CN114368369B - 一种适应路面摩擦系数的底盘制动系统集成控制方法 - Google Patents

一种适应路面摩擦系数的底盘制动系统集成控制方法 Download PDF

Info

Publication number
CN114368369B
CN114368369B CN202210279225.XA CN202210279225A CN114368369B CN 114368369 B CN114368369 B CN 114368369B CN 202210279225 A CN202210279225 A CN 202210279225A CN 114368369 B CN114368369 B CN 114368369B
Authority
CN
China
Prior art keywords
tire
vehicle
braking
control
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210279225.XA
Other languages
English (en)
Other versions
CN114368369A (zh
Inventor
张辉
巨志扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202210279225.XA priority Critical patent/CN114368369B/zh
Publication of CN114368369A publication Critical patent/CN114368369A/zh
Application granted granted Critical
Publication of CN114368369B publication Critical patent/CN114368369B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17551Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve determining control parameters related to vehicle stability used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17554Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for enhancing stability around the vehicles longitudinal axle, i.e. roll-over prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1764Regulation during travel on surface with different coefficients of friction, e.g. between left and right sides, mu-split or between front and rear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

本发明公开了一种适应路面摩擦系数的底盘制动系统集成控制方法,以制动系统作为控制机构,集成了横向稳定性控制、制动防抱死控制和车身防侧翻控制,具体步骤如下:步骤一、以各轮胎制动力矩为输入,建立面向横向、侧倾及滑移率集成控制的车辆底盘动力学模型;步骤二、根据所建立的动力学模型,设计基于MPC的制动系统集成控制器;步骤三、基于路面摩擦系数和系统状态在线调整MPC控制器中的目标函数;步骤四、基于调整后参数和实时状态测量值,根据MPC控制算法计算控制输入,并由制动系统实现制动力矩控制。本发明兼顾横向稳定、制动防抱死、防侧翻的控制目标,在路面附着状况变化的情况下仍然保持良好的车辆底盘集成控制性能。

Description

一种适应路面摩擦系数的底盘制动系统集成控制方法
技术领域
本发明涉及汽车底盘控制技术领域,具体涉及在不同的路面附着条件下汽车智能底盘的集成控制方法。
背景技术
近年来,智能汽车尤其无人驾驶汽车受到越来越多的关注,与之对应的智能底盘控制技术也在快速发展。智能化的底盘能够实时监测车辆状态,对驾驶任务做出及时准确的响应,提高行车的安全性。
制动系统作为汽车中不可缺少的部件对行车安全起着至关重要的作用。制动系统通过对车辆减速可避免车辆横向失稳、避免车轮抱死并可以防止车辆侧翻。
在传统线控底盘控制中,制动系统对于汽车系统的影响分析及控制多通过解耦进行。制动系统对于横向稳定性、制动防抱死和侧倾的影响多分别对于解耦子系统进行研究。相应的,制动系统的控制方法也多针对特定的子系统进行单独设计。然而在实际的车辆行驶过程中,这些子系统之间都是相互耦合的,考虑制动系统对各不同子系统影响的集成控制方法能得到更好的控制性能。
在制动系统集成控制方法中基本都基于路面附着系数不变的假设进行,所设计的控制器在路面条件发生变化时往往控制性能变差,达不到预期的控制效果。为解决以上问题,本发明提出了一种考虑轮胎与路面摩擦系数变化的制动系统集成控制方法,在综合考虑横向稳定控制、制动防抱死控制和防侧翻控制的同时能根据路面摩擦系数变化调整控制器参数并保持良好的底盘控制性能。
发明内容
本发明针对路面摩擦系数变化的情况及横向稳定性、制动防抱死和防侧翻的目标,提出了一种基于模型预测控制(MPC)的底盘制动系统集成控制方法。旨在路面状况变化的情况下确保制动系统对汽车良好的控制性能。本发明采用如下技术方案:
一种适应路面摩擦系数的底盘制动系统集成控制方法,包括以下步骤:
步骤一、综合车辆的横向动力学、侧倾动力学及制动情况下各轮胎的动力学特性建立适用于制动系统集成控制的车辆底盘动力学模型;
步骤二、针对横向稳定、制动防抱死和防侧倾的控制目标,基于所建立的车辆底盘动力学模型,设计基于MPC算法的制动系统集成控制器;
步骤三、根据路面摩擦系数调整制动系统集成控制器中的期望状态值实现控制算法对于路面摩擦系数的适应,根据车辆系统实时状态调整制动系统集成控制器中目标函数权重系数实现集成控制目标;
步骤四、根据调整后的期望状态值和目标函数权重系数、车辆系统实时状态测量值求解制动系统集成控制器对应的优化问题,得到制动系统应作用于车轮的制动力矩并由制动系统执行,重复步骤三和步骤四,实现实时反馈的集成控制。
进一步,所述车辆底盘动力学模型具体为:
Figure 695453DEST_PATH_IMAGE001
其中,
Figure 962618DEST_PATH_IMAGE002
Figure 537955DEST_PATH_IMAGE003
Figure 139838DEST_PATH_IMAGE004
Figure 724403DEST_PATH_IMAGE005
Figure 829762DEST_PATH_IMAGE006
Figure 90848DEST_PATH_IMAGE007
Figure 914448DEST_PATH_IMAGE008
Figure 37125DEST_PATH_IMAGE009
式中,i=flfrrlrr,其中flfrrlrr分别代表左前轮、右前轮、左后轮、右后轮;
Figure 262570DEST_PATH_IMAGE010
Figure 445289DEST_PATH_IMAGE011
分别为车辆的横向速度和纵向速度,
Figure 506917DEST_PATH_IMAGE012
为车身的横摆角速度,
Figure 433285DEST_PATH_IMAGE013
Figure 513236DEST_PATH_IMAGE014
分别为侧倾角和侧倾角速度,
Figure 866857DEST_PATH_IMAGE015
为轮胎滑移率,
Figure 399470DEST_PATH_IMAGE016
为单位矩阵,
Figure 378796DEST_PATH_IMAGE017
为离散模型的采样周期,
Figure 313254DEST_PATH_IMAGE018
Figure 837776DEST_PATH_IMAGE019
分别为簧载质量和簧载质量质心距侧倾中心的垂向距离,
Figure 123264DEST_PATH_IMAGE020
为重力加速度常数,
Figure 125855DEST_PATH_IMAGE021
Figure 931131DEST_PATH_IMAGE022
分别为悬架刚度系数和悬架阻尼系数,
Figure 626555DEST_PATH_IMAGE023
是整车质量,
Figure 399339DEST_PATH_IMAGE024
为簧载质量关于穿过簧载质量质心平行于x轴的转动惯量,
Figure 940042DEST_PATH_IMAGE025
是整车质量关于z轴的转动惯量,
Figure 114671DEST_PATH_IMAGE026
Figure 230263DEST_PATH_IMAGE027
为施加在相应车轮的制动力矩,
Figure 224764DEST_PATH_IMAGE028
为相应车轮的制动力矩的变化量,
Figure 834737DEST_PATH_IMAGE029
为转矩,
Figure 598294DEST_PATH_IMAGE030
为横向力,
Figure 901099DEST_PATH_IMAGE031
为车辆横向加速度,
Figure 133628DEST_PATH_IMAGE032
为轮胎半径,
Figure 281713DEST_PATH_IMAGE033
表示轮胎纵轴方向轮胎力,
Figure 899776DEST_PATH_IMAGE034
表示轮胎横轴方向轮胎力,
Figure 373483DEST_PATH_IMAGE035
为单个车轮绕过车轮中心轴的转动惯量,
Figure 342576DEST_PATH_IMAGE036
Figure 28772DEST_PATH_IMAGE037
Figure 281768DEST_PATH_IMAGE038
分别为与车辆自身尺寸结构有关的常量矩阵,代表车辆横向力、纵向力、绕z轴转动惯量的变化量与制动力矩变化量之间的转换关系。
进一步,所述基于MPC算法的制动系统集成控制器具体为:
Figure 660797DEST_PATH_IMAGE039
Figure 117186DEST_PATH_IMAGE040
其中,
Figure 872652DEST_PATH_IMAGE041
Figure 199728DEST_PATH_IMAGE042
Figure 765970DEST_PATH_IMAGE043
Figure 709655DEST_PATH_IMAGE044
Figure 3233DEST_PATH_IMAGE045
Figure 715974DEST_PATH_IMAGE046
为状态期望值;
Figure 171226DEST_PATH_IMAGE047
Figure 874913DEST_PATH_IMAGE048
Figure 706603DEST_PATH_IMAGE049
Figure 539429DEST_PATH_IMAGE050
分别为关于横向速度、横摆角速度、侧倾角和侧倾角速度、轮胎滑移率的惩罚权重;
Figure 431162DEST_PATH_IMAGE051
为模型预测控制的滚动时域窗口长度;
Figure 83860DEST_PATH_IMAGE052
为制动系统对单个车轮可施加的最小力矩;
Figure 735553DEST_PATH_IMAGE053
为制动系统对单个车轮可施加的最大力矩。
进一步,所述根据路面摩擦系数调整控制器中的期望状态值具体为:
由前轮转角和路面状况确定的期望横摆角速度为:
Figure 891727DEST_PATH_IMAGE054
,
Figure 219941DEST_PATH_IMAGE055
其中,
Figure 359935DEST_PATH_IMAGE056
是输入转角,
Figure 799006DEST_PATH_IMAGE057
为轴距,
Figure 590114DEST_PATH_IMAGE058
为期望不足转向系数,
Figure 823649DEST_PATH_IMAGE059
为轮胎与地面摩擦系数;
根据Dugoff轮胎模型,轮胎的最佳滑移率
Figure 450939DEST_PATH_IMAGE060
由如下公式确定
Figure 693702DEST_PATH_IMAGE061
Figure 824469DEST_PATH_IMAGE062
其中,
Figure 245217DEST_PATH_IMAGE063
Figure 94225DEST_PATH_IMAGE064
为轮胎纵向刚度和侧偏刚度,
Figure 875099DEST_PATH_IMAGE065
为轮胎侧偏角,
Figure 391531DEST_PATH_IMAGE066
为Dugoff模型中路面附着系数折算因子;
各轮胎期望滑移率根据路面摩擦系数确定为:
Figure 966869DEST_PATH_IMAGE067
其中,
Figure 83598DEST_PATH_IMAGE068
是时间常数,
Figure 668163DEST_PATH_IMAGE069
为ABS开始作用的滑移率阈值,
Figure 39102DEST_PATH_IMAGE070
为达到阈值的时刻,
Figure 785341DEST_PATH_IMAGE071
代表所考虑的轮胎;
基于以上设计,
Figure 359673DEST_PATH_IMAGE072
设计为:
Figure 482349DEST_PATH_IMAGE073
进一步,所述根据车辆系统实时状态调整制动系统集成控制器中目标函数权重系数具体为:
权重系数
Figure 707794DEST_PATH_IMAGE074
调整规则为:
Figure 890514DEST_PATH_IMAGE075
其中,
Figure 716256DEST_PATH_IMAGE076
Figure 377045DEST_PATH_IMAGE077
Figure 456996DEST_PATH_IMAGE078
Figure 76197DEST_PATH_IMAGE079
是非簧载质量,
Figure 608809DEST_PATH_IMAGE080
为非簧载质量质心距地面高度,
Figure 89600DEST_PATH_IMAGE081
为侧倾中心到地面高度;
权重系数
Figure 758479DEST_PATH_IMAGE082
调整规则为:
Figure 548580DEST_PATH_IMAGE083
本发明的优点在于:
(1)本发明建立了一种面向制动系统的横向稳定控制、制动防抱死控制和防侧翻控制的汽车底盘动力学集成控制模型。
(2)本发明设计了一种适应路面摩擦系数变化的制动系统MPC集成控制算法,根据路面附着系数调整MPC控制器中系统状态期望值,使车辆在不同路面状况下能保持良好的控制性能。
(3)本发明设计的MPC控制算法可根据车辆状态值实时调整MPC中的权重系数矩阵实现横向稳定、制动防抱死和防侧翻的集成控制。
附图说明
图1为本发明所述的适应路面摩擦系数变化的横向稳定、制动防抱死及防侧翻底盘集成控制方法的设计流程示意图;
图2为本发明所述的适应路面摩擦系数变化的横向稳定、制动防抱死及防侧翻底盘集成控制方法的结构示意图;
图3为本发明所述的车辆底盘横向动力学模型结构示意图;
图4为本发明所述的车辆侧倾动力学模型结构示意图。
具体实施方式
下面将结合附图对本发明作进一步的详细说明,总体的设计流程如图1所示,总体的结构如图2所示。
步骤一、建立面向横向、侧倾及滑移率集成控制的车辆底盘动力学模型;
对于单个轮胎,如图3所示,沿轮胎纵轴和横轴方向的轮胎力
Figure 568489DEST_PATH_IMAGE084
表示为:
Figure 836659DEST_PATH_IMAGE085
(1)
其中flfrrlrr分别代表左前轮、右前轮、左后轮、右后轮。
Figure 625624DEST_PATH_IMAGE086
表示轮胎纵轴方向轮胎力,
Figure 835894DEST_PATH_IMAGE087
表示轮胎横轴方向轮胎力。那么沿车身纵轴、横轴方向的力
Figure 77519DEST_PATH_IMAGE088
Figure 149381DEST_PATH_IMAGE089
以及关于垂直方向的转矩
Figure 324010DEST_PATH_IMAGE090
可表示为:
Figure 924756DEST_PATH_IMAGE091
(2)
Figure 935568DEST_PATH_IMAGE092
,
Figure 545541DEST_PATH_IMAGE093
,
Figure 309098DEST_PATH_IMAGE094
其中
Figure 346324DEST_PATH_IMAGE095
为相应车轮的转角,
Figure 828121DEST_PATH_IMAGE096
代表轮距,
Figure 491052DEST_PATH_IMAGE097
Figure 374695DEST_PATH_IMAGE098
分别为前后轮到车辆质心的距离。对于制动系统,控制输入为制动力矩
Figure 582822DEST_PATH_IMAGE099
,在小滑移率假设下,以制动力的变化量
Figure 551915DEST_PATH_IMAGE100
作为控制系统输入,因此纵向力增量
Figure 238111DEST_PATH_IMAGE101
,横向力增量
Figure 992572DEST_PATH_IMAGE102
,转矩增量
Figure 106021DEST_PATH_IMAGE103
可进一步表示为:
Figure 562410DEST_PATH_IMAGE104
(3)
Figure 52298DEST_PATH_IMAGE105
其中
Figure 910532DEST_PATH_IMAGE106
为轮胎半径。以此增量作为输入,参考图3和图4,考虑横向及滚转的车辆动力学模型为:
Figure 709730DEST_PATH_IMAGE107
(4)
Figure 653415DEST_PATH_IMAGE108
(5)
Figure 946993DEST_PATH_IMAGE109
(6)
Figure 394155DEST_PATH_IMAGE110
(7)
其中
Figure 380566DEST_PATH_IMAGE010
Figure 296700DEST_PATH_IMAGE011
分别为车辆的横向速度和纵向速度,
Figure 393969DEST_PATH_IMAGE012
为车身的横摆角速度,
Figure 695637DEST_PATH_IMAGE111
Figure 852949DEST_PATH_IMAGE112
分别为侧倾角和侧倾角速度,
Figure 505647DEST_PATH_IMAGE113
Figure 390296DEST_PATH_IMAGE019
分别为簧载质量和簧载质量质心距侧倾中心的垂向距离,
Figure 812050DEST_PATH_IMAGE020
为重力加速度常数,
Figure 140263DEST_PATH_IMAGE114
Figure 14678DEST_PATH_IMAGE022
分别为悬架刚度系数和悬架阻尼系数,
Figure 719329DEST_PATH_IMAGE023
是整车质量,
Figure 11901DEST_PATH_IMAGE115
为簧载质量关于穿过簧载质量质心平行于x轴的转动惯量,
Figure 245436DEST_PATH_IMAGE116
是整车质量关于z轴的转动惯量,
Figure 872727DEST_PATH_IMAGE117
。在本发明中ABS系统的控制目标为追踪给定的滑移率
Figure 584331DEST_PATH_IMAGE118
,在车轮转角为小角度的假设下,轮胎滑移率动力学模型为:
Figure 246256DEST_PATH_IMAGE119
(8)
其中
Figure 165540DEST_PATH_IMAGE120
为车辆横向加速度,
Figure 14547DEST_PATH_IMAGE011
为车辆纵向速度,
Figure 795421DEST_PATH_IMAGE035
为车轮关于过车轮中心轴的转动惯量,
Figure 46274DEST_PATH_IMAGE027
为作用在相应车轮的制动力矩。
在模型(4)(5)(6)(7)(8)的基础上,底盘的离散动力学模型为:
Figure 887191DEST_PATH_IMAGE121
(9)
其中
Figure 239806DEST_PATH_IMAGE016
为单位矩阵,
Figure 558792DEST_PATH_IMAGE122
为离散模型的采样周期,
Figure 664151DEST_PATH_IMAGE123
Figure 675969DEST_PATH_IMAGE003
Figure 499569DEST_PATH_IMAGE124
Figure 622246DEST_PATH_IMAGE125
Figure 96958DEST_PATH_IMAGE126
Figure 14099DEST_PATH_IMAGE127
Figure 590574DEST_PATH_IMAGE128
Figure 516941DEST_PATH_IMAGE009
步骤二、根据所建立的动力学模型,设计基于MPC算法的制动系统集成控制器。
基于底盘动力模型(9),在制动系统制动力约束条件下设计控制器使得系统状态能尽可能好的跟踪其期望值,MPC集成控制器设计如下:
Figure 331314DEST_PATH_IMAGE039
Figure 701246DEST_PATH_IMAGE129
(10)
其中,
Figure 233859DEST_PATH_IMAGE130
Figure 698338DEST_PATH_IMAGE131
Figure 898375DEST_PATH_IMAGE132
Figure 422897DEST_PATH_IMAGE133
Figure 692074DEST_PATH_IMAGE134
Figure 960244DEST_PATH_IMAGE135
为MPC控制算法的滚动时域窗口的长度,
Figure 14788DEST_PATH_IMAGE136
,
Figure 444632DEST_PATH_IMAGE137
为可施加在车轮上的最小和最大力矩。上式中各权重参数Q为对各对应状态偏离期望值的惩罚程度。在此MPC控制器算法中,成本函数第一部分的目标是使系统状态值跟踪期望状态值并尽量减少控制器的能量输入,第二部分目标是尽量使系统终态达到期望值。通过最小化过程成本和终态成本,使系统状态能较好跟踪期望值并尽量减少控制器作用的能量。为适应不同的路面状况,状态期望值
Figure 217416DEST_PATH_IMAGE138
需要根据路面摩擦系数进行在线调整。为达到集成控制目标,权重
Figure 774430DEST_PATH_IMAGE139
Figure 683480DEST_PATH_IMAGE140
需要根据车辆的制动和侧倾状态进行在线调整,其他权重系数
Figure 549805DEST_PATH_IMAGE141
Figure 544306DEST_PATH_IMAGE142
为常值。
步骤三:基于路面摩擦系数和系统状态在线调整MPC控制器中的目标函数。由前轮转角和路面状况确定的期望横摆角速度为:
Figure 419858DEST_PATH_IMAGE054
,
Figure 432682DEST_PATH_IMAGE055
(11)
其中
Figure 469909DEST_PATH_IMAGE056
是输入转角,
Figure 951706DEST_PATH_IMAGE057
为轴距,
Figure 365369DEST_PATH_IMAGE058
为期望不足转向系数,
Figure 249012DEST_PATH_IMAGE059
为轮胎与地面摩擦系数。下面根据路面状况调整期望轮胎滑移率。根据Dugoff轮胎模型,轮胎的最佳滑移率
Figure 942292DEST_PATH_IMAGE060
由如下公式确定
Figure 911385DEST_PATH_IMAGE061
Figure 863161DEST_PATH_IMAGE143
(12)
其中,
Figure 601310DEST_PATH_IMAGE063
Figure 980338DEST_PATH_IMAGE144
为轮胎纵向刚度和侧偏刚度,
Figure 685995DEST_PATH_IMAGE065
为轮胎侧偏角,
Figure 175882DEST_PATH_IMAGE066
为Dugoff模型中路面附着系数折算因子。进一步的,各轮胎期望滑移率可根据路面摩擦系数确定为:
Figure 34117DEST_PATH_IMAGE145
(13)
其中
Figure 584047DEST_PATH_IMAGE068
是时间常数,可取20,
Figure 262153DEST_PATH_IMAGE146
为ABS开始作用的滑移率阈值,一般取0.1到0.2之间的数值,
Figure 555731DEST_PATH_IMAGE147
为达到阈值的时刻,
Figure 19205DEST_PATH_IMAGE149
代表所考虑的轮胎。基于以上设计,
Figure 5615DEST_PATH_IMAGE150
设计为:
Figure 171017DEST_PATH_IMAGE151
(14)
权重系数
Figure 268286DEST_PATH_IMAGE152
调整规则为:
Figure 569955DEST_PATH_IMAGE153
(15)
其中,
Figure 976534DEST_PATH_IMAGE076
Figure 363653DEST_PATH_IMAGE154
Figure 264613DEST_PATH_IMAGE078
Figure 686367DEST_PATH_IMAGE155
是非簧载质量,
Figure 14580DEST_PATH_IMAGE080
为非簧载质量质心距地面高度,
Figure 639728DEST_PATH_IMAGE081
为侧倾中心到地面高度。权重系数
Figure 78799DEST_PATH_IMAGE156
调整规则为:
Figure 620639DEST_PATH_IMAGE157
(16)。
步骤四:基于调整后的期望状态值和目标函数权重系数和车辆系统实时状态测量值,求解制动系统集成控制器对应的优化问题(10),得到实时的制动力矩输入。将求解的制动力矩通过执行器(底盘制动系统)作用于各车轮,并重复步骤三和四,实现实时反馈的集成控制目标。
本发明兼顾横向稳定、制动防抱死、防侧翻的控制目标,基于路面摩擦系数估计值和系统状态值,设计了适应路面摩擦系数变化的底盘集成控制方法。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种适应路面摩擦系数的底盘制动系统集成控制方法,其特征在于,包括以下步骤:
步骤一、综合车辆的横向动力学、侧倾动力学及制动情况下各轮胎的动力学特性建立适用于制动系统集成控制的车辆底盘动力学模型;
步骤二、针对横向稳定、制动防抱死和防侧倾的控制目标,基于所建立的车辆底盘动力学模型,设计基于MPC算法的制动系统集成控制器;
步骤三、根据路面摩擦系数调整制动系统集成控制器中的期望状态值实现控制算法对于路面摩擦系数的适应,根据车辆系统实时状态调整制动系统集成控制器中目标函数权重系数实现集成控制目标;
步骤四、根据调整后的期望状态值和目标函数权重系数、车辆系统实时状态测量值求解制动系统集成控制器对应的优化问题,得到制动系统应作用于车轮的制动力矩并由制动系统执行,重复步骤三和步骤四,实现实时反馈的集成控制;
所述车辆底盘动力学模型具体为:
Figure 975417DEST_PATH_IMAGE001
其中,
Figure 824555DEST_PATH_IMAGE002
Figure 247446DEST_PATH_IMAGE003
Figure 713194DEST_PATH_IMAGE004
Figure 145312DEST_PATH_IMAGE005
Figure 52219DEST_PATH_IMAGE006
Figure 911591DEST_PATH_IMAGE007
Figure 333476DEST_PATH_IMAGE008
Figure 569285DEST_PATH_IMAGE009
式中,下标flfrrlrr分别代表左前轮、右前轮、左后轮、右后轮;
Figure 658595DEST_PATH_IMAGE010
Figure 892130DEST_PATH_IMAGE011
分别为车辆的横向速度和纵向速度,
Figure 50579DEST_PATH_IMAGE012
为车身的横摆角速度,
Figure 575233DEST_PATH_IMAGE013
Figure 768317DEST_PATH_IMAGE014
分别为侧倾角和侧倾角速度,
Figure 923486DEST_PATH_IMAGE015
为轮胎滑移率,
Figure 834810DEST_PATH_IMAGE016
为单位矩阵,
Figure 897575DEST_PATH_IMAGE017
为离散模型的采样周期,
Figure 945165DEST_PATH_IMAGE018
Figure 67973DEST_PATH_IMAGE019
分别为簧载质量和簧载质量质心距侧倾中心的垂向距离,
Figure 669856DEST_PATH_IMAGE020
为重力加速度常数,
Figure 785579DEST_PATH_IMAGE021
Figure 641671DEST_PATH_IMAGE022
分别为悬架刚度系数和悬架阻尼系数,
Figure 450227DEST_PATH_IMAGE023
是整车质量,
Figure 555718DEST_PATH_IMAGE024
为簧载质量关于穿过簧载质量质心平行于x轴的转动惯量,
Figure 475132DEST_PATH_IMAGE025
是整车质量关于z轴的转动惯量,
Figure 700577DEST_PATH_IMAGE026
T bfl T bfr T brl T brr 分别为施加在左前轮、右前轮、左后轮、右后轮的制动力矩,δT bfl δT bfr δT brl δT brr 分别为左前轮、右前轮、左后轮、右后轮的制动力矩的变化量,
Figure 165187DEST_PATH_IMAGE027
为转矩,
Figure 476083DEST_PATH_IMAGE028
为横向力,
Figure 949921DEST_PATH_IMAGE029
为车辆横向加速度,
Figure 561031DEST_PATH_IMAGE030
为轮胎半径,f xfl f xfr f xrl f xrr 分别表示左前轮、右前轮、左后轮、右后轮的轮胎纵轴方向轮胎力,
Figure 914652DEST_PATH_IMAGE031
为单个车轮绕过车轮中心轴的转动惯量,
Figure 18172DEST_PATH_IMAGE032
Figure 544968DEST_PATH_IMAGE033
Figure 964579DEST_PATH_IMAGE034
分别为与车辆自身尺寸结构有关的常量矩阵,代表车辆横向力、纵向力、绕z轴转动惯量的变化量与制动力矩变化量之间的转换关系。
2.根据权利要求1所述的适应路面摩擦系数的底盘制动系统集成控制方法,其特征在于,所述基于MPC算法的制动系统集成控制器具体为:
Figure 285839DEST_PATH_IMAGE035
Figure 118797DEST_PATH_IMAGE036
其中,
Figure 918126DEST_PATH_IMAGE037
Figure 254560DEST_PATH_IMAGE038
Figure 949984DEST_PATH_IMAGE039
Figure 253926DEST_PATH_IMAGE040
Figure 810941DEST_PATH_IMAGE041
Figure 516729DEST_PATH_IMAGE042
为状态期望值;
Figure 930524DEST_PATH_IMAGE043
Figure 721762DEST_PATH_IMAGE044
Figure 66156DEST_PATH_IMAGE045
Figure 642762DEST_PATH_IMAGE046
分别为关于横向速度、横摆角速度、侧倾角和侧倾角速度、轮胎滑移率的惩罚权重;
Figure 211146DEST_PATH_IMAGE047
为模型预测控制的滚动时域窗口长度;
Figure 443676DEST_PATH_IMAGE048
为制动系统对单个车轮可施加的最小力矩;
Figure 654077DEST_PATH_IMAGE049
为制动系统对单个车轮可施加的最大力矩。
3.根据权利要求2所述的适应路面摩擦系数的底盘制动系统集成控制方法,其特征在于,所述根据路面摩擦系数调整控制器中的期望状态值具体为:
由前轮转角和路面状况确定的期望横摆角速度为:
Figure 819610DEST_PATH_IMAGE050
,
Figure 27738DEST_PATH_IMAGE051
其中,
Figure 793568DEST_PATH_IMAGE052
是输入转角,
Figure 27235DEST_PATH_IMAGE053
为轴距,
Figure 562121DEST_PATH_IMAGE054
为期望不足转向系数,
Figure 426303DEST_PATH_IMAGE055
为轮胎与地面摩擦系数;
根据Dugoff轮胎模型,轮胎的最佳滑移率
Figure 413851DEST_PATH_IMAGE056
由如下公式确定
Figure 716787DEST_PATH_IMAGE057
Figure 309443DEST_PATH_IMAGE058
其中,
Figure 656110DEST_PATH_IMAGE059
Figure 147266DEST_PATH_IMAGE060
为轮胎纵向刚度和侧偏刚度,
Figure 972002DEST_PATH_IMAGE061
为轮胎侧偏角,
Figure 169897DEST_PATH_IMAGE062
为Dugoff模型中路面附着系数折算因子,F Z 为轮胎所承受的垂向载荷;
各轮胎期望滑移率根据路面摩擦系数确定为:
Figure 687466DEST_PATH_IMAGE063
其中,
Figure 400338DEST_PATH_IMAGE064
是时间常数,
Figure 294344DEST_PATH_IMAGE065
为ABS开始作用的滑移率阈值,
Figure 596013DEST_PATH_IMAGE066
为达到阈值的时刻,
Figure 300795DEST_PATH_IMAGE067
代表所考虑的轮胎;
基于以上设计,
Figure 750231DEST_PATH_IMAGE068
设计为:
Figure 667502DEST_PATH_IMAGE069
4.根据权利要求3所述的适应路面摩擦系数的底盘制动系统集成控制方法,其特征在于,所述根据车辆系统实时状态调整制动系统集成控制器中目标函数权重系数具体为:
权重系数
Figure 89256DEST_PATH_IMAGE070
调整规则为:
Figure 964939DEST_PATH_IMAGE071
其中,
Figure 636092DEST_PATH_IMAGE072
Figure 75164DEST_PATH_IMAGE073
Figure 898894DEST_PATH_IMAGE074
Figure 194747DEST_PATH_IMAGE075
是非簧载质量,
Figure 307190DEST_PATH_IMAGE076
为非簧载质量质心距地面高度,
Figure 815532DEST_PATH_IMAGE077
为侧倾中心到地面高度,T表示轮距;
权重系数
Figure 24928DEST_PATH_IMAGE078
调整规则为:
Figure 429364DEST_PATH_IMAGE079
CN202210279225.XA 2022-03-22 2022-03-22 一种适应路面摩擦系数的底盘制动系统集成控制方法 Active CN114368369B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210279225.XA CN114368369B (zh) 2022-03-22 2022-03-22 一种适应路面摩擦系数的底盘制动系统集成控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210279225.XA CN114368369B (zh) 2022-03-22 2022-03-22 一种适应路面摩擦系数的底盘制动系统集成控制方法

Publications (2)

Publication Number Publication Date
CN114368369A CN114368369A (zh) 2022-04-19
CN114368369B true CN114368369B (zh) 2022-06-07

Family

ID=81145110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210279225.XA Active CN114368369B (zh) 2022-03-22 2022-03-22 一种适应路面摩擦系数的底盘制动系统集成控制方法

Country Status (1)

Country Link
CN (1) CN114368369B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560152B2 (en) * 2020-12-23 2023-01-24 Automotive Research & Testing Center Method and system for controlling movements of an autonomous vehicle with self diagnosis capability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2261093A1 (en) * 2009-06-01 2010-12-15 Ford Global Technologies, LLC Method and system for predictive yaw stability control for automobile
CN106004870A (zh) * 2016-06-23 2016-10-12 吉林大学 一种基于变权重模型预测算法的车辆稳定性集成控制方法
CN109204317A (zh) * 2018-07-24 2019-01-15 吉林大学 轮毂驱动电动汽车纵、横和垂向力集成控制优化方法
CN111965977A (zh) * 2020-08-06 2020-11-20 长春工业大学 一种基于轮胎均等后备能力的汽车稳定性控制方法
CN113359457A (zh) * 2021-06-21 2021-09-07 清华大学 智能车底盘域控制器的高维动力学模型解算装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2261093A1 (en) * 2009-06-01 2010-12-15 Ford Global Technologies, LLC Method and system for predictive yaw stability control for automobile
CN106004870A (zh) * 2016-06-23 2016-10-12 吉林大学 一种基于变权重模型预测算法的车辆稳定性集成控制方法
CN109204317A (zh) * 2018-07-24 2019-01-15 吉林大学 轮毂驱动电动汽车纵、横和垂向力集成控制优化方法
CN111965977A (zh) * 2020-08-06 2020-11-20 长春工业大学 一种基于轮胎均等后备能力的汽车稳定性控制方法
CN113359457A (zh) * 2021-06-21 2021-09-07 清华大学 智能车底盘域控制器的高维动力学模型解算装置及方法

Also Published As

Publication number Publication date
CN114368369A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
US9636965B2 (en) Suspension system
US8718872B2 (en) Vehicle attitude controller
CN111267835B (zh) 基于模型预测算法的四轮独立驱动汽车稳定性控制方法
CN111391822B (zh) 一种极限工况下汽车横纵向稳定性协同控制方法
CN109291932B (zh) 基于反馈的电动汽车横摆稳定性实时控制装置及方法
CN106970524B (zh) 用于主动悬架的车辆侧倾运动安全线性二次型最优lqg控制器设计方法
US5852787A (en) Vehicle suspension control
CN113221257B (zh) 考虑控制区域的极限工况下车辆横纵向稳定控制方法
CN112406854B (zh) 轮毂电机驱动越野车侧倾稳定性控制方法
CN111891118A (zh) 基于模型预测控制算法的电动汽车防侧翻控制方法
CN111391595A (zh) 车辆防侧翻主动倾摆模型预测控制方法
US20220396312A1 (en) Control method for a road vehicle with independent engines acting on the wheels of the same axle and relative road vehicle
CN114368369B (zh) 一种适应路面摩擦系数的底盘制动系统集成控制方法
Saikia et al. Vehicle stability enhancement using sliding mode based active front steering and direct yaw moment control
CN113978263A (zh) 一种驱动轮防滑与转矩优化融合的电动汽车稳定性控制方法
Venhovens et al. Semi-active control of vibration and attitude of vehicles
Sename et al. The design of an H∞/LPV active braking control to improve vehicle roll stability
Her et al. Development of integrated control of electronic stability control, continuous damping control and active anti-roll bar for vehicle yaw stability
CN112689569A (zh) 悬架控制方法、悬架控制装置和车辆
Tavernini et al. Model-based active brake force distribution for pitch angle minimization
CN113071282B (zh) 一种车辆调节方法及装置
CN115703363A (zh) 用于确定道路车辆的驱动车轮的优化的扭矩分配的方法和相关的道路车辆
US11945428B2 (en) Vehicle motion control apparatus
CN114056027A (zh) 一种空气悬架的车高和阻尼协同控制方法
Wang et al. Lateral stability study of a vehicle fitted with hydraulically interconnected suspension in slalom maneuver

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant