合物薄膜层的厚度为200~300μm。Preferably, the thickness of the liquid crystal polymer film layer is 200-400 μm; further preferably, the thickness of the liquid crystal polymer film layer is 200-350 μm; further preferably, the thickness of the liquid crystal polymer film layer is 200~300μm.
优选地,所述液晶聚合物的液晶分子的倾斜角与水平方向之间的夹角为0°~90°。本发明通过改变基材层中的液晶聚合物的液晶分子的排列取向得到不同介电常数的液晶聚合物薄膜层,进而得到可调节传输速度的传输线。Preferably, the angle between the tilt angle of the liquid crystal molecules of the liquid crystal polymer and the horizontal direction is 0°˜90°. The invention obtains liquid crystal polymer film layers with different dielectric constants by changing the alignment and orientation of liquid crystal molecules of the liquid crystal polymer in the base material layer, thereby obtaining a transmission line with adjustable transmission speed.
优选地,所述信号层与接地层的厚度均为60~150μm;进一步优选地,所述信号层与接地层的厚度均为70~130μm;再进一步优选地,所述信号层与接地层的厚度均为90~110μm。Preferably, the thickness of the signal layer and the ground layer are both 60-150 μm; further preferably, the thickness of the signal layer and the ground layer are both 70-130 μm; still further preferably, the thickness of the signal layer and the ground layer is 70-130 μm. The thicknesses are all 90 to 110 μm.
优选地,所述信号层的宽度为0.5~1.5mm;进一步优选地,所述信号层的宽度为0.8~1.5mm;进一步优选地,所述信号层的宽度为1~1.2mm。Preferably, the width of the signal layer is 0.5-1.5 mm; further preferably, the width of the signal layer is 0.8-1.5 mm; further preferably, the width of the signal layer is 1-1.2 mm.
优选地,所述信号层和基材层之间还设置第一胶合层;所述基材层与接地层之间还设置第二胶合层。Preferably, a first adhesive layer is further provided between the signal layer and the base material layer; and a second adhesive layer is further provided between the base material layer and the ground layer.
优选地,所述第一胶合层和第二胶合层的材料均为热熔型胶黏剂。Preferably, the materials of the first adhesive layer and the second adhesive layer are both hot-melt adhesives.
优选地,所述热熔型胶黏剂包括聚烯烃类热熔胶、聚酯类热熔胶、聚酰胺类热熔胶、聚氨酯类热熔胶中的至少一种。Preferably, the hot-melt adhesive includes at least one of polyolefin-based hot-melt adhesive, polyester-based hot-melt adhesive, polyamide-based hot-melt adhesive, and polyurethane-based hot-melt adhesive.
优选地,所述液晶聚合物薄膜层的介电常数为2.7~3.3。Preferably, the dielectric constant of the liquid crystal polymer film layer is 2.7˜3.3.
优选地,所述柔性传输线在5-6GHz时的插入损耗为-0.2~-0.3dB,Preferably, the insertion loss of the flexible transmission line at 5-6 GHz is -0.2 to -0.3 dB,
本发明第二方面提供了一种本发明第一方面提供的柔性传输线在5G通讯材料或线路板中的应用。The second aspect of the present invention provides an application of the flexible transmission line provided in the first aspect of the present invention in 5G communication materials or circuit boards.
本发明的有益效果是:本发明利用液晶聚合物具有高分子排列顺向性,通过调整液晶聚合物的取向而得到介电常数不同的液晶聚合物薄膜层,进而制得不同介电常数的柔性传输线,该柔性传输线的介电损耗小,可重构,柔性可弯曲,且不同的弯曲度均不改变传输线的性能,可以适用于高频5G信号传输。The beneficial effects of the present invention are as follows: the present invention utilizes the liquid crystal polymer to have polymer alignment, and obtains liquid crystal polymer film layers with different dielectric constants by adjusting the orientation of the liquid crystal polymer, and then obtains flexible liquid crystal polymer films with different dielectric constants. Transmission line, the flexible transmission line has low dielectric loss, is reconfigurable, flexible and bendable, and different bending degrees do not change the performance of the transmission line, which can be suitable for high-frequency 5G signal transmission.
具体而言:in particular:
本发明通过RM257和1173光引发剂经光引发固化在取向液晶盒内形成液晶聚合物薄膜层,制得的液晶聚合物薄膜层具有取向性,通过调整液晶聚合物的分子取向可以调整液晶聚合物薄膜层的介电常数,通过调整柔性传输线的介电常数实现改变柔性传输线的传输速度的目的,进而根据不同的使用需求调整柔性传输线的性能,适用范围更广。In the present invention, a liquid crystal polymer film layer is formed in an oriented liquid crystal cell by photoinitiating and curing RM257 and 1173 photoinitiators, and the obtained liquid crystal polymer film layer has orientation, and the liquid crystal polymer can be adjusted by adjusting the molecular orientation of the liquid crystal polymer. The dielectric constant of the thin film layer can achieve the purpose of changing the transmission speed of the flexible transmission line by adjusting the dielectric constant of the flexible transmission line, and then adjust the performance of the flexible transmission line according to different usage requirements, and has a wider range of applications.
本发明制得的液晶聚合物薄膜层的介电损耗比PI薄膜、玻璃纤维环氧树脂的介电损耗小,可以适用于低介电损耗的高频5G信号传输线。The dielectric loss of the liquid crystal polymer film layer prepared by the invention is smaller than that of the PI film and the glass fiber epoxy resin, and can be suitable for high-frequency 5G signal transmission lines with low dielectric loss.
本发明柔性传输线的基材层中的液晶聚合物是各向异性的,可以通过对液晶聚合物的分子调控,改变其介电常数,可得到在不改变基材层中液晶聚合物材料的情况下,得到不同介电常数的可重构的柔性传输线,而目前的传输线都不能在同一基材层材料下改变其介电常数,本发明中的柔性传输线可以通过调控液晶分子的倾斜角改变基材层液晶聚合物薄膜层的介电常数,从而改变柔性传输线的性能。The liquid crystal polymer in the base material layer of the flexible transmission line of the present invention is anisotropic, and the dielectric constant of the liquid crystal polymer can be changed by regulating the molecules of the liquid crystal polymer, and the liquid crystal polymer material in the base material layer can be obtained without changing the liquid crystal polymer material. Therefore, reconfigurable flexible transmission lines with different dielectric constants can be obtained, and the current transmission lines cannot change their dielectric constants under the same substrate layer material. The flexible transmission line in the present invention can change the base by adjusting the tilt angle of the liquid crystal molecules. The dielectric constant of the liquid crystal polymer film layer of the material layer changes the performance of the flexible transmission line.
附图说明Description of drawings
图1为实施例1中的柔性传输线的剖面结构示意图。FIG. 1 is a schematic cross-sectional structure diagram of the flexible transmission line in Example 1. As shown in FIG.
图2为实施例3中的柔性传输线的剖面结构示意图。FIG. 2 is a schematic cross-sectional structure diagram of the flexible transmission line in Example 3. FIG.
图3为实施例1和实施例2中柔性传输线中的LCP不同取向的结构示意图。3 is a schematic structural diagram of different orientations of LCPs in the flexible transmission lines in Example 1 and Example 2.
图4为实施例1和实施例2中柔性传输线的输入回波损耗图。FIG. 4 is a graph of the input return loss of the flexible transmission line in Example 1 and Example 2.
图5为实施例1和实施例2中柔性传输线的插入损耗图。FIG. 5 is a graph of the insertion loss of the flexible transmission line in Example 1 and Example 2. FIG.
图6为基材层为不同取向的LCP的柔性传输线的结构示意图。FIG. 6 is a schematic structural diagram of a flexible transmission line in which the substrate layers are LCPs with different orientations.
图7为基材层为不同取向的LCP的柔性传输线的特性阻抗随频率的变化图。FIG. 7 is a graph showing the variation of characteristic impedance with frequency of the flexible transmission line whose base material layer is LCP with different orientations.
图8为实施例1中的柔性传输线弯曲α角的结构示意图。FIG. 8 is a schematic diagram of the structure of the flexible transmission line bent at an angle α in Example 1. FIG.
图9为实施例1中的柔性传输线弯曲α角后的输入回波损耗图。FIG. 9 is a graph of the input return loss after the flexible transmission line in Example 1 is bent at an angle α.
图10为实施例1中的柔性传输线弯曲α角后的插入损耗图。FIG. 10 is an insertion loss diagram of the flexible transmission line in Example 1 after bending an angle α.
附图标记:Reference number:
信号层101;第一胶合层102;基材层103;第二胶合层104;接地层105。The
具体实施方式Detailed ways
以下结合附图和实例对本发明的具体实施作进一步详细说明,但本发明的实施和保护不限于此。需要指出的是,以下若为有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。The specific implementation of the present invention will be further described in detail below with reference to the accompanying drawings and examples, but the implementation and protection of the present invention are not limited thereto. It should be pointed out that, if the following processes are not specifically described in detail, those skilled in the art can realize or understand by referring to the prior art. If the reagents or instruments used do not indicate the manufacturer, they are regarded as conventional products that can be purchased in the market.
实施例1Example 1
本例中的柔性传输线的剖面结构示意图如图1所示,包括依次层叠设置的信号层101、第一胶合层102、基材层103、第二胶合层104和接地层105,信号层101位于最上层,接地层105位于最下层,信号层101为铜箔,铜箔为片状,信号层101、第一胶合层102、基材层103、第二胶合层104和接地层105通过压合形成本例中的柔性传输线。基材层103是由取向平行配置的液晶盒中灌入的液晶聚合物(LCP)固化形成的液晶聚合物薄膜层,其取向方向具体见图3(a)所示。图3为柔性传输线中的LCP不同取向的结构示意图;其中,图3(a)为柔性传输线中的LCP薄膜取向平行配置时的结构示意图;信号层101的厚度为100μm;信号层101的宽度为1mm;接地层105的厚度为100μm;第一胶合层102和第二胶合层104的厚度均为10μm;液晶聚合物薄膜层的厚度为300μm;The schematic cross-sectional structure of the flexible transmission line in this example is shown in FIG. 1 , including a
本例中取向平行配置的LCP基材层103的按照下述方法制备:In this example, the LCP
利用摩擦取向方法,将旋涂好取向膜的玻璃基板制作成沿面取向玻璃基板,再将沿面取向玻璃基板拼成盒厚为300μm液晶盒。取4mg1173光引发剂和200mgRM257液晶倒入1ml棕色试剂瓶,将磁力搅拌机的温度设为100℃并调好转速,再将棕色试剂瓶放在装有硅油的小烧杯中放至磁力搅拌机上搅拌15min,在100℃下将混合好的样品灌入液晶盒中,降温至95℃时,利用365nm紫外光诱导固化,将液晶盒分开就得到了取向平行配置的LCP薄膜。取向平行配置是指LCP分子的取向方向平行于基材层103表面。Using the rubbing alignment method, the glass substrate with the spin-coated alignment film was made into a surface-oriented glass substrate, and then the surface-oriented glass substrate was assembled into a liquid crystal cell with a cell thickness of 300 μm. Take 4mg1173 photoinitiator and 200mgRM257 liquid crystal into a 1ml brown reagent bottle, set the temperature of the magnetic stirrer to 100°C and adjust the speed, then put the brown reagent bottle in a small beaker with silicone oil and stir it on the magnetic stirrer for 15min , pour the mixed sample into the liquid crystal cell at 100 °C, and when the temperature is lowered to 95 °C, use 365nm ultraviolet light to induce curing, and separate the liquid crystal cell to obtain an LCP film with parallel orientation. The orientation-parallel configuration means that the orientation direction of the LCP molecules is parallel to the surface of the
本例中的LCP基材层的热变形温度在270℃以上,连续使用温度达200℃以上,并且LCP基材层在浓度为90%的酸及浓度为50%的碱存在下不会受到侵蚀,因此,本例中的LCP基材层具有很好的热稳定性和耐酸碱腐蚀性能。In this example, the thermal deformation temperature of the LCP substrate layer is above 270°C, the continuous use temperature is above 200°C, and the LCP substrate layer will not be corroded in the presence of 90% acid and 50% alkali. , therefore, the LCP substrate layer in this example has good thermal stability and acid and alkali corrosion resistance.
实施例2:Example 2:
本例中的柔性传输线的结构与实施例1中的结构相同,本例与实施例1的不同之处在于:基材层103是由取向垂直配置的液晶盒中灌入的液晶聚合物(LCP)固化形成的液晶聚合物薄膜层;本例中的LCP的取向方向具体见图3(b)所示。图3(b)为柔性传输线中的LCP薄膜取向垂直配置时的结构示意图;本例中的取向垂直配置的LCP薄膜参照实施例1中的制备方法制备。取向垂直配置是指LCP分子的取向方向垂直于基材层103表面。The structure of the flexible transmission line in this example is the same as that in Example 1. The difference between this example and Example 1 is that the
实施例3:Example 3:
如图2中的柔性传输线的剖面示意图所示:本例中柔性传输线的结构与实施例1的不同之处在于:本例无第一胶合层102和第二胶合层104。本例中的柔性传输线与实施例1和实施例2中的柔性传输线的性能基本一致。As shown in the schematic cross-sectional view of the flexible transmission line in FIG. 2 , the structure of the flexible transmission line in this example is different from that of Embodiment 1 in that there is no first
对比例1:Comparative Example 1:
本例中的柔性传输线的结构与实施例1中的结构相同,本例与实施例1的不同之处在于:基材层103是由玻璃纤维环氧树脂形成的薄膜层。The structure of the flexible transmission line in this example is the same as that in Example 1, and the difference between this example and Example 1 is that the
性能测试:Performance Testing:
采用谐振腔微扰测量法分别测试实施例1和实施例2中的液晶聚合物薄膜层和对比例1中的玻璃纤维环氧树脂形成的薄膜层的介电常数,具体测试结果为:实施例1中取向平行配置的液晶聚合物薄膜层的介电常数为2.7,实施例2中取向垂直配置的LCP的液晶聚合物薄膜层的介电常数为3.3,而对比例1中玻璃纤维环氧树脂薄膜层的介电常数为5.2,与对比例1相比,实施例1和实施例2中液晶聚合物薄膜层的介电性能更优异。The resonant cavity perturbation measurement method was used to test the dielectric constants of the liquid crystal polymer film layers in Examples 1 and 2 and the film layers formed by the glass fiber epoxy resin in Comparative Example 1. The specific test results are as follows: Example The dielectric constant of the liquid crystal polymer film layer with the parallel orientation in Example 1 is 2.7, the dielectric constant of the liquid crystal polymer film layer of the LCP with the vertical orientation in Example 2 is 3.3, while the glass fiber epoxy resin in Comparative Example 1 has a dielectric constant of 3.3. The dielectric constant of the thin film layer was 5.2. Compared with Comparative Example 1, the dielectric properties of the liquid crystal polymer thin film layers in Example 1 and Example 2 were more excellent.
利用网络分析仪E5071的二端口测试实施例1和实施例2中的柔性传输线的传输性能输入回波损耗和插入损耗,其中,图4为实施例1和实施例2的柔性传输线的输入回波损耗(S11)图;图5为实施例1和实施例2的柔性传输线的插入损耗(S21)图。由图5可以看出:实施例1和实施例2中的柔性传输线的插入损耗S21在5-6GHz时为-0.2dB~-0.3dB,而对比例1中玻璃纤维环氧树脂为基材层的柔性传输线在5-6GHz时的插入损耗为-8dB~-9dB,由此可知,实施例1和实施例2中的柔性传输线的性能比对比例1更优异。The transmission performance input return loss and insertion loss of the flexible transmission lines in Example 1 and Example 2 were tested by using the two-port network analyzer E5071, wherein FIG. 4 is the input echo of the flexible transmission lines in Example 1 and Example 2. Loss ( S11 ) diagram; FIG. 5 is an insertion loss ( S21 ) diagram of the flexible transmission lines of Example 1 and Example 2. It can be seen from Figure 5 that the insertion loss S21 of the flexible transmission lines in Example 1 and Example 2 is -0.2dB to -0.3dB at 5-6GHz, while the glass fiber epoxy resin in Comparative Example 1 is the substrate layer The insertion loss of the flexible transmission line at 5-6GHz is -8dB to -9dB. It can be seen that the performance of the flexible transmission line in Example 1 and Example 2 is better than that in Comparative Example 1.
参照实施例1中的取向的LCP基材层103的制备方法和柔性传输线的结构制备测试样品,测试样品分别为:样品1:LCP分子取向方向与x轴夹角β为90°的柔性传输线;样品2:LCP分子取向方向与x轴夹角β为45°的柔性传输线;样品3:LCP分子取向方向与x轴夹角β为0°的柔性传输线;样品1~3中的LCP分子的取向方向见图6所示,其中图6(a)为样品1中的柔性传输线的示意图;图6(b)为样品2中的柔性传输线的示意图;图6(c)为样品3中的柔性传输线的示意图。然后,分别测试样品1~3中的柔性传输线的特性阻抗随频率的变化关系,具体测试方法为:利用COMSOL软件的射频模块,用有限元法进行仿真,可以仿真出在不同液晶分子预倾角情况下的特性阻抗随频率的变化关系。特性阻抗是通过仿真方法来验证的,这是对液晶聚合物薄膜层的3个不同液晶分子取向情况下的仿真数据,体现了LCP的可重构性。具体测试结果见图7所示,其中,图7(a)为样品1~3的特性阻抗随频率的实部变化图;图7(b)为样品1~3的特性阻抗随频率的虚部变化图。从图7中可以看出:含有不同取向方向的液晶聚合物薄膜层的柔性传输线具有很好的可重构性。Test samples were prepared with reference to the preparation method of the oriented
通过锡将实施例1中的柔性传输线两端与输入信号端焊接,在通过SMA转接口与网络分析仪连接,此时,实施例1中的柔性传输线弯曲角为α角,α角分别为0°、15°和30°,具体见图8所示,其中,图8(a)为实施例1中的柔性传输线的弯曲后的剖面示意图;图8(b)为实施例1中的柔性传输线弯曲0°的结构示意图;图8(c)为实施例1中的柔性传输线弯曲15°的结构示意图;图8(d)为实施例1中的柔性传输线弯曲30°的结构示意图;然后分别测试弯曲后的柔性传输线的输入回波损耗和插入损耗,输入回波损耗测试图见图9所示;插入损耗测试图如图10所示,由图9和图10可以看出:基材层103为LCP的柔性传输线的弯曲程度不影响传输线的性能,表明本发明中的柔性传输线具有优异的柔性且弯曲后传输线的传输性能不改变。The two ends of the flexible transmission line in Example 1 are welded to the input signal end by tin, and then connected to the network analyzer through the SMA interface. At this time, the bending angle of the flexible transmission line in Example 1 is α angle, and the α angle is 0 °, 15° and 30°, as shown in FIG. 8 , in which FIG. 8( a ) is a schematic cross-sectional view of the flexible transmission line in Example 1 after bending; FIG. 8( b ) is the flexible transmission line in Example 1. Schematic diagram of the structure bent at 0°; Figure 8(c) is a schematic diagram of the structure of the flexible transmission line bent by 15° in Example 1; Figure 8(d) is a schematic diagram of the structure of the flexible transmission line in Example 1 bent by 30°; and then tested separately The input return loss and insertion loss of the flexible transmission line after bending, the input return loss test chart is shown in Figure 9; the insertion loss test chart is shown in Figure 10, and it can be seen from Figure 9 and Figure 10 that the
综上所述,本发明主要是通过改变LCP液晶聚合物的排列取向从而改变LCP基材层103的介电常数,得到可调介电常数且介电损耗更低的LCP基材层103,由LCP基材层103制成传输速度可调的可重构5G柔性传输线。本发明柔性传输线的基材层中的LCP薄膜层的介电常数为2.7~3.3,远低于玻璃纤维环氧树脂(介电常数为5.2),介电性能更优异,在5-6GHz时的插入损耗为-0.2~-0.3dB,而玻璃纤维环氧树脂为基材层103的传输线在5-6GHz的插入损耗在-8dB~-9dB,本发明的传输线性能更优异。To sum up, the present invention mainly changes the dielectric constant of the LCP
上面对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。The embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-mentioned embodiments, and various changes can be made within the scope of knowledge possessed by those of ordinary skill in the art without departing from the spirit of the present invention. Furthermore, the embodiments of the present invention and features in the embodiments may be combined with each other without conflict.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111540441.7A CN114373580B (en) | 2021-12-16 | 2021-12-16 | Flexible transmission line and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111540441.7A CN114373580B (en) | 2021-12-16 | 2021-12-16 | Flexible transmission line and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114373580A true CN114373580A (en) | 2022-04-19 |
CN114373580B CN114373580B (en) | 2024-07-26 |
Family
ID=81139411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111540441.7A Active CN114373580B (en) | 2021-12-16 | 2021-12-16 | Flexible transmission line and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114373580B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002164714A (en) * | 2000-11-28 | 2002-06-07 | Kyocera Corp | High frequency transmission line |
CN106646951A (en) * | 2017-01-09 | 2017-05-10 | 南方科技大学 | Reflecting film and preparation method thereof |
CN107300726A (en) * | 2017-07-17 | 2017-10-27 | 南方科技大学 | All-solid-state reflecting film and preparation method thereof |
CN109777446A (en) * | 2019-03-04 | 2019-05-21 | 合肥工业大学 | A liquid crystal monomer material that increases the dielectric anisotropy of commercial liquid crystals in the terahertz band |
CN110875523A (en) * | 2018-08-30 | 2020-03-10 | 东友精细化工有限公司 | Film transmission line, antenna and image display device |
-
2021
- 2021-12-16 CN CN202111540441.7A patent/CN114373580B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002164714A (en) * | 2000-11-28 | 2002-06-07 | Kyocera Corp | High frequency transmission line |
CN106646951A (en) * | 2017-01-09 | 2017-05-10 | 南方科技大学 | Reflecting film and preparation method thereof |
CN107300726A (en) * | 2017-07-17 | 2017-10-27 | 南方科技大学 | All-solid-state reflecting film and preparation method thereof |
CN110875523A (en) * | 2018-08-30 | 2020-03-10 | 东友精细化工有限公司 | Film transmission line, antenna and image display device |
CN109777446A (en) * | 2019-03-04 | 2019-05-21 | 合肥工业大学 | A liquid crystal monomer material that increases the dielectric anisotropy of commercial liquid crystals in the terahertz band |
Also Published As
Publication number | Publication date |
---|---|
CN114373580B (en) | 2024-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102686026B (en) | Flexible circuit board, chip on film and manufacturing method | |
CN206840863U (en) | Combined type LCP high-frequency high-speed Double-sided copper clad laminates | |
JPWO2010021193A1 (en) | Light modulator | |
Yan et al. | Highly stretchable and shape-controllable three-dimensional antenna fabricated by “Cut-Transfer-Release” method | |
CN110320266A (en) | A kind of flexible microwave sensor and preparation method thereof and detection method | |
CN107196028A (en) | A kind of dynamic adjustable attenuator of the substrate integration wave-guide based on graphene | |
CN102880370B (en) | Touch-control sensor of a kind of capacitive touch screen with film structure and preparation method thereof | |
TW201037055A (en) | Ambient-curable anisotropic conductive adhesive | |
CN110498913A (en) | Modified liquid crystal polymer, polymer film and corresponding preparation method | |
CN110887848A (en) | A Deformable Absorbing Material Plate Reflectivity Test Method | |
Lan et al. | X‐band flexible bandpass filter based on ultra‐thin liquid crystal polymer substrate | |
CN114373580A (en) | A flexible transmission line and its application | |
Sivapurapu et al. | Flexible and ultra-thin glass substrates for RF applications | |
CN103529299A (en) | Four-line measuring method used for studying piezoresistive characteristics of conducting polymer composite materials | |
CN201270276Y (en) | Novel conversion apparatus for integrated waveguide and rectangular waveguide | |
CN107228982A (en) | The device of conducting resinl volume resistivity measurement | |
CN206876767U (en) | The device of conducting resinl volume resistivity measurement | |
CN102097158A (en) | Anisotropic conductive film structure | |
CN109884087B (en) | High Sensitivity Microwave Humidity Sensor Based on Two-dimensional Ribbon MoO3 Nanomaterials | |
Amey et al. | High frequency electrical characterization of electronic packaging materials: Environmental and process considerations | |
CN203120284U (en) | Flexible printed circuit (FPC) and liquid crystal display (LCD) | |
TWI644789B (en) | Resin composition for forming an insulating layer and composite metal substrate structure | |
CN108091967B (en) | Graphene-based half-mode substrate integrated waveguide dynamically adjustable attenuator | |
CN207320285U (en) | A kind of substrate integration wave-guide dynamic adjustable attenuator based on graphene | |
CN108882515A (en) | The processing method and mobile terminal of a kind of signal transmission device part, signal transmission device part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |