CN114365568A - 用于在nr v2x中进行资源选择的方法和装置 - Google Patents

用于在nr v2x中进行资源选择的方法和装置 Download PDF

Info

Publication number
CN114365568A
CN114365568A CN202080060717.9A CN202080060717A CN114365568A CN 114365568 A CN114365568 A CN 114365568A CN 202080060717 A CN202080060717 A CN 202080060717A CN 114365568 A CN114365568 A CN 114365568A
Authority
CN
China
Prior art keywords
pool
exception
exception pool
resources
resource
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080060717.9A
Other languages
English (en)
Inventor
R·托马斯
徐翰瞥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN114365568A publication Critical patent/CN114365568A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文中提供了一种第一设备(100)在无线通信系统中执行资源选择的方法。该方法可以包括以下步骤:从基站(200)接收包括与异常池相关的配置信息的系统信息;基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者来选择第一异常池或第二异常池;从所选择的异常池中选择资源;以及使用所述资源执行副链路(SL)通信。

Description

用于在NR V2X中进行资源选择的方法和装置
技术领域
本公开涉及无线通信系统。
背景技术
副链路(SL)通信是在用户设备(UE)之间建立直接链路并且UE直接彼此交换语音和数据而没有演进节点B(eNB)干预的通信方案。正考虑将SL通信作为因数据流量快速增长而造成的eNB开销的解决方案。
V2X(车辆到一切)是指车辆用于与其他车辆、行人以及装配有基础设施的对象等交换信息的通信技术。V2X可以被分为诸如V2V(车辆到车辆)、V2I(车辆到基础设施)、V2N(车辆到网络)以及V2P(车辆到行人)这样的四种类型。V2X通信可以通过PC5接口和/或Uu接口提供。
此外,由于越来越多的通信设备需要较大的通信容量,所以需要相对于传统无线电接入技术(RAT)增强的移动宽带通信。因此,考虑到对可靠性和等待时间敏感的UE或服务的通信系统设计也已经在讨论,并且考虑到增强移动宽带通信、大规模MTC以及超可靠低等待时间通信(URLLC)的下一代无线电接入技术可以被称为新型RAT(无线电接入技术)或NR(新型无线电)。
图1是用于描述与基于NR之前使用的RAT的V2X通信相比的基于NR的V2X通信的图。图1的实施方式可以与本公开的各种实施方式组合。
关于V2X通信,在讨论在NR之前使用的RAT时,侧重于基于诸如BSM(基本安全消息)、CAM(合作意识消息)和DENM(分散环境通知消息)这样的V2X消息提供安全服务的方案。V2X消息可以包括位置信息、动态信息、属性信息等。例如,UE可以向另一UE发送周期性消息类型CAM和/或事件触发消息类型DENM。
例如,CAM可以包括诸如方向和速度这样的车辆的动态状态信息、诸如大小这样的车辆的静态数据以及诸如外部照明状态、路线细节等这样的基本车辆信息。例如,UE可以广播CAM,并且CAM的等待时间可以少于100ms。例如,UE可以生成DENM,并且在诸如车辆故障、事故等这样的意外情形下将其发送到另一UE。例如,在UE的发送范围内的所有车辆都能接收CAM和/或DENM。在这种情况下,DENM的优先级可以高于CAM。
此后,关于V2X通信,在NR中提出了各种V2X场景。例如,这各种V2X场景可以包括车辆编队、高级驾驶、扩展传感器、远程驾驶等。
例如,基于车辆编队,车辆可以通过动态地形成组而一起移动。例如,为了基于车辆编队执行编队操作,属于该组的车辆可以从领头车辆接收周期性数据。例如,属于该组的车辆可以通过使用周期性数据来减小或增大车辆之间的间隔。
例如,基于高级驾驶,车辆可以是半自动或全自动的。例如,每个车辆都可以基于从附近车辆和/或附近逻辑实体的本地传感器获得的数据来调节轨迹或操纵。另外,例如,每个车辆可以与附近车辆共享驾驶意图。
例如,基于扩展传感器,可以在车辆、逻辑实体、行人的UE和/或V2X应用服务器之间交换通过本地传感器获得的原始数据、处理后的数据或实时视频数据。因此,例如,与使用自传感器进行检测的环境相比,车辆能识别出进一步改善的环境。
例如,基于远程驾驶,对于危险环境中的远程车辆或不能驾驶的人,远程驾驶员或V2X应用可以操作或控制远程车辆。例如,如果如公共交通一样路线是可预测的,则基于云计算的驾驶可以用于远程车辆的操作或控制。另外,例如,可以考虑对基于云的后端服务平台的访问以进行远程驾驶。
此外,在基于NR的V2X通信中讨论了指定用于诸如车辆排队、高级驾驶、扩展传感器、远程驾驶等这样的各种V2X场景的服务需求的方案。
发明内容
问题的解决方案
根据实施方式,本文中提供了一种由第一设备(100)在无线通信系统中执行资源选择的方法。该方法可以包括以下步骤:从基站(200)接收包括与异常池相关的配置信息的系统信息;基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者来选择所述第一异常池或所述第二异常池;从所选择的异常池中选择资源;以及使用所述资源执行副链路(SL)通信。
有益效果
用户设备(UE)可以高效地执行SL通信。
附图说明
图1是用于描述与基于NR之前使用的RAT的V2X通信相比的基于NR的V2X通信的图。
图2示出了基于本公开的实施方式的NR系统的结构。
图3示出了基于本公开的实施方式的NG-RAN与5GC之间的功能划分。
图4示出了基于本公开的实施方式的无线电协议架构。
图5示出了基于本公开的实施方式的NR系统的结构。
图6示出了基于本公开的实施方式的NR帧的时隙的结构。
图7示出了基于本公开的实施方式的BWP的示例。
图8示出了基于本公开的实施方式的SL通信的无线电协议架构。
图9示出了基于本公开的实施方式的执行V2X或SL通信的UE。
图10示出了基于本公开的实施方式的由UE基于传输模式执行V2X或SL通信的过程。
图11示出了基于本公开的实施方式的三种播送(cast)类型。
图12示出了TX UE执行SL通信的过程。
图13示出了TX UE执行SL通信的过程。
图14示出了UE选择发送资源的过程。
图15示出了第一设备执行资源选择的过程。
图16示出了基站配置异常池的过程。
图17示出了基于本公开的实施方式的通信系统1。
图18示出了基于本公开的实施方式的无线装置。
图19示出了基于本公开的实施方式的用于传输信号的信号处理电路。
图20示出了基于本公开的实施方式的无线装置的另一示例。
图21示出了基于本公开的实施方式的手持装置。
图22示出了基于本公开的实施方式的车辆或自主车辆。
具体实施方式
在本说明书中,“A或B”可以意指“仅A”、“仅B”或“A和B二者”。换句话说,在本说明书中,“A或B”可以被解释为“A和/或B”。例如,在本说明书中,“A、B或C”可以意指“仅A”、“仅B”、“仅C”或“A、B、C的任何组合”。
在本说明书中使用的斜杠(/)或逗号可以意指“和/或”。例如,“A/B”可以意指“A和/或B”。因此,“A/B”可以意指“仅A”、“仅B”或“A和B二者”。例如,“A、B、C”可以意指“A、B或C”。
在本说明书中,“A和B中的至少一个”可以意指“仅A”、“仅B”或“A和B二者”。另外,在本说明书中,表述“A或B中的至少一个”或“A和/或B中的至少一个”可以被解释为“A和B中的至少一个”。
另外,在本说明书中,“A、B和C中的至少一个”可以意指“仅A”、“仅B”、“仅C”或“A、B和C的任何组合”。另外,“A、B或C中的至少一个”或“A、B和/或C中的至少一个”可以意指“A、B和C中的至少一个”。
另外,在本说明书中使用的括号可以意指“例如”。具体地,当被指示为“控制信息(PDCCH)”时,这可以意指提出“PDCCH”作为“控制信息”的示例。换句话说,本说明书的“控制信息”不限于“PDCCH”,并且可以提出“PDDCH”作为“控制信息”的示例。具体地,当被指示为“控制信息(即,PDCCH)”时,这也可以意指提出“PDCCH”作为“控制信息”的示例。
本说明书中的一副附图中分别描述的技术特征可以被分别实现,或者可以被同时实现。
下面描述的技术可以用在诸如码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)等这样的各种无线通信系统中。CDMA可以利用诸如通用陆地无线电接入(UTRA)或CDMA-2000这样的无线电技术实现。TDMA可以利用诸如全球移动通信系统(GSM)/通用分组无线服务(GPRS)/增强数据速率GSM演进(EDGE)这样的无线电技术实现。OFDMA可以利用诸如电子电气工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、演进UTRA(E-UTRA)等这样的无线电技术实现。IEEE 802.16m是IEEE 802.16e的演进版本,并且提供对于基于IEEE 802.16e的系统的后向兼容性。UTRA是通用移动电信系统(UMTS)的一部分。第三代合作伙伴计划(3GPP)长期演进(LTE)是使用E-UTRA的演进UMTS(E-UMTS)的一部分。3GPP LTE在下行链路中使用OFDMA,在上行链路中使用SC-FDMA。LTE-高级(LTE-A)是LTE的演进。
5G NR是与具有高性能、低延时、高可用性等特性的新型全新式移动通信系统相对应的LTE-A后续技术。5G NR可以使用包括小于1GHz的低频带、从1GHz到10GHz的中间频带以及24GHz以上的高频(毫米波)等的所有可用频谱的资源。
为了清楚描述,以下的描述将主要侧重于LTE-A或5G NR。然而,根据本公开的实施方式的技术特征将不仅限于此。
图2示出了基于本公开的实施方式的NR系统的结构。图2的实施方式可以与本公开的各种实施方式组合。
参照图2,下一代无线电接入网络(NG-RAN)可以包括向UE 10提供用户面和控制面协议终止的BS 20。例如,BS 20可以包括下一代节点B(gNB)和/或演进型节点B(eNB)。例如,UE 10可以是固定的或移动的,并且可以被称为诸如移动站(MS)、用户终端(UT)、订户站(SS)、移动终端(MT)、无线装置等这样的其他术语。例如,BS可以被称为与UE 10通信的固定站并且可以被称为诸如基站收发器系统(BTS)、接入点(AP)等这样的其它术语。
图2的实施方式例示了仅包括gNB的情况。BS 20可以经由Xn接口相互连接。BS 20可以经由第五代(5G)核心网络(5GC)和NG接口相互连接。更具体地,BS 20可以经由NG-C接口连接到接入和移动性管理功能(AMF)30,并且可以经由NG-U接口连接到用户面功能(UPF)30。
图3示出了基于本公开的实施方式的NG-RAN与5GC之间的功能划分。图3的实施方式可以与本公开的各种实施方式结合。
参照图3,gNB可以提供诸如小区间无线电资源管理(小区间RRM)、无线电承载(RB)控制、连接移动性控制、无线电准入控制、测量配置和规定、动态资源分配等这样的功能。AMF可以提供诸如非接入层(NAS)安全性、空闲状态移动性处理等这样的功能。UPF可以提供诸如移动性锚定、协议数据单元(PDU)处理等这样的功能。会话管理功能(SMF)可以提供诸如用户设备(UE)互联网协议(IP)地址分配、PDU会话控制等这样的功能。
UE与网络之间的无线电接口协议层可以基于通信系统中公知的开放系统互联(OSI)模型的下三层被分类为第一层(L1)、第二层(L2)以及第三层(L3)。这里,属于第一层的物理(PHY)层使用物理信道提供信息传输服务,并且位于第三层的无线电资源控制(RRC)层控制UE与网络之间的无线电资源。为此,RRC层在UE与BS层之间交换RRC消息。
图4示出了基于本公开的实施方式的无线电协议架构。图4的实施方式可以与本公开的各种实施方式组合。具体地,图4的(a)示出了用于用户面的无线电协议架构,并且图4的(b)示出了用于控制面的无线电协议架构。用户面对应于用于用户数据发送的协议栈,并且控制面对应于用于控制信号发送的协议栈。
参照图4,物理层通过物理信道向上层提供信息传送服务。物理层通过传输信道连接到作为物理层的上层的介质访问控制(MAC)层。数据通过传输信道在MAC层和物理层之间传送。传输信道根据通过无线电接口如何传输数据及其传输什么特性的数据来分类。
在不同的PHY层(即,发送器的PHY层和接收器的PHY层)之间,通过物理信道传送数据。可以使用正交频分复用(OFDM)方案对物理信道进行调制,并且物理信道使用时间和频率作为无线电资源。
MAC层经由逻辑信道向无线电链路控制(RLC)层提供服务,该RLC层是MAC层的高层。MAC层提供将多个逻辑信道映射到多个传输信道的功能。MAC层还通过将多个逻辑信道映射到单个传输信道提供逻辑信道复用的功能。MAC层通过逻辑信道提供数据传输服务。
RLC层执行无线电链路控制服务数据单元(RLC SDU)的串联、分割和重组。为了确保无线电承载(RB)所需要的不同服务质量(QoS),RLC层提供三个类型的操作模式,即,透明模式(TM)、非确认模式(UM)以及确认模式(AM)。AM RLC通过自动重传请求(ARQ)提供错误纠正。
无线电资源控制(RRC)层仅定义在控制面中。并且,RRC层执行与无线电承载的配置、重配置以及释放相关联的物理信道、传输信道以及逻辑信道的控制的功能。RB是指由第一层(即,PHY层)和第二层(即,MAC层、RLC层以及PDCP(分组数据汇聚协议)层)提供以在UE与网络之间传输数据的逻辑路径。
用户面中的分组数据汇聚协议(PDCP)的功能包括用户数据的传输、报头压缩和加密。控制面中的分组数据汇聚协议(PDCP)的功能包括控制面数据的传输和加密/完整性保护。
仅在用户面中定义了服务数据适配协议(SDAP)层。SDAP层执行服务质量(QoS)流与数据无线承载(DRB)之间的映射以及DL分组和UL分组二者中的QoS流ID(QFI)标记。
RB的配置是指用于指定无线电协议层和信道属性以提供特定服务以及用于确定相应的详细参数和操作方法的处理。RB随后可以被分类为两个类型,即,信令无线电承载(SRB)和数据无线电承载(DRB)。SRB被用作用于在控制面中发送RRC消息的路径,DRB被用作用于在用户面中发送用户数据的路径。
当RRC连接在UE的RRC层和E-UTRAN的RRC层之间建立时,UE处于RRC连接(RRC_CONNECTED)状态,否则UE可以处于RRC空闲(RRC_IDLE)状态。在NR的情况下,附加地定义了RRC不活动(RRC_INACTIVE)状态,并且处于RRC_INACTIVE状态的UE可以保持与核心网的连接而释放其与BS的连接。
从网络向UE发送(或传输)数据的下行链路传输信道包括发送系统信息的广播信道(BCH)和发送其他用户业务或控制消息的下行链路共享信道(SCH)。下行链路多播或广播服务的业务或控制消息可以经由下行链路SCH发送或者可以经由单独的下行链路多播信道(MCH)发送。此外,从UE向网络发送(或传输)数据的上行链路传输信道包括发送初始控制消息的随机接入信道(RACH)和发送其他用户业务或控制消息的上行链路共享信道(SCH)。
存在于比传输信道更高的层且映射到传输信道的逻辑信道可以包括广播控制信道(BCCH)、寻呼控制信道(PCCH)、公共控制信道(CCCH)、多播控制信道(MCCH)、多播业务信道(MTCH)等。
物理信道由时域中的多个OFDM符号和频域中的多个子载波配置而成。一个子帧由时域中的多个OFDM符号配置而成。资源块由资源分配单元中的多个子载波和多个OFDM符号配置而成。另外,每个子帧可以使用物理下行链路控制信道(PDCCH)即L1/L2控制信道的相应子帧的特定OFDM符号(例如,第一OFDM符号)的特定子载波。传输时间间隔(TTI)是指子帧发送的单位时间。
图5示出了基于本公开的实施方式的NR系统的结构。图5的实施方式可以与本公开的各种实施方式组合。
参照图5,在NR中,无线电帧可以被用于执行上行链路和下行链路传输。无线电帧的长度为10ms,并且可以定义为由两个半帧(HF)构成。半帧可以包括五个1ms子帧(SF)。子帧(SF)可以被分成一个或更多个时隙,并且子帧内的时隙数目可以基于子载波间隔(SCS)来确定。每个时隙根据循环前缀(CP)可以包括12或14个OFDM(A)符号。
在使用正常CP的情况下,每个时隙可以包括14个符号。在使用扩展CP的情况下,每个时隙可以包括12个符号。本文中,符号可以包括OFDM符号(或CP-OFDM符号)和单载波-FDMA(SC-FDMA)符号(或离散傅里叶变换扩展OFDM(DFT-s-OFDM)符号)。
例示下表1表示在采用正常CP的情况下,基于SCS设置(μ)的每个符号的时隙个数(Nslot symb)、每帧的时隙个数(Nframe,μ slot)和每子帧的时隙个数(Nsubframe,μ slot)。
[表1]
Figure BDA0003521895970000081
表2示出了在使用扩展CP的情况下,基于SCS,每个时隙的符号数目、每帧的时隙数目以及每个子帧的时隙数目的示例。
[表2]
SCS(15*2<sup>μ</sup>) N<sup>slot</sup><sub>symb</sub> N<sup>frame,μ</sup><sub>slot</sub> N<sup>subframe,μ</sup><sub>slot</sub>
60KHz(μ=2) 12 40 4
在NR系统中,被整合到一个UE的多个小区之间的OFDM(A)参数集(例如,SCS、CP长度等)可以被不同地配置。因此,由相同数目的符号构成的时间资源(例如,子帧、时隙或TTI)(为了简单,统称为时间单元(TU))的(绝对时间)持续时间(或区间)在所整合的小区中可以被不同地配置。
在NR中,可以支持用于支持各种5G服务的多个参数集或SCS。例如,在SCS为15kHz的情况下,可以支持传统蜂窝频带的宽范围,并且在SCS为30kHz/60kHz的情况下,可以支持密集的城市、更低的延时、更宽的载波带宽。在SCS为60kHz或更高的情况下,为了克服相位噪声,可以使用大于24.25GHz的带宽。
NR频带可以被定义为两种不同类型的频率范围。两种不同类型的频率范围可以是FR1和FR2。频率范围的值可以改变(或变化),例如,两种不同类型的频率范围可以如在下表3中所示。在NR系统中使用的频率范围当中,FR1可以意指“低于6GHz的范围”,并且FR2可以意指“高于6GHz的范围”,并且也可以被称为毫米波(mmW)。
[表3]
Figure BDA0003521895970000091
如上所述,NR系统中的频率范围的值可以改变(或变化)。例如,如下表4中所示,FR1可以包括410MHz至7125MHz范围内的带宽。更具体地,FR1可以包括6GHz(或5850、5900、5925MHz等)及更高的频带。例如,FR1中所包括的6GHz(或5850、5900、5925MHz等)及更高的频带可以包括未许可频带。未许可频带可以用于各种目的,例如,未许可频带用于车辆特定通信(例如,自动驾驶)。
[表4]
Figure BDA0003521895970000092
图6示出了基于本公开的实施方式的NR帧的时隙的结构。图6的实施方式可以与本公开的各种实施方式结合。
参照图6,时隙在时域中包括多个符号。例如,在正常CP的情况下,一个时隙可以包括14个符号。例如,在扩展CP的情况下,一个时隙可以包括12个符号。另选地,在正常CP的情况下,一个时隙可以包括7个符号。然而,在扩展CP的情况下,一个时隙可以包括6个符号。
载波包括频域中的多个子载波。资源块(RB)可以被定义为频域中的多个连续子载波(例如,12个子载波)。带宽部分(BWP)可以被定义为频域中的多个连续(物理)资源块((P)RB),并且BWP可以对应于一个参数集(例如,SCS、CP长度等)。载波可以包括最多N个BWP(例如,5个BWP)。数据通信可以经由激活的BWP执行。每个元素可以被称为资源网格中的资源元素(RE),并且一个复数符号可以被映射到每个元素。
此外,UE与另一UE之间的无线电接口或UE与网络之间的无线电接口可以包括L1层、L2层和L3层。在本公开的各种实施方式中,L1层可以意指物理层。另外,例如,L2层可以意指MAC层、RLC层、PDCP层和SDAP层中的至少之一。另外,例如,L3层可以意指RRC层。
下文中,将详细描述带宽部分(BWP)和载波。
BWP可以是给定参数集内的物理资源块(PRB)的连续集合。PRB可以选自针对给定载波上的给定参数集的公共资源块(CRB)的连续部分集合。
当使用带宽适应(BA)时,不需要用户设备(UE)的接收带宽和发送带宽与小区的带宽一样宽(或大),并且可以控制(或调节)UE的接收带宽和发送带宽。例如,UE可以从网络/基站接收用于带宽控制(或调节)的信息/配置。在这种情况下,可以基于接收到的信息/配置来执行带宽控制(或调节)。例如,带宽控制(或调节)可以包括带宽的减小/扩大、带宽的位置改变或带宽的子载波间隔的改变。
例如,可以在活动很少的持续时间内减小带宽,以便节省功率。例如,可以从频域重新定位(或移动)带宽的位置。例如,可以从频域重新定位(或移动)带宽的位置,以便增强调度灵活性。例如,带宽的子载波间隔可以改变。例如,带宽的子载波间隔可以改变,以便授权进行不同的服务。小区的总小区带宽的子集可以被称为带宽部分(BWP)。当基站/网络为UE配置BWP时以及当基站/网络将BWP当中的当前处于激活状态的BWP通知给UE时,可以执行BA。
例如,BWP可以是激活BWP、初始BWP和/或默认BWP中的一个。例如,UE不能监测除了在主小区(PCell)内的激活DL BWP之外的DL BWP中的下行链路无线电链路质量。例如,UE不能从激活DL BWP的外部接收PDCCH、物理下行链路共享信道(PDSCH)或信道状态信息-参考信号(CSI-RS)(RRM除外)。例如,UE不能触发针对未激活DL BWP的信道状态信息(CSI)报告。例如,UE不能从非激活DL BWP的外部发送物理上行链路控制信道(PUCCH)或物理上行链路共享信道(PUSCH)。例如,在下行链路的情况下,初始BWP可以被作为针对(由物理广播信道(PBCH)配置的)剩余最小系统信息(RMSI)控制资源集(CORESET)的连续RB集给出。例如,在上行链路的情况下,可以由系统信息块(SIB)针对随机接入过程给出初始BWP。例如,可以由较高层配置默认BWP。例如,默认BWP的初始值可以是初始DL BWP。为了节能,如果UE在预定时间段内无法检测下行链路控制信息(DCI),则UE可以将UE的激活BWP切换成默认BWP。
此外,可以针对SL定义BWP。对于发送和接收,可以使用相同的SL BWP。例如,发送UE可以在特定BWP内发送SL信道或SL信号,并且接收UE可以在同一特定BWP内接收SL信道或SL信号。在许可载波中,SL BWP可以与Uu BWP被分开定义,并且SL BWP可以具有与Uu BWP分开的配置信令。例如,UE可以从基站/网络接收针对SL BWP的配置。可以(预先)针对覆盖范围外的NR V2X UE和RRC_IDLE UE配置SL BWP。对于在RRC_CONNECTED模式下操作的UE,可以在载波内激活至少一个SL BWP。
图7示出了基于本公开的实施方式的BWP的示例。图7的实施方式可以与本公开的各种实施方式组合。假定在图7的实施方式中,BWP的数目为3。
参照图7,公共资源块(CRB)可以是从载波频带的一端到其另一端地进行编号的载波资源块。另外,PRB可以是在每个BWP内被编号的资源块。点A可以指示资源块网格的公共参考点。
可以由点A、相对于点A的偏移(Nstart BWP)和带宽(Nsize BWP)来配置BWP。例如,点A可以是载波的PRB的外部参考点,所有参数集(例如,由网络在对应载波上支持的所有参数集)的子载波0在点A中对齐。例如,偏移可以是给定参数集内的最低子载波与点A之间的PRB距离。例如,带宽可以是给定参数集内的PRB的数目。
下文中,将描述V2X或SL通信。
图8示出了基于本公开的实施方式的S L通信的无线电协议架构。图8的实施方式可以与本公开的各种实施方式组合。更具体地,图8的(a)示出了用户面协议栈,并且图8的(b)示出了控制面协议栈。
下面,将详细描述副链路同步信号(SLSS)和同步信息。
SLSS可以包括主副链路同步信号(PSSS)和辅助副链路同步信号(SSSS)作为SL特定序列。PSSS可以被称为副链路主同步信号(S-PSS),并且SSSS可以被称为副链路辅同步信号(S-SSS)。例如,长度为127的M序列可以用于S-PSS,并且长度为127的gold序列可以用于S-SSS。例如,UE可以将S-PSS用于初始信号检测和同步获取。例如,UE可以将S-PSS和S-SSS用于获取详细的同步并且用于检测同步信号ID。
物理副链路广播信道(PSBCH)可以是用于发送默认(系统)信息的(广播)信道,该默认(系统)信息是在SL信号发送/接收之前由UE必须首先知道的。例如,默认信息可以是与SLSS、双工模式(DM)、时分双工(TDD)上行链路/下行链路(UL/DL)配置相关的信息、与资源池相关的信息、与SLSS相关的应用的类型、子帧偏移、广播信息等。例如,为了评估PSBCH性能,在NR V2X中,PSBCH的有效载荷大小可以为56位,包括24位CRC。
S-PSS、S-SSS和PSBCH可以以支持周期性发送的块格式(例如,SL同步信号(SS)/PSBCH块,下文中,副链路同步信号块(S-SSB))被包括。S-SSB可以具有与载波中的物理副链路控制信道(PSCCH)/物理副链路共享信道(PSSCH)相同的参数集(即,SCS和CP长度),并且传输带宽可以存在于(预先)配置的副链路(SL)BWP内。例如,S-SSB可以具有11个资源块(SB)的带宽。例如,PSBCH可以跨11个RB存在。另外,可以(预先)配置S-SSB的频率位置。因此,UE不必在频率处执行假设检测以发现载波中的S-SSB。
图9示出了基于本公开的实施方式的执行V2X或SL通信的UE。图9的实施方式可以与本公开的各种实施方式组合。
参照图9,在V2X或SL通信中,术语“UE”可以通常是指用户的UE。然而,如果诸如BS这样的网络设备根据UE之间的通信方案来发送/接收信号,则BS也可以被视为一种UE。例如,UE 1可以是第一设备100,并且UE 2可以是第二设备200。
例如,UE 1可以在意指一组资源系列的资源池中选择与特定资源对应的资源单元。另外,UE 1可以通过使用资源单元来发送SL信号。例如,UE 1能够在其中发送信号的资源池可以被配置到作为接收UE的UE 2,并且可以在该资源池中检测UE 1的信号。
本文中,如果UE 1在BS的连接范围内,则BS可以将资源池告知UE1。否则,如果UE 1在BS的连接范围外,则另一UE可以将资源池告知UE 1,或者UE 1可以使用预先配置的资源池。
通常,可以以多个资源为单元配置资源池,并且每个UE可以选择一个或多个资源的单元,以在其SL信号发送中使用它。
下文中,将描述SL中的资源分配。
图10示出了基于本公开的实施方式的由UE基于发送模式执行V2X或SL通信的过程。图10的实施方式可以与本公开的各种实施方式组合。在本公开的各种实施方式中,发送模式可以被称为模式或资源分配模式。下文中,为了便于说明,在LTE中,发送模式可以被称为LTE发送模式。在NR中,发送模式可以被称为NR资源分配模式。
例如,图10的(a)示出了与LTE发送模式1或LTE发送模式3相关的UE操作。另选地,例如,图10的(a)示出了与NR资源分配模式1相关的UE操作。例如,可以将LTE发送模式1应用于常规SL通信,并且可以将LTE发送模式3应用于V2X通信。
例如,图10的(b)示出了与LTE发送模式2或LTE发送模式4相关的UE操作。另选地,例如,图10的(b)示出了与NR资源分配模式2相关的UE操作。
参照图10的(a),在LTE发送模式1、LTE发送模式3或NR资源分配模式1下,BS可以调度将供UE用于SL发送的SL资源。例如,BS可以通过PDCCH(更具体地,下行链路控制信息(DCI))对UE 1执行资源调度,并且UE 1可以根据资源调度针对UE 2执行V2X或SL通信。例如,UE 1可以通过物理副链路控制信道(PSCCH)向UE 2发送副链路控制信息(SCI),此后通过物理副链路共享信道(PSSCH)向UE 2发送基于SCI的数据。
参照图10的(b),在LTE发送模式2、LTE发送模式4或NR资源分配模式2下,UE可以确定由BS/网络配置的SL资源或预先配置的SL资源内的SL发送资源。例如,所配置的SL资源或预先配置的SL资源可以是资源池。例如,UE可以自主地选择或调度用于SL发送的资源。例如,UE可以通过自主地选择所配置的资源池中的资源来执行SL通信。例如,UE可以通过执行感测和资源(重新)选择过程来自主地选择选择窗口内的资源。例如,可以以子信道为单元执行感测。另外,已在资源池中自主选择资源的UE 1可以通过PSCCH将SCI发送到UE 2,此后可以通过PSSCH将基于SCI的数据发送到UE 2。
图11示出了基于本公开的实施方式的三种播送类型。图11的实施方式可以与本公开的各种实施方式组合。具体地,图11的(a)示出了广播型SL通信,图11的(b)示出了单播型SL通信,并且图11的(c)示出了组播型SL通信。在单播型SL通信的情况下,UE可以针对另一UE执行一对一通信。在组播型SL发送的情况下,UE可以针对UE所属的组中的一个或更多个UE执行SL通信。在本公开的各种实施方式中,SL组播通信可以被SL多播通信、SL一对多通信等替换。
异常发送(TX)池是用于特定异常场景下的副链路通信的时间频率资源的集合。例如,在LTE V2X中,异常TX池被用于以下情形:在检测到诸如无线电链路故障(RLF)这样的任何物理层问题后、在发起的连接(重新)建立接近完成后、在切换期间以及当正常TX池的感测结果不可用时。
例如,NR V2X引入了需要更高可靠性和更低等待时间副链路通信的高级用例。还提议考虑另外的事件:小区重新选择和波束故障/重新选择。
在现有技术中,已经商定可以针对NR V2X采用异常池的LTE V2X构思。然而,LTE服务于广播安全V2X服务的基本要求,因此对于负责高级用例的严格QoS要求而言某些增强将被视为必要。存在可以根据播送类型来分离异常TX池的替代解决方案,这可以增加可靠性,但可能导致较低的资源效率。
例如,还可以调整配UE物理层发送参数,以便在不同的无线电信道条件下确保可靠且稳定的链路性能。这种调整也可以有助于满足严格QoS要求。开环和闭环功率控制机制是示例性的物理层参数,可以用来优化发送器相对于接收器的功率。
例如,开环功率控制是发送器基于参数的集合来确定其自身发送功率的机制。例如,闭环功率控制是指接收器动态控制发送器功率的机制(例如,当BS经由发送功率控制命令(TPC)控制UE发送功率时)。
结果,可以基于在特定信道(例如,PRACH、PUCCH、PUSCH)中发送的信息来调整UE发送功率。
下面的数学图1可以描述NR中的PUSCH中的UE闭环功率控制。
[数学图1]
PPUSCH=min{PCMX,P0(j)+α(j)·/L(q)+10·log10(2μ·MRR)+ΔTF+δ(l)}
参照数学图1,PCMAX可以是指为每个载波分配的最大功率。P0(j)可以定义由网络配置的目标接收器功率。α0(j)可以是由网络配置的分数路径损耗分量。PL(q)可以是指关于上行链路路径损耗的估计。μ可以是Δf=2μ·15kHz的子载波间隔。MRB可以是用于PUSCH发送的资源块的数目。ΔTF可以是指调制方案和信道编码速率。Δ(l)可以是由闭环功率控制导致的功率调整。这些参数是功率控制机制的函数。类似的机制也可以沿着副链路(SL)使用。
下面,将描述本公开旨在解决的目标。例如,目标可以包括确保更高可靠性的SL通信以满足严格的NR V2X要求以及增强用于SL通信的异常资源池的性能,尤其是在资源池正在经历高流量负载的场景中。资源池中的这种高流量负载可以由执行不同播送类型副链路通信(即,广播、组播和单播)的多个UE引起,并且根据这些V2X服务中的每一个的QoS,这可能造成可靠性方面的性能下降。
以下描述旨在解决与异常池的增强相关的上述问题。
参照本公开的示例,可以提出一种允许UE从异常池的集合中选择至少一个异常Tx池的资源选择方法。例如,基站(例如,gNB)可以在系统信息中配置异常池的集合。异常池的集合可以根据占用率或QoS实现标准来区分。例如,在QoS的上下文中,可以存在异常池集合。异常池集合可以包含至少一个分配有反馈资源(确保SL发送的更高可靠性)的异常池和至少一个没有反馈资源(没有可靠性要求)的异常池。例如,反馈的示例可以包括但不限于HARQ反馈、信道状态信息(CSI)、闭环功率控制参数。
例如,基站可以基于有效区域来配置这样的异常资源池,在该有效区域中,与该资源池相关的系统信息可以是有效的。例如,有效区域可以包括单个或多个副链路区、扇区、单个波束或波束集合、小区集合(例如,源小区和目标小区)。例如,所选择的异常池可以使用包括随机资源选择或短期感测资源选择的资源选择机制。可以基于以下考虑来选择或确定资源选择机制:关联的V2X分组或QoS流的QoS(PQI/VQI),或者,所报告的异常池的资源占用率(例如,CBR)。
例如,这里,短期感测是在选择发送资源之后的预定时间(从选择发送资源直到发送信号的时段)执行另外的感测并且当检测到冲突的可能性时丢弃所选择的发送资源并选择另一资源的操作。
参照本公开的示例,可以提出UE可以如下按先前的显式或隐式指示来选择可靠性更高(例如,分配反馈资源)的异常池的方法。例如,显式(直接)指示可以包括UE可以向基站(BS)发信号通知关于其对于可靠性更高(分配反馈资源)的异常资源池的需要的指示的过程。这可以在实际利用异常资源池之前执行。例如,隐式指示可以包括以下的过程:如果UE先前正使用具有提供反馈的能力的模式1资源池,则UE可以被授权保持相同的配置并使用具有反馈资源的异常池来保持可靠的服务连续性。
参照本公开的示例,可以提出以下方法:UE可以同时配置有来自两种无线电接入技术(RAT)的异常池,例如,来自LTE系统信息配置的异常池和来自NR系统信息配置的异常池。例如,UE也可以同时配置有来自LTE RAT和NR RAT的NR异常池。例如,UE也可以同时配置有来自LTE RAT的LTE异常池和来自NR RAT的NR异常池。
参照本公开的示例,可以提出UE可以使用RRC信令来请求异常池配置的方法。
参照本公开的示例,可以提出UE可以使用例如信道繁忙率(CBR)、时间和频率指数等来测量和报告至少一个异常池的资源占用率的方法。
参照本公开的示例,可以提出UE选择用于异常池中的操作的特定发送(Tx)配置文件的方法。
参照本公开的示例,如果发生诸如物理层无线电链路故障(RLF)这样的异常事件,则UE通常可以从所存储的系统信息(例如,SIB21)中选择所配置的异常池。资源池的关键目标可以是提高发生紧急情形时的服务连续性,这源于初始的D2D用例。
该描述旨在增强对UE的异常池配置,以便增强整体可靠性并减轻由于具有高流量的异常池而可能出现的资源负担。
参照本公开的示例,BS(基站)配置包括异常池集合的小区特定或区域特定的异常资源池配置。例如,可以基于占用率级别或所提供的QoS级别(例如,可靠性要求)来划分异常池,异常池可以包括包含反馈资源的资源池或没有被分配反馈资源的资源池。
图12示出了TX UE执行SL通信的过程。图12的实施方式可以与本公开的各种实施方式相结合。
参照图12,在步骤S1210中,基站可以向TX UE发送与异常池相关的配置信息。在步骤S1220中,TX UE可以基于待发送分组的QoS,选择包括反馈资源的异常池或者不包括反馈资源的另一异常池。该选择可以基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者来触发。并且,TX UE可以从所选择的异常池中选择资源。在步骤S1230中,TX UE可以使用该资源执行与RX UE的SL通信。如果所选择的异常池包括反馈资源,则在步骤S1240中,RX UE可以向TX UE发送反馈。反馈可以包括HARQ反馈、信道状态信息(CSI)或闭环功率控制参数中的至少一者。
例如,UE还可以基于分组的QoS在所选择的异常池中使用随机资源选择或短期感测和资源(重新)选择。短期感测可以用于增加与所选择的异常池中的SL发送相关的可靠性。例如,UE还可以根据先前测得的异常池的占用率来确定要使用的资源选择方法。
参照本公开的示例,所指定的QoS和占用率标准可能必须使得UE能够从所配置的异常池集合中选择所需的异常池。这可以导致某些UE由于其QoS服务级别要求而仅使用特定的异常池。例如,这可以是直接信令或间接指示的形式。
例如,直接信令可以是与异常池类型的配置相关的按需SI请求中的单比特标志的形式。单比特标志可以区分对没有反馈资源的正常异常池(0)的请求和对具有反馈资源的异常池(1)的请求。
例如,间接指示可以是如果BS获悉正在进行的使用模式1的SL通信,则它可以抢占式发信号通知具有反馈资源的异常池配置,以便保持可靠的服务连续性。
例如,BS可以使用专用信令(例如经由RRCReconfiguration消息)利用系统信息(SI)更新来发信号通知UE。
参照本公开的示例,UE可以同时配置有来自两种无线电接入技术(RAT)的异常池。该特征通过允许UE根据QoS要求在用于SL发送的LTE异常池或NR异常池之间进行选择,使得UE能够利用同时跨RAT异常池配置。例如,与从LTE RAT中选择LTE配置的异常池形成对照,具有较高QoS要求的UE中的服务将从NR RAT中选择NR异常池。
例如,如上层中的V2X服务所指示的和/或基于QoS要求,UE可以同时配置有两个异常池。例如,如果UE被同时配置为执行模式1和模式2发送,则在异常事件中,UE可以回退到针对模式1发送使用NR异常池并针对模式2发送使用LTE异常池。
参照本公开的示例,对特定异常池配置的按需SI请求可以由UE发出并被发送到BS。例如,对高度可靠的异常池(例如,具有反馈资源的异常池)的按需SI请求可以是示例。例如,可以在使用异常池之前抢占式发送该请求。
图13示出了TX UE执行SL通信的过程。图13的实施方式可以与本公开的各种实施方式相结合。
参照图13,在步骤S1310中,TX UE可以向基站发送与异常池相关的请求。在步骤S1320中,基站可以基于该请求向TX UE发送与异常池相关的配置信息。在步骤S1330中,TXUE可以基于待发送分组的QoS,选择包括反馈资源的异常池或者不包括反馈资源的另一异常池。该选择可以基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者来触发。并且,TX UE可以从所选择的异常池中选择资源。在步骤S1340中,TX UE可以使用该资源执行与RX UE的SL通信。如果所选择的异常池包括反馈资源,则在步骤S1350中,RX UE可以向TX UE发送反馈。例如,反馈可以包括HARQ反馈、信道状态信息(CSI)或闭环功率控制参数中的至少一者。
参照本公开的示例,UE可以测量至少一个异常池或异常池的集合的资源占用率,并将占用率状态报告给BS。例如,该报告可以是CBR值或者是显明确的空闲或已用资源及其在资源池中的相应时间和频率位置的形式。例如,这些测量值可以定期出现或者由事件触发。
参照本公开的示例,每个应用/服务被映射到特定的Tx配置文件,以便确保兼容性,尤其是在不同UE当中的物理层上。例如,与正常的Tx池操作相比,在异常池的QoS保证和资源可用性方面存在更多的约束。在这一点上,当使用异常池作为在正常Tx资源池上操作的标准Tx配置文件的回退时,UE的服务/应用可以被映射到异常Tx配置文件。主要动机是异常池不能满足UE的标准Tx配置文件中指定的所有要求,因此应该选择已经相应地调整了相关物理层发送参数的替代的“异常”Tx配置文件。
例如,在HARQ反馈的上下文中,标准TX配置文件可以指示针对某个应用/服务在副链路(SL)中使用HARQ反馈,然而,不保证特定的异常池通过针对HARQ反馈发送分配某些资源来启用SL HARQ反馈。在这种情况下,当UE回退到异常池时,如果异常池没有针对HARQ反馈发送配置资源或者提供了具有不太频繁出现的HARQ反馈资源的不同配置从而使得难以满足等待时间要求,则HARQ反馈将被自动禁用。在该情况下,UE应该能够相应地调整其发送参数,以便在禁用HARQ反馈时以尽力而为的方式匹配标准Tx配置文件的QoS。
例如,当在异常池中操作时,可以调整异常Tx配置文件中的物理链路层参数。例如,物理链路层参数可以包括增加盲重传的量。例如,物理链路层参数可以包括采用较低的MCS,更一般地,使用不同的MCS集合。例如,物理链路层参数可以包括采用较低阶的MIMO发送方案,更一般地,使用包括不同最小和/或最大发送层数的不同MIMO发送方案。例如,物理链路层参数可以包括禁用开环和/或闭环功率控制或者使用不同的功率控制参数配置(包括目标接收功率P0、路径损耗补偿参数阿尔法(α))。例如,物理链路层参数可以包括禁用基于波束的功率控制。
参照本公开的示例,可以创建迎合PHY层链路参数的不同组合的需要的异常Tx配置文件的集合。在选择或使用了异常池的情况下,这将需要Tx配置文件切换。例如,当Tx配置文件已改变时,也应当通知对应的服务/应用。
参照本公开的示例,本公开中的数据单元(例如,PDCP SDU、PDCP PDU、RLC SDU、RLC PDU、RLC SDU、MAC SDU、MAC CE、MAC PDU)基于资源分配(例如,UL授权、DL指派)在物理信道(例如,PDSCH、PUSCH)上发送/接收。
在本公开中,上行链路资源分配也被称为上行链路授权,并且下行链路资源分配也被称为下行链路指派。资源分配包括时域资源分配和频域资源分配。在本公开中,上行链路授权要么在随机接入响应中由UE动态地在PDCCH上接收,要么由RRC半永久地配置给UE。在本公开中,下行链路指派要么由UE动态地在PDCCH上接收,要么由来自BS的RRC信令半永久地配置给UE。
图14示出了UE选择发送资源的过程。图14的实施方式可以与本公开的各种实施方式相结合。
图14是用于说明与上述本公开的实施方式相关的UE的操作(或VRU、V2X、RSU等)的流程图。参照图14,在步骤S1410中,UE可以从基站接收用于异常资源池的配置信息。异常资源池根据服务质量(QoS)或占用率被不同的设置。这里,可以如以上所指示地隐式或显式地指示UE的异常资源池的使用。接下来,在步骤S1420中,UE可以基于QoS或与其关联的占用率从异常池当中选择或确定对应的异常池。接下来,在步骤S1430中,UE可以基于异常池的QoS、QoS流或CBR来确定资源选择方法。这里,资源选择方法可以包括随机资源选择方法和/或基于短期感测的资源选择方法。UE可以基于所确定的资源选择方法在所选择的发送资源上发送消息。
参照本公开的示例,处理器可以实现本文中建议的功能、处理和/或方法。处理器控制收发器从基站接收关于异常资源池的配置信息。异常资源池根据服务质量(QoS)或占用率被不同的设置。这里,可以如以上所指示地隐式或显式地指示UE的异常资源池的使用。接下来,处理器可以基于QoS或与其关联的占用率从异常池当中选择或确定对应的异常池。接下来,处理器可以基于异常池的QoS、QoS流或CBR来确定资源选择方法。这里,资源选择方法可以包括随机资源选择方法和/或基于短期感测的资源选择方法。处理器可以控制收发器基于所确定的资源选择方法在所选择的发送资源上发送消息。
例如,当应对具有不同QoS要求的不同UE的异常无线电事件时,选择不止一个异常Tx池使得灵活性能够更大。例如,分配有反馈资源的异常池还允许UE在这种异常场景中执行更可靠的副链路通信。例如,异常Tx配置文件使得系统能够使相关物理层参数适合于异常池的使用。
图15示出了第一设备执行资源选择的过程。图15的实施方式可以与本公开的各种实施方式相结合。
参照图15,在步骤S1510中,第一设备可以从基站接收包括与异常池相关的配置信息的系统信息。例如,异常池可以包括包含反馈资源的第一异常池以及不包含反馈资源的第二异常池。在步骤S1520中,第一设备可以基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者来选择第一异常池或第二异常池。在步骤S1530中,第一设备可以从所选择的异常池中选择资源。在步骤S1540中,第一设备可以使用该资源执行副链路(SL)通信。例如,可以基于待发送分组的服务质量(QoS)来选择第一异常池或第二异常池。
例如,可以基于要求更高可靠性的QoS来选择第一异常池。
例如,使用资源执行SL通信包括:向第二设备发送分组;以及从第二设备接收反馈。
例如,反馈可以包括HARQ反馈、信道状态信息(CSI)或闭环功率控制参数中的至少一者。
例如,可以基于不要求可靠性的QoS来选择第二异常池。
例如,使用资源执行SL通信包括:向第二设备发送分组。例如,可以不从第二设备接收反馈。
例如,可以基于小区重选、波束故障或波束重选中的至少一者来选择第一异常池。
例如,配置信息可以基于有效区域来配置,并且有效区域可以包括单个副链路区、扇区、单个波束或小区集合中的至少一者。
例如,可以基于包括随机资源选择或短期感测资源选择的资源选择机制来选择资源。
另外,例如,第一设备可以向基站发送与对可靠性更高的异常池的需要相关的信息,异常池可以包括可靠性更高的异常池。
例如,第一异常池和第二异常池可以来自不同的无线电接入技术(RAT)。
例如,第一异常池可以来自NR RAT,并且第一异常池可以基于要求更高可靠性的QoS来选择。
另外,例如,第一设备可以向基站发送对与异常池相关的配置的请求,可以基于该请求接收配置信息。
上述示例可以应用于以下将描述的可变装置。例如,第一设备(100)的处理器(102)可以控制收发器(106)从基站(200)接收包括与异常池相关的配置信息的系统信息。例如,第一设备(100)的处理器(102)可以基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者来选择第一异常池或第二异常池。例如,第一设备(100)的处理器(102)可以从所选择的异常池中选择资源。例如,第一设备(100)的处理器(102)可以控制收发器使用该资源来执行副链路(SL)通信。
参照本公开的示例,可以提供用于执行无线通信的第一设备。该第一设备可以包括:一个或更多个存储器,所述一个或更多个存储器存储指令;一个或更多个收发器;以及一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器。例如,所述一个或更多个处理器可以执行所述指令以:从基站接收包括与异常池相关的配置信息的系统信息,其中,所述异常池包括包含反馈资源的第一异常池以及不包含反馈资源的第二异常池;基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者,选择所述第一异常池或所述第二异常池;从所选择的异常池中选择资源;以及使用所述资源执行副链路(SL)通信,其中,基于待发送分组的服务质量(QoS)来选择所述第一异常池或所述第二异常池。
参照本公开的示例,可以提供被配置为控制第一用户设备(UE)的设备。该设备可以包括:一个或更多个处理器;以及一个或更多个存储器,所述一个或更多个存储器可操作地连接到所述一个或更多个处理器并存储指令。例如,所述一个或更多个处理器执行所述指令以:从基站接收包括与异常池相关的配置信息的系统信息,其中,所述异常池包括包含反馈资源的第一异常池以及不包含反馈资源的第二异常池;基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者,选择所述第一异常池或所述第二异常池;从所选择的异常池中选择资源;以及使用所述资源执行副链路(SL)通信,其中,基于待发送分组的服务质量(QoS)来选择所述第一异常池或所述第二异常池。
参照本公开的示例,可以提供一种非暂态计算机可读存储介质。该非暂态计算机可读存储介质可以存储指令,所述指令在被执行时致使第一设备:从基站接收包括与异常池相关的配置信息的系统信息,其中,所述异常池包括包含反馈资源的第一异常池以及不包含反馈资源的第二异常池;基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者,选择所述第一异常池或所述第二异常池;从所选择的异常池中选择资源;以及使用所述资源执行副链路(SL)通信,其中,基于待发送分组的服务质量(QoS)来选择所述第一异常池或所述第二异常池。
图16示出了基站配置异常池的过程。图16的实施方式可以与本公开的各种实施方式相结合。
参照图16,在步骤S1610中,基站可以向第一设备发送包括与异常池相关的配置信息的系统信息,其中,异常池包括包含反馈资源的第一异常池以及不包含反馈资源的第二异常池。例如,可以基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者来选择第一异常池或第二异常池。例如,可以选择来自第一异常池的资源。例如,可以使用该资源执行副链路(SL)通信。例如,可以基于待发送分组的服务质量(QoS)来选择第一异常池或第二异常池。
另外,例如,基站可以从第一设备接收对与异常池相关的配置的请求,其中,可以基于该请求发送配置信息。
上述示例可以应用于以下将描述的可变装置。例如,基站(200)的处理器(202)可以控制收发器(206)向第一设备(100)发送包括与异常池相关的配置信息的系统信息。
参照本公开的示例,可以提供用于执行无线通信的基站。该基站可以包括:一个或更多个存储器,所述一个或更多个存储器存储指令;一个或更多个收发器;以及一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器。例如,所述一个或更多个处理器可以执行所述指令以:向第一设备发送包括与异常池相关的配置信息的系统信息,其中,所述异常池包括包含反馈资源的第一异常池以及不包含反馈资源的第二异常池;其中,基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者,选择所述第一异常池或所述第二异常池;其中,选择来自第一异常池的资源,其中,使用所述资源执行副链路(SL)通信,并且其中,基于待发送分组的服务质量(QoS)来选择所述第一异常池或所述第二异常池。
另外,例如,所述一个或更多个处理器还执行所述指令以:从所述第一设备接收对与异常池相关的配置的请求,其中,基于所述请求发送配置信息。
以下,将描述可以应用本公开的各自实施方式的设备。
本文档中描述的本公开的各种描述、功能、过程、提议、方法和/或操作流程可以应用于但不限于需要设备之间的无线通信/连接(例如,5G)的各种领域。
下文中,将参照附图更详细地给出描述。在以下附图/描述中,除非另有描述,否则相同的附图标记可以表示相同或对应的硬件块、软件块或功能块。
图17示出了基于本公开的实施方式的通信系统(1)。
参照图17,应用本公开的各种实施方式的通信系统(1)包括无线装置、基站(BS)和网络。本文中,无线装置表示使用无线电接入技术(RAT)(例如,5G新RAT(NR)或长期演进(LTE))执行通信的装置,并且可以被称为通信/无线电/5G装置。无线装置可以包括而不限于机器人(100a)、车辆(100b-1和100b-2)、扩展现实(XR)装置(100c)、手持装置(100d)、家用电器(100e)、物联网(IoT)装置(100f)和人工智能(AI)装置/服务器(400)。例如,车辆可以包括具有无线通信功能的车辆、自主车辆以及能够执行车辆间通信的车辆。本文中,车辆可以包括无人驾驶飞行器(UAV)(例如,无人机)。XR装置可以包括增强现实(AR)/虚拟现实(VR)/混合现实(MR)装置并且可以以头戴式装置(HMD)、安装在车辆中的平视显示器(HUD)、电视、智能电话、计算机、可穿戴装置、家用电器装置、数字标牌、车辆、机器人等形式来实现。手持装置可以包括智能电话、智能板、可穿戴装置(例如,智能手表或智能眼镜)和计算机(例如,笔记本)。家用电器可以包括TV、冰箱和洗衣机。IoT装置可以包括传感器和智能仪表。例如,BS和网络可以被实现为无线装置,并且特定的无线装置(200a)可以相对于其它无线装置作为BS/网络节点进行操作。
无线装置100a至100f可以经由BS 200连接到网络300。AI技术可以应用于无线装置100a至100f,并且无线装置100a至100f可以经由网络300连接到AI服务器400。网络300可以使用3G网络、4G(例如,LTE)网络或5G(例如,NR)网络进行配置。尽管无线装置100a至100f可以通过BS 200/网络300相互通信,但是无线装置100a至100f可以执行相互之间的直接通信(例如,副链路通信)而无需通过BS/网络。例如,车辆100b-1和100b-2可以执行直接通信(例如,车辆到车辆(V2V)/车辆到一切(V2X)通信)。IoT装置(例如,传感器)可以执行与其他IoT装置(例如,传感器)或其他无线装置100a至100f的直接通信。
无线通信/连接150a、150b或150c可以建立在无线装置100a至100f/BS 200或BS200/BS 200之间。这里,无线通信/连接可以通过诸如上行链路/下行链路通信150a、副链路通信150b(或D2D通信)或BS间通信(例如,中继、接入回传一体化(IAB))这样的各种RAT(例如,5G NR)建立。无线装置和BS/无线装置可以通过无线通信/连接150a和150b发送/接收去往/来自彼此的无线电信号。例如,无线通信/连接150a和150b可以通过各种物理信道发送/接收信号。为此,用于发送/接收无线电信号的各种配置信息配置过程、各种信号处理过程(例如,信道编码/解码、调制/解调和资源映射/解映射)以及资源分配过程的至少一部分可以基于本公开的各种提议执行。
图18示出了基于本公开的实施方式的无线装置。
参照图18,第一无线装置(100)和第二无线装置(200)可以通过各种RAT(例如,LTE和NR)发送无线电信号。本文中,{第一无线装置(100)和第二无线装置(200)}可以对应于图17中的{无线装置(100x)和BS(200)}和/或{无线装置(100x)和无线装置(100x)}。
第一无线装置100可以包括一个或多个处理器102和一个或多个存储器104,并且可以附加地进一步包括一个或多个收发机106和/或一个或多个天线108。(一个或多个)处理器102可以控制(一个或多个)存储器104和/或(一个或多个)收发机106,并且可以被配置为实现本文档公开的描述、功能、过程、提议、方法和/或操作流程。例如,(一个或多个)处理器102可以处理(一个或多个)存储器104中的信息以生成第一信息/信号,然后通过(一个或多个)收发机106发送包括第一信息/信号的无线电信号。(一个或多个)处理器102可以通过收发机106接收包括第二信息/信号的无线电信号,然后将通过处理第二信息/信号得到的信息存储在(一个或多个)存储器104中。(一个或多个)存储器104可以连接到(一个或多个)处理器102,并且可以存储与(一个或多个)处理器102的操作有关的各种信息。例如,(一个或多个)存储器104可以存储包括用于执行由(一个或多个)处理器102控制的处理的一部分或全部或用于执行本文档公开的描述、功能、过程、提议、方法和/或操作流程的命令的软件代码。这里,(一个或多个)处理器102和(一个或多个)存储器104可以是被设计为实现RAT(例如,LTE或NR)的通信调制解调器/电路/芯片的一部分。(一个或多个)收发机106可以连接到(一个或多个)处理器102,并且通过(一个或多个)天线108发送和/或接收无线电信号。每个收发机106可以包括发送机和/或接收机。(一个或多个)收发机106可以与(一个或多个)射频(RF)单元可交换地使用。在本公开中,无线装置可以代表通信调制解调器/电路/芯片。
第二无线装置200可以包括一个或多个处理器202和一个或多个存储器204,并且可以附加地进一步包括一个或多个收发机206和/或一个或多个天线208。(一个或多个)处理器202可以控制(一个或多个)存储器204和/或(一个或多个)收发机206,并且可以被配置为实现本文档公开的描述、功能、过程、提议、方法和/或操作流程。例如,(一个或多个)处理器202可以处理(一个或多个)存储器204中的信息以生成第三信息/信号,并且随后通过(一个或多个)收发器206发送包括第三信息/信号的无线电信号。(一个或多个)处理器202可以通过(一个或多个)收发器106接收包括第四信息/信号的无线电信号,然后将通过处理第四信息/信号得到的信息存储在(一个或多个)存储器204中。(一个或多个)存储器204可以连接到(一个或多个)处理器202,并且可以存储与(一个或多个)处理器202的操作有关的各种信息。例如,(一个或多个)存储器204可以存储包括用于执行由(一个或多个)处理器202控制的处理的一部分或全部或用于执行本文档公开的描述、功能、过程、提议、方法和/或操作流程的命令的软件代码。这里,(一个或多个)处理器202和(一个或多个)存储器204可以是被设计为实现RAT(例如,LTE或NR)的通信调制解调器/电路/芯片的一部分。(一个或多个)收发器206可以连接到(一个或多个)处理器202,并且通过(一个或多个)天线208发送和/或接收无线电信号。每个收发器206可以包括发送机和/或接收机。(一个或多个)收发器206可以与(一个或多个)RF单元可交换地使用。在本公开中,无线装置可以代表通信调制解调器/电路/芯片。
下面,将更具体地描述无线装置100和200的硬件元件。一个或多个协议层可以但不限于由一个或多个处理器102和202实现。例如,一个或多个处理器102和202可以实现一个或多个层(例如,诸如PHY、MAC、RLC、PDCP、RRC和SDAP这样的功能层)。一个或多个处理器102和202可以根据本文档公开的描述、功能、过程、提议、方法和/或操作流程生成一个或多个协议数据单元(PDU)和/或一个或多个服务数据单元(SDU)。一个或多个处理器102和202可以根据本文档公开的描述、功能、过程、提议、方法和/或操作流程生成消息、控制信息、数据或信息。一个或多个处理器102和202可以根据本文档公开的描述、功能、过程、提议、方法和/或操作流程生成包括PDU、SDU、消息、控制信息、数据或信息的信号(例如,基带信号),并将所生成的信号提供给一个或多个收发器106和206。一个或多个处理器102和202可以从一个或多个收发器106和206接收信号(例如,基带信号),并根据本文档公开的描述、功能、过程、提议、方法和/或操作流程获取PDU、SDU、消息、控制信息、数据或信息。
一个或多个处理器102和202可以被称为控制器、微控制器、微处理器或微计算机。一个或多个处理器102和202可以由硬件、固件、软件或它们的组合实现。例如,一个或多个专用集成电路(ASIC)、一个或多个数字信号处理器(DSP)、一个或多个数字信号处理装置(DSPD)、一个或多个可编程逻辑器件(PLD)或一个或多个现场可编程门阵列(FPGA)可以被包括在一个或多个处理器102和202中。本文档中公开的描述、功能、过程、提议、方法和/或操作流程可以使用固件或软件实现,并且该固件或软件可以被配置为包括模块、过程或功能。被配置为执行本文档公开的描述、功能、过程、提议、方法和/或操作流程的固件或软件可以被包括在一个或多个处理器102和202中或者被存储在一个或多个存储器104和204中,从而由一个或多个处理器102和202驱动。本文档公开的描述、功能、过程、提议、方法和/或操作流程可以使用代码、命令和/或命令集形式的软件或固件实现。
一个或多个存储器104和204可以连接到一个或多个处理器102和202,并且可以存储各种类型的数据、信号、消息、信息、程序、代码、指令和/或命令。一个或多个存储器104和204可以由只读存储器(ROM)、随机存取存储器(RAM)、电可擦除可编程只读存储器(EPROM)、闪存、硬驱动器、寄存器、现金存储器、计算机可读存储介质和/或它们的组合构成。一个或多个存储器104和204可以位于一个或多个处理器102和202内部和/或外部。一个或多个存储器104和204可以通过诸如有线或无线连接这样的各种技术连接到一个或多个处理器102和202。
一个或多个收发器106和206可以向一个或多个其他装置发送本文档的方法和/或操作流程中提到的用户数据、控制信息和/或无线电信号/信道。一个或多个收发器106和206可以从一个或多个其他装置接收本文档公开的描述、功能、过程、提议、方法和/或操作流程中提到的用户数据、控制信息和/或无线电信号/信道。例如,一个或多个收发器106和206可以连接到一个或多个处理器102和202,并且可以发送和接收无线电信号。例如,一个或多个处理器102和202可以执行控制,使得一个或多个收发器106和206可以向一个或多个其他装置发送用户数据、控制信息或无线电信号。一个或多个处理器102和202可以执行控制,使得一个或多个收发器106和206可以从一个或多个其他装置接收用户数据、控制信息或无线电信号。一个或多个收发器106和206可以连接到一个或多个天线108和208,并且一个或多个收发器106和206可以被配置为通过一个或多个天线108和208发送和接收本文档公开的描述、功能、过程、提议、方法和/或操作流程中提到的用户数据、控制信息和/或无线电信号/信道。在本文档中,一个或多个天线可以是多个物理天线或多个逻辑天线(例如,天线端口)。一个或多个收发器106和206可以将接收到的无线电信号/信道等从RF频带信号转换为基带信号,以使用一个或多个处理器102和202处理接收到的用户数据、控制信息、无线电信号/信道等。一个或多个收发器106和206可以将使用一个或多个处理器102和202处理后的用户数据、控制信息、无线电信号/信道等从基带信号转换为RF频带信号。为此,一个或多个收发器106和206可以包括(模拟)振荡器和/或滤波器。
图19示出了按照本公开的实施方式的用于发送信号的信号处理电路。
参照图19,信号处理电路(1000)可以包括加扰器(1010)、调制器(1020)、层映射器(1030)、预编码器(1040)、资源映射器(1050)和信号发生器(1060)。可以执行图19的操作/功能,而不限于图18的处理器(102、202)和/或收发器(106、206)。可以通过图18的理器(102、202)和/或收发器(106、206)来实现图19的硬件元件。例如,可以通过图18的处理器(102、202)来实现框1010至1060。另选地,可以通过图18的处理器(102、202)来实现框1010至1050,并且可以通过图18的收发器(106、206)来实现框1060。
可以经由图19的信号处理电路(1000)将码字转换成无线电信号。本文中,码字是信息块的编码位序列。信息块可以包括传送块(例如,UL-SCH传送块、DL-SCH传送块)。可以通过各种物理信道(例如,PUSCH和PDSCH)来发送无线电信号。
具体地,码字可以由加扰器1010转换为经过加扰的位序列。用于进行加扰的加扰序列可以基于初始值生成,并且初始值可以包括无线装置的ID信息。经过加扰的位序列可以由调制器1020调制为调制符号序列。调制方案可以包括pi/2-二进制相移键控(pi/2-BPSK)、m-相移键控(m-PSK)以及m-正交幅度调制(m-QAM)。复数调制符号序列可以由层映射器1030映射到一个或多个传输层。每个传输层的调制符号可以由预编码器1040映射(预编码)到(一个或多个)相应的天线端口。预编码器1040的输出z可以通过将层映射器1030的输出y与N*M预编码矩阵W相乘得出。这里,N是天线端口的数目,M是传输层的数目。预编码器1040可以在执行对于复数调制符号的变换预编码(例如,DFT)之后执行预编码。替代地,预编码器1040可以在不执行变换预编码的情况下执行预编码。
资源映射器1050可以将每个天线端口的调制符号映射到时频资源。时频资源可以包括时域中的多个符号(例如,CP-OFDMA符号和DFT-s-OFDMA符号)和频域中的多个子载波。信号发生器1060可以从所映射的调制符号生成无线电信号,并且所生成的无线电信号可以通过每个天线被发送到其他装置。为此,信号发生器1060可以包括逆快速傅里叶变换(IFFT)模块、循环前缀(CP)插入器、数模转换器(DAC)以及上变频器。
可以以与图19的信号处理过程(1010至1060)相反的方式来配置用于在无线装置中接收的信号的信号处理过程。例如,无线装置(例如,图18的100和200)可以通过天线端口/收发器从外部接收无线电信号。可以通过信号恢复器将接收到的无线电信号转换成基带信号。为此,信号恢复器可以包括频率下行链路转换器、模数转换器(ADC)、CP去除器和快速傅立叶变换(FFT)模块。接下来,可以通过资源解映射过程、后编码过程、解调处理器和解扰过程将基带信号恢复成码字。可以通过解码将码字恢复成原始信息块。因此,用于接收信号的信号处理电路(未例示)可以包括信号恢复器、资源解映射器、后编码器、解调器、解扰器和解码器。
图20示出了基于本公开的实施方式的无线装置的另一示例。可以根据用例/服务以各种形式实现无线装置(参照图17)。
参照图20,无线装置(100和00)可以对应于图18的无线装置(100和200),并且可以通过各种元件、组件、单元/部分和/或模块来配置。例如,无线装置(100和200)中的每一个可以包括通信单元(110)、控制单元(120)、存储单元(130)和附加组件(140)。通信单元可以包括通信电路(112)和(一个或多个)收发器(114)。例如,通信电路(112)可以包括图18的一个或更多个处理器(102和202)和/或一个或更多个存储器(104和204)。例如,(一个或多个)收发器(114)可以包括图18的一个或更多个收发器(106和206)和/或一个或更多个天线(108和208)。控制单元(120)电连接到通信单元(110)、存储器(130)和附加组件(140),并且控制无线装置的整体操作。例如,控制单元(120)可以基于存储在存储单元(130)中的程序/代码/命令/信息来控制无线装置的电气/机械操作。控制单元(120)可以通过无线/有线接口经由通信单元(110)将存储在存储单元(130)中的信息发送到外部(例如,其它通信装置),或者将经由通信单元(110)通过无线/有线接口从外部(例如,其它通信装置)接收的信息存储在存储单元(130)中。
可以根据无线装置的类型对附加组件(140)进行各种配置。例如,附加组件(140)可以包括电力单元/电池、输入/输出(I/O)单元、驱动单元和计算单元中的至少一个。无线装置可以采用而不限于以下的形式来实现:机器人(图17的100a)、车辆(图17的100b-1和100b-2)、XR装置(图17的100c)、手持装置(图17的100d)、家用电器(图17的100e)、IoT装置(图17的100f)、数字广播终端、全息图装置、公共安全装置、MTC装置、医疗装置、金融科技装置(或金融装置)、安全装置、气候/环境装置、AI服务器/装置(图17的400)、BS(图17的200)、网络节点等。根据用例/服务,无线装置可以在移动或固定的地方使用。
在图20中,无线装置(100和200)中的各种元件、组件、单元/部分和/或模块全部都可以通过有线接口彼此连接,或者其至少部分可以通过通信单元(110)无线地连接。例如,在无线装置(100和200)中的每一个中,控制单元(120)和通信单元(110)可以通过有线连接,并且控制单元(120)和第一单元(例如,130和140)可以通过通信单元(110)无线连接。无线装置(100和200)内的每个元件、组件、单元/部分和/或模块还可以包括一个或更多个元件。例如,可以通过一个或更多个处理器的集合来构造控制单元(120)。作为示例,可以通过通信控制处理器、应用处理器、电子控制单元(ECU)、图形处理单元和存储器控制处理器的集合来构造控制单元(120)。作为另一示例,可以通过随机存取存储器(RAM)、动态RAM(DRAM)、只读存储器(ROM)、闪存、易失性存储器、非易失性存储器和/或其组合来构造存储器(130)。
下文中,将参照附图详细地描述实现图20的示例。
图21示出了基于本公开的实施方式的手持装置。手持装置可以包括智能电话、智能板、可穿戴装置(例如,智能手表或智能眼镜)或便携式计算机(例如,笔记本)。手持式装置可以被称为移动站(MS)、用户终端(UT)、移动订户站(MSS)、订户站(SS)、高级移动站(AMS)或无线终端(WT)。
参照图21,手持装置(100)可以包括天线单元(108)、通信单元(110)、控制单元(120)、存储单元(130)、电源单元(140a)、接口单元(140b)和I/O单元(140c)。天线单元(108)可以被配置为通信单元(110)的一部分。框110至130/140a至140c分别对应于图20的框110至130/140。
通信单元110可以发送和接收去往和来自其他无线装置或BS的信号(例如,数据信号和控制信号)。控制单元120可以通过控制手持装置100的构成元件来执行各种操作。控制单元120可以包括应用处理器(AP)。存储单元130可以存储驱动手持装置100所需要的数据/参数/程序/代码/命令。存储单元130可以存储输入/输出数据/信息。电源单元140a可以向手持装置100供应功率,并且包括有线/无线充电电路、电池等。接口单元140b可以支持手持装置100到其他外部装置的连接。接口单元140b可以包括用于与外部装置连接的各种端口(例如,音频I/O端口和视频I/O端口)。I/O单元140c可以输入或输出用户输入的视频信息/信号、音频信息/信号、数据和/或信息。I/O单元140c可以包括相机、麦克风、用户输入单元、显示单元140d、扬声器和/或触觉模块。
例如,在数据通信的情况下,I/O单元140c可以获取用户输入的信息/信号(例如,触摸、文本、语音、图像或视频),并且所获取的信息/信号可以被存储在存储单元130中。通信单元110可以将存储器中存储的信息/信号转换为无线电信号,并将所转换的无线电信号直接发送给其他无线装置或发送给BS。通信单元110可以从其他无线装置或BS接收无线电信号,然后将所接收的无线电信号恢复为原始信息/信号。恢复出的信息/信号可以被存储在存储单元130中,并且可以通过I/O单元140输出为各种类型(例如,文本、语音、图像、视频或触觉)。
图22示出了基于本公开的实施方式的车辆或自主车辆。可以通过移动机器人、汽车、火车、有人/无人驾驶飞行器(AV)、轮船等来实现车辆或自主车辆。
参照图22,车辆或自主车辆(100)可以包括天线单元(108)、通信单元(110)、控制单元(120)、驱动单元(140a)、电源单元(140b)、传感器单元(140c)和自主驾驶单元(140d)。天线单元(108)可以被配置为通信单元(110)的一部分。框110/130/140a至140d分别对应于图20的框110/130/140。
通信单元110可以发送和接收去往和来自诸如其他车辆、BS(例如,gNB和路侧单元)和服务器这样的外部装置的信号(例如,数据信号和控制信号)。控制单元120可以通过控制车辆或自主驾驶车辆100的元件执行各种操作。控制单元120可以包括电子控制单元(ECU)。驱动单元140a可以促使车辆或自主驾驶车辆100在路上行驶。驱动单元140a可以包括引擎、马达、传动系统、车轮、刹车、转向装置等。电源单元140b可以向车辆或自主驾驶车辆100供应电力,并且可以包括有线/无线充电电路、电池等。传感器单元140c可以获取车辆状态、外部环境信息、用户信息等。传感器单元140c可以包括惯性测量单元(IMU)传感器、碰撞传感器、车轮传感器、速度传感器、坡度传感器、重量传感器、航向传感器、位置模块、车辆前进/后退传感器、电池传感器、燃油传感器、轮胎传感器、转向传感器、温度传感器、湿度传感器、超声波传感器、照明传感器、踏板位置传感器等。自主驾驶单元140d可以实现用于保持车辆行驶的车道的技术、用于自动调节速度的技术(例如,自适应巡航控制)、用于自主沿着确定路径驾驶的技术、用于在设置了目的地的情况下通过自动设置路径驾驶的技术等。
例如,通信单元110可以从外部服务器接收地图数据、交通信息数据等。自主驾驶单元140d可以从所获取的数据生成自主驾驶路径和驾驶计划。控制单元120可以控制驱动单元140a,使得车辆或自主驾驶车辆100可以根据驾驶计划(例如,速度/方向控制)沿着自主驾驶路径移动。在自主驾驶中间,通信单元110可以非周期性/周期性地从外部服务器获取最近的交通信息数据,并且从相邻车辆获取周围的交通信息数据。在自主驾驶中间,传感器单元140c可以获取车辆状态和/或周围环境信息。自主驾驶单元140d可以基于新获取的数据/信息更新自主驾驶路径和驾驶计划。通信单元110可以向外部服务器传输有关车辆位置、自主驾驶路径和/或驾驶计划的信息。外部服务器可以基于从车辆或自主驾驶车辆收集的信息使用AI技术等预测交通信息数据,并将所预测的交通信息数据提供给车辆或自主驾驶车辆。
可以以各种方式组合本说明书中的权利要求。例如,本说明书的方法权利要求中的技术特征可以被组合以在设备中实现或执行,并且设备权利要求中的技术特征可以被组合以在方法中实现或执行。另外,(一个或多个)方法权利要求和(一个或多个)设备权利要求中的技术特征可以被组合以在设备中实现或执行。另外,(一个或多个)方法权利要求和(一个或多个)设备权利要求中的技术特征可以被组合以在方法中实现或执行。

Claims (20)

1.一种第一设备在无线通信系统中执行资源选择的方法,该方法包括以下步骤:
从基站接收包括与异常池相关的配置信息的系统信息,
其中,所述异常池包括包含反馈资源的第一异常池以及不包含所述反馈资源的第二异常池;
基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者来选择所述第一异常池或所述第二异常池;
从所选择的异常池中选择资源;以及
使用所述资源执行副链路SL通信,
其中,基于待发送分组的服务质量QoS来选择所述第一异常池或所述第二异常池。
2.根据权利要求1所述的方法,其中,基于要求更高可靠性的QoS来选择所述第一异常池。
3.根据权利要求2所述的方法,其中,使用所述资源执行所述SL通信包括以下步骤:
将所述分组发送到第二设备;以及
从所述第二设备接收反馈。
4.根据权利要求3所述的方法,其中,所述反馈包括HARQ反馈、信道状态信息CSI或闭环功率控制参数中的至少一者。
5.根据权利要求1所述的方法,其中,基于要求更低可靠性的QoS来选择所述第二异常池。
6.根据权利要求5所述的方法,其中,使用所述资源执行所述SL通信包括以下步骤:
将所述分组发送到第二设备,
其中,不从所述第二设备接收反馈。
7.根据权利要求1所述的方法,其中,基于小区重选、波束故障或波束重选中的至少一者来选择所述第一异常池。
8.根据权利要求1所述的方法,其中,基于有效区域来配置所述配置信息,并且
其中,所述有效区域包括单个副链路区、扇区、单个波束或小区集合中的至少一者。
9.根据权利要求1所述的方法,其中,基于包括随机资源选择或短期感测资源选择的资源选择机制来选择所述资源。
10.根据权利要求1所述的方法,所述方法还包括以下步骤:
向所述基站发送与对可靠性更高的异常池的需要相关的信息,
其中,所述异常池包括可靠性更高的异常池。
11.根据权利要求1所述的方法,
其中,所述第一异常池和所述第二异常池来自不同的无线电接入技术RAT。
12.根据权利要求11所述的方法,其中,所述第一异常池来自NR RAT,并且
其中,基于要求更高可靠性的所述QoS来选择所述第一异常池。
13.根据权利要求1所述的方法,所述方法还包括以下步骤:
向所述基站发送对与异常池相关的配置的请求,
其中,基于所述请求来接收所述配置信息。
14.一种用于执行无线通信的第一设备,该第一设备包括:
一个或更多个存储器,所述一个或更多个存储器存储指令;
一个或更多个收发器;以及
一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器,其中,所述一个或更多个处理器执行所述指令以:
从基站接收包括与异常池相关的配置信息的系统信息,
其中,所述异常池包括包含反馈资源的第一异常池以及不包含所述反馈资源的第二异常池;
基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者来选择所述第一异常池或所述第二异常池;
从所选择的异常池中选择资源;以及
使用所述资源执行副链路SL通信,
其中,基于待发送分组的服务质量QoS来选择所述第一异常池或所述第二异常池。
15.一种被配置为控制第一用户设备UE的设备,该设备包括:
一个或更多个处理器;以及
一个或更多个存储器,所述一个或更多个存储器在操作上能连接到所述一个或更多个处理器并存储指令,其中,所述一个或更多个处理器执行所述指令以:
从基站接收包括与异常池相关的配置信息的系统信息,
其中,所述异常池包括包含反馈资源的第一异常池以及不包含所述反馈资源的第二异常池;
基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者来选择所述第一异常池或所述第二异常池;
从所选择的异常池中选择资源;以及
使用所述资源执行副链路SL通信,
其中,基于待发送分组的服务质量QoS来选择所述第一异常池或所述第二异常池。
16.一种存储指令的非暂态计算机可读存储介质,所述指令在被执行时致使第一设备:
从基站接收包括与异常池相关的配置信息的系统信息,
其中,所述异常池包括包含反馈资源的第一异常池以及不包含所述反馈资源的第二异常池;
基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者来选择所述第一异常池或所述第二异常池;
从所选择的异常池中选择资源;以及
使用所述资源执行副链路SL通信,
其中,基于待发送分组的服务质量QoS来选择所述第一异常池或所述第二异常池。
17.一种由基站BS在无线通信系统中配置异常池的方法,该方法包括以下步骤:
向第一设备发送包括与异常池相关的配置信息的系统信息,
其中,所述异常池包括包含反馈资源的第一异常池以及不包含所述反馈资源的第二异常池;
其中,基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者来选择所述第一异常池或所述第二异常池;
其中,选择来自所述第一异常池的资源,
其中,使用所述资源执行副链路SL通信,并且
其中,基于待发送分组的服务质量QoS来选择所述第一异常池或所述第二异常池。
18.根据权利要求17所述的方法,所述方法还包括以下步骤:
从所述第一设备接收对与异常池相关的配置的请求,
其中,基于所述请求来发送所述配置信息。
19.一种用于执行无线通信的基站,该基站包括:
一个或更多个存储器,所述一个或更多个存储器存储指令;
一个或更多个收发器;以及
一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器,其中,所述一个或更多个处理器执行所述指令以:
向第一设备发送包括与异常池相关的配置信息的系统信息,
其中,所述异常池包括包含反馈资源的第一异常池以及不包含所述反馈资源的第二异常池;
其中,基于物理层问题、连接重建、切换或不可用的正常资源池中的至少一者来选择所述第一异常池或所述第二异常池;
其中,选择来自所述第一异常池的资源,
其中,使用所述资源执行副链路SL通信,并且
其中,基于待发送分组的服务质量QoS来选择所述第一异常池或所述第二异常池。
20.根据权利要求19所述的基站,其中,所述一个或更多个处理器还执行所述指令以:
从所述第一设备接收对与异常池相关的配置的请求,
其中,基于所述请求来发送所述配置信息。
CN202080060717.9A 2019-08-05 2020-08-05 用于在nr v2x中进行资源选择的方法和装置 Pending CN114365568A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20190095120 2019-08-05
KR10-2019-0095120 2019-08-05
PCT/KR2020/010302 WO2021025446A1 (en) 2019-08-05 2020-08-05 Method and device for resource selection in nr v2x

Publications (1)

Publication Number Publication Date
CN114365568A true CN114365568A (zh) 2022-04-15

Family

ID=74503209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080060717.9A Pending CN114365568A (zh) 2019-08-05 2020-08-05 用于在nr v2x中进行资源选择的方法和装置

Country Status (6)

Country Link
US (2) US11546883B2 (zh)
EP (1) EP3994930A4 (zh)
JP (1) JP7462025B2 (zh)
KR (1) KR20220005649A (zh)
CN (1) CN114365568A (zh)
WO (1) WO2021025446A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7136716B2 (ja) * 2019-02-08 2022-09-13 日立Astemo株式会社 電子制御装置、判定方法
JP7462025B2 (ja) * 2019-08-05 2024-04-04 エルジー エレクトロニクス インコーポレイティド Nr v2xにおけるリソース選択のための方法及び装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101660649B1 (ko) 2014-10-22 2016-09-27 엘지전자 주식회사 무선 통신 시스템에서 단말이 예외적 자원을 사용하여 D2D(device-to-device) 동작을 수행하는 방법 및 상기 방법을 이용하는 단말
JP2017536031A (ja) 2014-10-22 2017-11-30 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける端末が例外的なリソースを使用してd2d動作を実行する方法及び前記方法を利用する端末
CN112118078B (zh) * 2014-11-14 2024-02-27 株式会社Ntt都科摩 终端、通信系统以及反馈方法
WO2018080151A1 (ko) 2016-10-25 2018-05-03 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 harq 수행 방법 및 이를 위한 장치
EP3567907B1 (en) 2017-04-26 2022-04-06 Huawei Technologies Co., Ltd. Information feedback method and apparatus
WO2019022470A1 (en) * 2017-07-25 2019-01-31 Lg Electronics Inc. METHOD AND APPARATUS FOR REALIZING LATERAL LINK TRANSMISSIONS ON MULTIPLE CARRIERS IN A WIRELESS COMMUNICATION SYSTEM
WO2019064983A1 (ja) 2017-09-27 2019-04-04 ソニー株式会社 通信装置
WO2020068973A1 (en) * 2018-09-25 2020-04-02 Idac Holdings, Inc. Methods, devices, and systems for supporting harq on v2x
US20220182979A1 (en) * 2019-03-26 2022-06-09 Idac Holdings, Inc. Systems and methods for sidelink communication
JP7462025B2 (ja) * 2019-08-05 2024-04-04 エルジー エレクトロニクス インコーポレイティド Nr v2xにおけるリソース選択のための方法及び装置
EP4014561A4 (en) * 2019-08-15 2022-08-03 ZTE Corporation SIDE LINK SYSTEM INFORMATION TRANSMISSION METHOD AND RELATED DEVICE
US20220287009A1 (en) * 2019-08-23 2022-09-08 Lg Electronics Inc. Method and apparatus for performing resource pool-based sidelink communication in nr v2x
KR20210061845A (ko) * 2019-11-20 2021-05-28 삼성전자주식회사 무선 통신 시스템에서 사이드링크를 위한 exceptional 전송 자원 풀을 처리하는 장치 및 방법

Also Published As

Publication number Publication date
EP3994930A4 (en) 2022-08-17
US20230156667A1 (en) 2023-05-18
JP2022543801A (ja) 2022-10-14
WO2021025446A1 (en) 2021-02-11
US20220159627A1 (en) 2022-05-19
EP3994930A1 (en) 2022-05-11
US11546883B2 (en) 2023-01-03
US11864162B2 (en) 2024-01-02
JP7462025B2 (ja) 2024-04-04
KR20220005649A (ko) 2022-01-13

Similar Documents

Publication Publication Date Title
CN111727575A (zh) Nr v2x的副链路控制信息的发送
CN111727651A (zh) Nr v2x的2步sci发送
CN113853761A (zh) 在nr v2x中发送副链路参考信号的方法和装置
KR102660885B1 (ko) Sl csi 보고
CN113661729B (zh) 在nr v2x中发送与副链路信道相关的信息的方法和装置
EP4033826B1 (en) Method and device for reselecting sidelink resources in nr v2x
US11979324B2 (en) Method and apparatus for performing SL communication on basis of state of user equipment in NR V2X
CN113678493A (zh) 用于在无线通信系统中测量副链路信道的方法和装置
US11540304B2 (en) Method and apparatus for performing CSI report in NR V2X
KR102516126B1 (ko) Nr v2x에서 사이드링크 자원을 결정하는 방법 및 장치
CN113597793A (zh) 在nr v2x中确定副链路发送功率的方法和装置
CN113475147A (zh) 基于dci执行lte sl通信的方法和装置
EP4021071A1 (en) Method and apparatus for performing resource reservation in nr v2x
CN113785518A (zh) 用于在nr v2x中确定harq反馈选项的方法及装置
CN113994611A (zh) 用于在nr v2x中确定rsrp的方法及装置
CN113711642A (zh) 在无线通信系统中执行侧链路重传的方法和设备
CN113875295A (zh) 用于控制nr v2x中的副链路发送功率的方法和装置
US11864162B2 (en) Method and device for resource selection in NR V2X
CN114402638A (zh) 在nr v2x中发信号通知与tdd时隙配置相关的信息的方法和装置
CN114830552A (zh) 在nr v2x中发送关于信道状态的信息的方法和设备
KR102642323B1 (ko) Nr v2x에서 우선 순위를 결정하는 방법 및 장치
CN114342428A (zh) 用于在nr v2x中执行同步的方法和装置
CN113475148A (zh) 用于控制lte副链路通信的dci
CN114788385A (zh) 用于支持nr v2x中终端的副链路发送和上行链路发送的同时发送的方法和设备
CN114402641A (zh) 用于执行侧链路重传的方法和设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination