CN114361512A - 一种燃料电池排水、排杂控制系统及控制方法 - Google Patents

一种燃料电池排水、排杂控制系统及控制方法 Download PDF

Info

Publication number
CN114361512A
CN114361512A CN202111664230.4A CN202111664230A CN114361512A CN 114361512 A CN114361512 A CN 114361512A CN 202111664230 A CN202111664230 A CN 202111664230A CN 114361512 A CN114361512 A CN 114361512A
Authority
CN
China
Prior art keywords
fuel cell
cell stack
nitrogen
water
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111664230.4A
Other languages
English (en)
Other versions
CN114361512B (zh
Inventor
游义富
陈金锐
肖龙
杨毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Changan New Energy Automobile Technology Co Ltd
Original Assignee
Chongqing Changan New Energy Automobile Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Changan New Energy Automobile Technology Co Ltd filed Critical Chongqing Changan New Energy Automobile Technology Co Ltd
Priority to CN202111664230.4A priority Critical patent/CN114361512B/zh
Publication of CN114361512A publication Critical patent/CN114361512A/zh
Application granted granted Critical
Publication of CN114361512B publication Critical patent/CN114361512B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明涉及一种燃料电池排水、排杂控制系统及控制方法。控制系统包括空气供给系统、氢气供给系统、燃料电池堆和燃料电池控制器;通过空气供给系统和氢气供给系统中的相关设备和传感器将数据传输给燃料电池控制器,然后通过燃料电池控制器计算燃料电池堆阳极侧的有效容积和氮气百分比,并与设定值相比,来计算燃料电池堆的阳极侧排水、排氮的时长。本发明的控制方法包括运行控制系统,通过燃料电池控制器对燃料电池堆相关参数进行监测,然后计算得阳极侧的有效容积和氮气百分比,从而控制排水阀、排杂阀的排放时长。本发明解决了现有氢燃料电池的氢气循环系统中,氮气不断的从阴极渗透到阳极,影响氢气计量比,从而出现氢气供给不足的问题。

Description

一种燃料电池排水、排杂控制系统及控制方法
技术领域
本发明涉及汽车燃料电池的检测技术领域,具体涉及一种燃料电池排水、排杂控制系统及控制方法。
背景技术
新能源汽车凭借节能环保的优势,其发展受到了越来越多的关注。其中,燃料电池汽车与传统电动车和混合动力汽车相比具有发电效率高、运行噪声低、燃料来源丰富、燃料可快速加注、无污染、NVH表现优异、舒适性高等优点,因此受到了人们的广泛关注。且以氢燃料电池为动力源的燃料电池汽车可做到真正的零排放。
现有技术中,氢燃料电池为了提高氢气的利用率,一般会使用氢气循环系统(氢气循环泵和引射器)。然而,在实际反应过程中由于质子传输影响,氮气会不断的从阴极渗透到阳极,而阳极侧作为循环腔,若阳极侧累积的氮气达到一定量后,直接影响着氢气的计量比,由此会出现因氢气供给不足引起的“氢气饥饿”的问题,不仅降低了氢气的利用率,还降低了电堆的反应效率。
发明内容
本发明的目的在于提供一种燃料电池排水、排杂控制系统及控制方法,以解决现有氢燃料电池的氢气循环系统中,氮气不断的从阴极渗透到阳极,影响氢气的计量比,从而出现因氢气供给不足引起的“氢气饥饿”的问题。
为了实现上述目的,本发明采用的技术方案如下:
一种燃料电池排水、排杂控制系统,包括空气供给系统、氢气供给系统、燃料电池堆和燃料电池控制器;
所述空气供给系统为燃料电池堆的阴极提供空气,所述空气供给系统包括空压机和尾排节气门,所述空压机与所述尾排节气门之间连接有所述的燃料电池堆;
所述氢气供给系统为燃料电池堆的阳极提供氢气,所述氢气供给系统包括依次连接的氢气供给装置、氢水分离装置、排杂阀和排水阀,所述氢气供给装置与所述氢水分离装置之间连接有所述的燃料电池堆;
所述空压机的进风口端设有流量计,所述空压机与燃料电池堆之间设有空气压力传感器和空气温度传感器,所述氢气供给装置与燃料电池堆之间设有氢气压力传感器;
还包括与燃料电池堆相连的水热系统,所述水热系统的出水口处设有温度传感器;
所述空压机、尾排节气门、排杂阀、排水阀、流量计、空气压力传感器、空气温度传感器、氢气压力传感器和温度传感器均与所述燃料电池控制器为电连接,通过空压机、流量计、空气压力传感器、空气温度传感器、氢气压力传感器和温度传感器将数据传输给燃料电池控制器,然后通过燃料电池控制器计算燃料电池堆阳极侧的有效循环腔体容积和氮气百分比,并与设定值相比较,来计算燃料电池堆的阳极侧排水、排氮的时长,再控制空压机、尾排节气门、排杂阀和排水阀的运行。
优选的,所述空气供给系统中还包括空气滤清器、中冷器、加湿器和消声器,所述空气滤清器设在所述流量计的进气口端,所述中冷器和加湿器依次设在所述空压机和尾排节气门之间,所述尾排节气门和所述排水阀的出口端连接所述的消声器;
所述氢气供给系统还包括引射装置,所述引射装置设在所述氢气供给装置和氢气压力传感器之间,所述氢水分离装置还与所述引射装置相连,使分离后的氢气返回引射装置。
优选的,所述流量计用于监测进入燃料电池堆的空气量,所述空气压力传感器用于监测进入燃料电池堆的空气压力,所述空气温度传感器用于监测进入燃料电池堆的空气的温度,所述氢气压力传感器用于监测进入燃料电池堆的氢气压力,所述温度传感器用于监测进入燃料电池堆的水的温度。
本发明了还提供了一种燃料电池排水、排杂控制系统的控制方法,包括以下步骤:
运行燃料电池排水、排杂控制系统,通过燃料电池控制器对燃料电池堆的空气进入量、空气进入的压力、空气进入的温度、氢气进入的压力和水进入的温度进行监测,然后计算得到阳极侧的有效循环腔体容积和氮气百分比,并与设定值相比较,
1)当有效循环腔体容积<设定限值,且氮气百分比>设定限值时,则通过燃料电池控制器计算排水时长,并控制排水阀执行排水,直至有效循环腔体容积≥设定限值,再通过燃料电池控制器计算排氮时长,并控制排杂阀执行排氮;
2)当有效循环腔体容积<设定限值,且氮气百分比≤设定限值时,则通过燃料电池控制器计算排水时长,并执行排水;
3)当有效循环腔体容积≥设定限值,且氮气百分比>设定限值时,则通过燃料电池控制器计算排氮时长,并控制排杂阀执行排氮;
其中,燃料电池堆阳极侧的有效循环腔体容积为氢气回路的理论容积与燃料电池堆阳极侧生成水的体积之差,计算公式如下:
V2=V0-VH2O (Ⅰ)
式Ⅰ中,V2表示燃料电池堆阳极侧的有效循环腔体容积,单位为m3,V0表示氢气回路的理论容积,单位为m3,VH2O表示燃料电池堆阳极侧生成水的体积,单位为m3
燃料电池堆阳极侧的氮气百分比的计算公式如下:
Figure BDA0003447976200000031
式Ⅱ中,μN2表示氮气百分比,VN2表示Δt时间内燃料电池堆的阳极侧累计氮气的体积,单位为m3,V2表示燃料电池堆阳极侧的有效循环腔体容积,单位为m3,Δt表示燃料电池排水、排杂控制系统从t1时刻运行到t2时刻的时间差。
优选的,所述燃料电池堆阳极侧生成水的体积VH2O的计算方法包括以下步骤:
S1、根据摩尔定律,计算得出不同电流下,燃料电池堆阴极侧理论生成水的体积,根据燃料电池系统稳态试验测试出不同工况下,燃料电池堆阴极侧排出水的理论摩尔数为
Figure BDA0003447976200000032
MΔt表示燃料电池堆阴极侧在Δt时间内生成水的理论累积质量,其中,Δt表示燃料电池排水、排杂控制系统从t1时刻运行到t2时的时间差;
根据公式Ⅲ得到燃料电池堆阴极侧水分子浓度CH2OC,公式Ⅲ如下:
Figure BDA0003447976200000033
式Ⅲ中,I表示电流,单位为A,Ncell表示燃料电池堆的片数,MΔt表示燃料电池堆阴极侧在Δt时间内生成水的理论累积质量,Vdiffuse表示燃料电池堆里的质子交换膜的扩散层体积,单位为m3,CH2OC表示燃料电池堆阴极侧水分子浓度;
S2、通过公式Ⅳ-1和Ⅳ-2计算燃料电池堆阳极侧在Δt时间内生成水的体积,公式Ⅳ-1和Ⅳ-2如下:
Figure BDA0003447976200000034
Figure BDA0003447976200000035
式Ⅳ-1和Ⅳ-2中,M0表示燃料电池堆的含水量,CHOOa,表示燃料电池堆阳极侧水分子浓度,单位为mol/m3,CH2OC表示燃料电池堆阴极侧水分子浓度,单位为mol/m3,Scell表示膜的有效反应面积,单位为m2,Ncell表示燃料电池堆的片数,k表示不同条件下的膜的渗透因子,单位为m2/s,lmemb表示膜的厚度,单位为m,M表示水的相对分子质量,MH2O表示燃料电池堆阳极侧在Δt时间内生成水的质量,单位为kg,ρ表示水的密度,单位为1000kg/m3,VH2O表示燃料电池堆阳极侧在Δt时间内生成水的体积,单位为m3
优选的,所述燃料电池堆的含水量M0的初始值为0,运行过程中,在执行完排水动作后,M0=ρ(VH2O-V′H2O),VH2O表示燃料电池堆阳极侧在Δt时间内生成水的体积,单位为m3,V′H2O表示经过一个排水间隔时长tH2O后,执行一次排水动作排出水的量,单位为m3,V′H2O=nH2O·QH2O,nH2O表示排水时长,QH2O表示排水阀的流量,如没有执行排水动作,则V′H2O为0,ρ表示水的密度,单位为1000kg/m3
优选的,所述Δt时间内燃料电池堆的阳极侧累计氮气的体积VN2的计算方法包括以下步骤:
S1、通过公式Ⅴ计算燃料电池堆里的质子交换膜上水的体积分数fv,公式Ⅴ如下:
Figure BDA0003447976200000041
式Ⅴ中,fv表示质子交换膜上水的体积分数,Vw表示质子交换膜中液态水的摩尔体积,单位为m3/moL,Vmerb表示质子交换膜干膜中磺酸酯基的摩尔体积,单位为m3/mol,λH2O表示质子交换膜上的水含量;
S2、通过公式Ⅵ计算氮气通过质子交换膜的渗透率PermN2,公式Ⅵ如下:
Figure BDA0003447976200000042
式Ⅵ中,fv表示质子交换膜上水的体积分数,T0表示参考温度,单位为℃,T表示温度传感器检测得到的进入燃料电池堆中水的温度,单位为℃;
S3、通过公式Ⅶ计算氮气通过质子交换膜阴极到阳极的渗透速率dN2,公式Ⅶ如下:
Figure BDA0003447976200000043
式Ⅶ中,ΔP,表示质子交换膜两侧的压力差,单位为Pa,lmemb表示质子交换膜厚度,单位为m,Scell表示质子交换膜的有效反应面积,单位为㎡,Ncell表示燃料电池堆的片数,PermN2表示氮气通过质子交换膜的渗透率,单位为mol/m/s/pa,dN2表示氮气通过质子交换膜阴极到阳极的渗透速率,单位为mol/s;
S4、当燃料电池排水、排杂控制系统从t1时刻运行到时刻t2时,对渗透速率dN2进行积分得到Δt时间内燃料电池堆的阳极侧累计氮气的体积VN2,其中,Δt表示t2-t1的时间差值,计算公式如下:
Figure BDA0003447976200000051
式Ⅷ中,dN2表示氮气通过质子交换膜阴极到阳极的渗透速率,单位为mol/s,Panode表示燃料电池堆阳极侧氢气进入的压力,单位为bar,
Figure BDA0003447976200000052
表示阳极侧残余氮气体积,单位为m3,VN2表示Δt时间内燃料电池堆的阳极侧累计氮气的体积,单位为m3,P0表示标准大气压,单位为bar,Vmol表示理想气体体积,单位为L/mol。
优选的,所述阳极侧残余氮气体积
Figure BDA0003447976200000053
的初始值为0,运行过程中,在执行完排氮动作后,
Figure BDA0003447976200000054
VN2表示Δt时间内燃料电池堆的阳极侧累计氮气的体积,单位为m3,V′N2表示经过一个排杂间隔tN2后,执行一次排氮动作排出的氮气的体积,单位为m3,V′N2=nN2·QN2,nN2为排氮时长,QN2为排杂阀的流量,若没有执行排氮动作,则V′N2为0。
优选的,所述排水时长通过公式Ⅸ计算得到,公式Ⅸ如下:
Figure BDA0003447976200000055
式Ⅸ中,nH2O表示排水时长,tH2O表示每次排水间隔时长,QH2O为排水阀的流量,V2表示燃料电池堆阳极侧的有效循环腔体容积,V设定值表示燃料电池堆阳极侧的有效循环腔体容积的设定值。
优选的,所述排氮时长通过公式Ⅹ计算得到,公式Ⅹ如下:
Figure BDA0003447976200000056
式Ⅹ中,nN2表示排氮时长,tN2表示每次排氮间隔时长,QN2表示排杂阀的流量,μN2设定值表示氮气百分比的设定值,V2表示燃料电池堆阳极侧的有效循环腔体容积,单位为m3,VN2表示Δt时间内燃料电池堆的阳极侧累计氮气的体积,单位为m3
本发明的有益效果:
1)本发明的燃料电池排水、排杂控制系统,通过将燃料电池系统中空压机、流量计、空气压力传感器、空气温度传感器、氢气压力传感器和温度传感器将数据传输给燃料电池控制器,然后通过燃料电池控制器来计算燃料电池堆的阳极侧的有效循环腔体容积和氮气百分比,并与设定限值作比较,来准确的计算燃料电池堆的阳极侧排水、排氮的时长,并控制空压机、尾排节气门、排杂阀和排水阀的运行,保证了阳极侧的氢气占比,有效提高了电堆的效率和氢气的利用率。解决了现有氢燃料电池的氢气循环系统中,氮气不断的从阴极渗透到阳极,影响氢气的计量比,从而出现因氢气供给不足引起的“氢气饥饿”的问题。
2)本发明的燃料电池排水、排杂控制系统的控制方法,通过燃料电池控制器对燃料电池堆的空气进入量、空气进入的压力、空气进入的温度、氢气进入的压力和水进入的温度进行监测,然后通过燃料电池控制器内的相关公式计算得到阳极侧的有效循环腔体容积和氮气百分比,并与燃料电池控制器内的设定值进行比较,实现了对排水阀和排杂阀的排水、排氮时长的精准控制,从而保证了燃料电池阳极侧氢气的占比,避免了氢气供给不足的问题,有效提高了电堆的效率和氢气利用率,在汽车燃料电池的检测技术领域,具有推广应用价值。
附图说明
图1为本发明的燃料电池排水、排杂控制系统的示意图;
图2为本发明的控制方法的流程图。
其中,1-燃料电池堆,2-燃料电池控制器,3-空压机,4-尾排节气门,5-氢气供给装置,6-氢水分离装置,7-排杂阀,8-排水阀,9-流量计,10-空气压力传感器,11-空气温度传感器,12-氢气压力传感器,13-水热系统,14-温度传感器,15-空气滤清器,16-中冷器,17-加湿器,18-消声器,19-引射装置。
具体实施方式
以下将参照附图和优选实施例来说明本发明的实施方式,本领域技术人员可由本说明书中所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。应当理解,优选实施例仅为了说明本发明,而不是为了限制本发明的保护范围。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例1
如图1所示,一种燃料电池排水、排杂控制系统,包括空气供给系统、氢气供给系统、燃料电池堆1和燃料电池控制器2;
空气供给系统为燃料电池堆1的阴极提供空气,空气供给系统包括空压机3和尾排节气门4,空压机3与尾排节气门4之间连接有燃料电池堆1;
氢气供给系统为燃料电池堆1的阳极提供氢气,氢气供给系统包括依次连接的氢气供给装置5、氢水分离装置6、排杂阀7和排水阀8,氢气供给装置5与氢水分离装置6之间连接有燃料电池堆1;
空压机3的进风口端设有流量计9,空压机3与燃料电池堆1之间设有空气压力传感器10和空气温度传感器11,氢气供给装置5与燃料电池堆1之间设有氢气压力传感器12;
还包括与燃料电池堆1相连的水热系统13,水热系统13的出水口处设有温度传感器14;
空压机3、尾排节气门4、排杂阀7、排水阀8、流量计9、空气压力传感器10、空气温度传感器11、氢气压力传感器12和温度传感器14均与燃料电池控制器2为电连接,通过空压机3、流量计9、空气压力传感器10、空气温度传感器11、氢气压力传感器12和温度传感器14将数据传输给燃料电池控制器2,然后通过燃料电池控制器2计算燃料电池堆1阳极侧的有效循环腔体容积和氮气百分比,并与设定值相比较,来计算燃料电池堆1的阳极侧排水、排氮的时长,再控制空压机3、尾排节气门4、排杂阀7和排水阀8的运行。
通过将燃料电池系统中空压机、流量计、空气压力传感器、空气温度传感器、氢气压力传感器和温度传感器将数据传输给燃料电池控制器,然后通过燃料电池控制器来计算燃料电池堆的阳极侧的有效循环腔体容积和氮气百分比,并与设定限值作比较,来准确的计算燃料电池堆的阳极侧排水、排氮的时长,并控制空压机、尾排节气门、排杂阀和排水阀的运行,保证了阳极侧的氢气占比,有效提高了电堆的效率和氢气的利用率。解决了现有氢燃料电池的氢气循环系统中,氮气不断的从阴极渗透到阳极,影响氢气的计量比,从而出现因氢气供给不足引起的“氢气饥饿”的问题。
其中,燃料电池堆的阳极侧的杂质主要为氮气。氮气百分比为氮气占有效循环腔体容积的体积百分比,一般情况下,氮气百分比小于10%。尾排节气门通过燃料电池控制器控制其开度,并配合空压机调整进入燃料电池堆的空气的流量和压力。
空气供给系统中还包括空气滤清器15、中冷器16、加湿器17和消声器18,空气滤清器15设在流量计9的进气口端,中冷器16和加湿器17依次设在空压机3和尾排节气门4之间,尾排节气门4和排水阀8的出口端连接消声器18;
氢气供给系统还包括引射装置19,引射装置19设在氢气供给装置5和氢气压力传感器12之间,氢水分离装置6还与引射装置19相连,使分离后的氢气返回引射装置19。
流量计9用于监测进入燃料电池堆1的空气量,空气压力传感器10用于监测进入燃料电池堆1的空气压力,空气温度传感器11用于监测进入燃料电池堆1的空气的温度,氢气压力传感器12用于监测进入燃料电池堆1的氢气压力,温度传感器14用于监测进入燃料电池堆1的水的温度。
实施例2
如图2所示,本实施例提供了实施例1中燃料电池排水、排杂控制系统的控制方法,包括以下步骤:
运行燃料电池排水、排杂控制系统,通过燃料电池控制器对燃料电池堆的空气进入量、空气进入的压力、空气进入的温度、氢气进入的压力和水进入的温度进行监测,然后计算得到阳极侧的有效循环腔体容积和氮气百分比,并与设定值相比较,
1)当燃料电池控制器计算得到的有效循环腔体容积<设定限值,且氮气百分比>设定限值时,则通过燃料电池控制器计算排水时长,并控制排水阀执行排水,直至有效循环腔体容积≥设定限值,再通过燃料电池控制器计算排氮时长,并控制排杂阀执行排氮;
2)当燃料电池控制器计算得到的有效循环腔体容积<设定限值,且氮气百分比≤设定限值时,则通过燃料电池控制器计算排水时长,并执行排水;
3)当燃料电池控制器计算得到的有效循环腔体容积≥设定限值,且氮气百分比>设定限值时,则通过燃料电池控制器计算排氮时长,并控制排杂阀执行排氮;
其中,燃料电池堆阳极侧的有效循环腔体容积为氢气回路的理论容积与燃料电池堆阳极侧生成水的体积之差,计算公式如下:
V2=V0-VH2O (Ⅰ)
式Ⅰ中,V2表示燃料电池堆阳极侧的有效循环腔体容积,单位为m3,V0表示氢气回路的理论容积,单位为m3,实际可根据硬件设备计算得到,VH2O表示燃料电池堆阳极侧生成水的体积,单位为m3
燃料电池堆阳极侧的氮气百分比的计算公式如下:
Figure BDA0003447976200000091
式Ⅱ中,μN2表示氮气百分比,VN2表示Δt时间内燃料电池堆的阳极侧累计氮气的体积,单位为m3,V2表示燃料电池堆阳极侧的有效循环腔体容积,单位为m3,Δt表示燃料电池排水、排杂控制系统从t1时刻运行到时刻t2时刻的时间差。
本实施例中,有效循环腔体容积的设定值为氢气回路的理论容积的90%,即V0×90%。氮气百分比的设定值为阳极侧有效循环腔体容积的10%,即V2×10%。
其中,氢气回路的理论容积为氢水分离装置的容积加上氢水分离装置与排杂阀之间的管道容积,实际可根据硬件设备计算得到。
燃料电池堆阳极侧生成水的体积VH2O的计算方法包括以下步骤:
S1、根据摩尔定律,计算得出不同电流下,燃料电池堆阴极侧理论生成水的摩尔数,根据燃料电池系统稳态试验测试出不同工况下,燃料电池堆阴极侧排出水的理论摩尔数为
Figure BDA0003447976200000092
MΔt表示燃料电池堆阴极侧在Δt时间内生成水的理论累积质量,其中,Δt表示燃料电池排水、排杂控制系统从t1时刻运行到时刻t2时的时间差;
根据公式Ⅲ得到燃料电池堆阴极侧水分子浓度CH2OC,公式Ⅲ如下:
Figure BDA0003447976200000093
式Ⅲ中,I表示电流,单位为A,本实施例中,I的值为0~700A,I的实际值为燃料电池堆直接反馈给燃料电池控制器而得到,Ncell表示燃料电池堆的片数,MΔt表示燃料电池堆阴极侧在Δt时间内生成水的理论累积质量,Vdiffuse表示燃料电池堆里的质子交换膜的扩散层体积,单位为m3,CH2OC表示燃料电池堆阴极侧水分子浓度;
本实施例中,Ncell的值在150~500之间,Scell的值在0.01~0.3㎡之间,Vdiffuse为常数,实际可根据燃料电池堆的质子交换膜检测得到。
S2、通过公式Ⅳ-1和Ⅳ-2计算燃料电池堆阳极侧在Δt时间内生成水的体积,公式Ⅳ-1和Ⅳ-2如下:
Figure BDA0003447976200000094
Figure BDA0003447976200000101
式Ⅳ-1和Ⅳ-2中,M0表示燃料电池堆的含水量,单位为kg,CH2Oa,表示燃料电池堆阳极侧水分子浓度,单位为mol/m3,CH2OC表示燃料电池堆阴极侧水分子浓度,单位为mol/m3;Scell表示质子交换膜的有效反应面积,单位为㎡,Ncell表示燃料电池堆的片数,k表示不同条件下的膜的渗透因子,单位为m2/s,lmemb表示膜的厚度,单位为m,M表示水的相对分子质量,MH2O表示燃料电池堆阳极侧在Δt时间内生成水的质量,单位为kg,ρ表示水的密度,单位为1000kg/m3,VH2O表示燃料电池堆阳极侧在Δt时间内生成水的体积,单位为m3
本实施例中,M0的初始值为0,运行过程中,在执行完排水动作后,M0=ρ(VH2O-V′H2O),VH2O表示燃料电池堆阳极侧在Δt时间内生成水的体积,单位为m3,V′H2O表示经过一个排水间隔时长tH2O后,执行一次排水动作排出水的量,单位为m3,V′H2O=nH2O·QH2O,nH2O表示排水时长,QH2O表示排水阀的流量,如没有执行排水动作,则V′H2O为0,ρ表示水的密度,单位为1000kg/m3
本实施例中,采用的排水阀仅有开启和关闭功能,且排水间隔时长稳定,因此,排水阀的流量QH2O是稳定不便的,且可直接通过测试排水阀得到,排水间隔时长tH2O一般设定为10s。
本实施例中,CH2Oa的初始值为0,运行过程中,CH2Oa为持续时间内质子交换膜渗透水的量与阳极侧排水口收集到的水的量之差,再除以质子交换膜的燃料电池堆里的质子交换膜的扩散层体积得到。燃料电池堆里的质子交换膜的扩散层体积为常数,实际可根据燃料电池堆的质子交换膜检测得到。
本实施例中,Scell的值在0.01~0.3㎡之间,Ncell的值在150~500之间,lmemb的值为为8~15μm。
其中,k的值一般为(2.34~4.42)^(-10)m2/s,本实施例中,k的值为3^(-10)m2/s。
Δt时间内燃料电池堆的阳极侧累计氮气的体积VN2的计算方法包括以下步骤:
S1、通过公式Ⅴ计算燃料电池堆里的质子交换膜上水的体积分数fv,公式Ⅴ如下:
Figure BDA0003447976200000111
式Ⅴ中,fv表示质子交换膜上水的体积分数,Vw表示质子交换膜中液态水的摩尔体积,单位为m3/moL,Vmerb表示质子交换膜干膜中磺酸酯基的摩尔体积,单位为m3/mol,λH2O表示质子交换膜上的水含量;
本实施例中,Vw的值为0.000018m3/moL,Vmerb的值为0.000280m3/moL,λH2O的值在0~22之间,λH2O可通过测试电堆阻抗值后查表得到,或者通过质子交换膜厂家提供不同水含量下电堆的交流阻抗值然后查表得到;
S2、通过公式Ⅵ计算氮气通过质子交换膜的渗透率PermN2,公式Ⅵ如下:
Figure BDA0003447976200000112
式Ⅵ中,fv表示质子交换膜上水的体积分数,T0表示参考温度,单位为℃,T表示温度传感器检测得到的进入燃料电池堆中水的温度,单位为℃;
本实施例中,fv的值在0.05~0.75之间,T0的值为25℃,T的值在60℃~80℃之间,实际可通过温度传感器传输给燃料电池控制器得到;
S3、通过公式Ⅶ计算氮气通过质子交换膜阴极到阳极的渗透速率dN2,公式Ⅶ如下:
Figure BDA0003447976200000113
式Ⅶ中,ΔP,表示质子交换膜两侧的压力差,单位为Pa,lmemb表示质子交换膜厚度,单位为m,Scell表示质子交换膜的有效反应面积,单位为㎡,Ncell表示燃料电池堆的片数,PermN2表示氮气通过质子交换膜阴极到阳极的渗透率,单位为mol/m/s/pa,dN2表示氮气通过质子交换膜的渗透速率,单位为mol/s;
本实施例中,ΔP的值在10~20kPa之间,lmemb的值在8~15μm之间,Scell的值在0.01~0.3㎡之间,Ncell的值在150~500之间;
S4、当燃料电池排水、排杂控制系统从t1时刻运行到时刻t2时,对渗透速率dN2进行积分得到Δt时间内燃料电池堆的阳极侧累计氮气的体积VN2,其中,Δt表示t2-t1的时间差值,计算公式如下:
Figure BDA0003447976200000121
式Ⅷ中,dN2表示氮气通过质子交换膜阴极到阳极的渗透速率,单位为mol/s,Panode表示燃料电池堆阳极侧氢气进入的压力,单位为bar,
Figure BDA0003447976200000122
表示阳极侧残余氮气体积,VN2表示Δt时间内燃料电池堆的阳极侧累计氮气的体积,单位为m3,P0表示标准大气压,单位为bar,Vmol表示理想气体体积,单位为L/mol。
Figure BDA0003447976200000123
的初始值为0,运行过程中,在执行完排氮动作后,
Figure BDA0003447976200000124
VN2表示Δt时间内燃料电池堆的阳极侧累计氮气的体积,V′N2表示经过一个排杂间隔tN2后,执行一次排氮动作排出的氮气量V′N2=nN2·QN2,nN2为排氮时长,QN2为排杂阀的流量,若没有执行排氮动作,则V′N2为0。本实施例中,采用的排杂阀仅有开启和关闭功能,且排氮间隔时长稳定,因此,排杂阀的流量是稳定不便的,且可直接通过测试排杂阀得到,排杂间隔时长tN2一般设定为10s。
本实施例中,Panode在各个工况下的值在1~3bar之间,实际运行过程中,Panode通过氢气压力传感器传输给燃料电池控制器得到,P0的值为1.103bar,Vmol的值为22.4L/mol。
排水时长通过公式Ⅸ计算得到,公式Ⅸ如下:
Figure BDA0003447976200000125
式Ⅸ中,nH2O表示排水时长,tH2O表示每次排水间隔时长,本实施例中,tH2O的值可根据各个工况的稳定性来设定,一般设定为10s,QH2O为排水阀的流量,本实施例中,采用的排水阀仅有开启和关闭功能,且排水间隔时长稳定,因此,排水阀的流量是稳定不便的,且可直接通过测试排水阀得到,V2表示燃料电池堆阳极侧的有效循环腔体容积,V设定值表示燃料电池堆阳极侧的有效循环腔体容积的设定值。
排氮时长通过公式Ⅹ计算得到,公式Ⅹ如下:
Figure BDA0003447976200000126
式Ⅹ中,nN2为排氮时长,tN2为每次排氮间隔时长,本实施例中,tN2的值实际可根据各个工况的稳定性来标定,一般设定为10s,QN2为排杂阀的流量,本实施例中,采用的排杂阀仅有开启和关闭功能,且排氮间隔时长稳定,因此,排杂阀的流量是稳定不便的,且可直接通过测试排杂阀得到,μN2表示氮气百分比,μN2设定值表示氮气百分比的设定值,V2表示燃料电池堆阳极侧的有效循环腔体容积,单位为m3,VN2表示Δt时间内燃料电池堆的阳极侧累计氮气的体积,单位为m3
本发明的燃料电池排水、排杂控制系统,通过将燃料电池系统中空压机、流量计、空气压力传感器、空气温度传感器、氢气压力传感器和温度传感器将数据传输给燃料电池控制器,然后通过燃料电池控制器来计算燃料电池堆的阳极侧的有效循环腔体容积和氮气百分比,并与设定限值作比较,来准确的计算燃料电池堆的阳极侧排水、排氮的时长,并控制空压机、尾排节气门、排杂阀和排水阀的运行,保证了阳极侧的氢气占比,有效提高了电堆的效率和氢气的利用率。解决了现有氢燃料电池的氢气循环系统中,氮气不断的从阴极渗透到阳极,影响氢气的计量比,从而出现因氢气供给不足引起的“氢气饥饿”的问题。
本发明的燃料电池排水、排杂控制系统的控制方法,通过燃料电池控制器对燃料电池堆的空气进入量、空气进入的压力、空气进入的温度、氢气进入的压力和水进入的温度进行监测,然后通过燃料电池控制器内的相关公式计算得到阳极侧的有效循环腔体容积和氮气百分比,并与燃料电池控制器内的设定值进行比较,实现了对排水阀和排杂阀的排水、排氮时长的精准控制,从而保证了燃料电池阳极侧氢气的占比,避免了氢气供给不足的问题,有效提高了电堆的效率和氢气利用率,在汽车燃料电池的检测技术领域,具有推广应用价值。
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。

Claims (10)

1.一种燃料电池排水、排杂控制系统,其特征在于,包括空气供给系统、氢气供给系统、燃料电池堆(1)和燃料电池控制器(2);
所述空气供给系统为燃料电池堆(1)的阴极提供空气,所述空气供给系统包括空压机(3)和尾排节气门(4),所述空压机(3)与所述尾排节气门(4)之间连接有所述的燃料电池堆(1);
所述氢气供给系统为燃料电池堆(1)的阳极提供氢气,所述氢气供给系统包括依次连接的氢气供给装置(5)、氢水分离装置(6)、排杂阀(7)和排水阀(8),所述氢气供给装置(5)与所述氢水分离装置(6)之间连接有所述的燃料电池堆(1);
所述空压机(3)的进风口端设有流量计(9),所述空压机(3)与燃料电池堆(1)之间设有空气压力传感器(10)和空气温度传感器(11),所述氢气供给装置(5)与燃料电池堆(1)之间设有氢气压力传感器(12);
还包括与燃料电池堆(1)相连的水热系统(13),所述水热系统(13)的出水口处设有温度传感器(14);
所述空压机(3)、尾排节气门(4)、排杂阀(7)、排水阀(8)、流量计(9)、空气压力传感器(10)、空气温度传感器(11)、氢气压力传感器(12)和温度传感器(14)均与所述燃料电池控制器(2)为电连接,通过空压机(3)、流量计(9)、空气压力传感器(10)、空气温度传感器(11)、氢气压力传感器(12)和温度传感器(14)将数据传输给燃料电池控制器(2),然后通过燃料电池控制器(2)计算燃料电池堆(1)阳极侧的有效循环腔体容积和氮气百分比,并与设定值相比较,来计算燃料电池堆(1)的阳极侧排水、排氮的时长,再控制空压机(3)、尾排节气门(4)、排杂阀(7)和排水阀(8)的运行。
2.根据权利要求1所述的燃料电池排水、排杂控制系统,其特征在于,所述空气供给系统中还包括空气滤清器(15)、中冷器(16)、加湿器(17)和消声器(18),所述空气滤清器(15)设在所述流量计(9)的进气口端,所述中冷器(16)和加湿器(17)依次设在所述空压机(3)和尾排节气门(4)之间,所述尾排节气门(4)和所述排水阀(8)的出口端连接所述的消声器(18);
所述氢气供给系统还包括引射装置(19),所述引射装置(19)设在所述氢气供给装置(5)和氢气压力传感器(12)之间,所述氢水分离装置(6)还与所述引射装置(19)相连,使分离后的氢气返回引射装置(19)。
3.根据权利要求1所述的燃料电池排水、排杂控制系统,其特征在于,所述流量计(9)用于监测进入燃料电池堆(1)的空气量,所述空气压力传感器(10)用于监测进入燃料电池堆(1)的空气压力,所述空气温度传感器(11)用于监测进入燃料电池堆(1)的空气的温度,所述氢气压力传感器(12)用于监测进入燃料电池堆(1)的氢气压力,所述温度传感器(14)用于监测进入燃料电池堆(1)的水的温度。
4.如权利要求1至权利要求3任一所述的燃料电池排水、排杂控制系统的控制方法,其特征在于,包括以下步骤:
运行燃料电池排水、排杂控制系统,通过燃料电池控制器对燃料电池堆的空气进入量、空气进入的压力、空气进入的温度、氢气进入的压力和水进入的温度进行监测,然后计算得到阳极侧的有效循环腔体容积和氮气百分比,并与设定值相比较:
1)当有效循环腔体容积<设定限值,且氮气百分比>设定限值时,则通过燃料电池控制器计算排水时长,并控制排水阀执行排水,直至有效循环腔体容积≥设定限值,再通过燃料电池控制器计算排氮时长,并控制排杂阀执行排氮;
2)当有效循环腔体容积<设定限值,且氮气百分比≤设定限值时,则通过燃料电池控制器计算排水时长,并执行排水;
3)当有效循环腔体容积≥设定限值,且氮气百分比>设定限值时,则通过燃料电池控制器计算排氮时长,并控制排杂阀执行排氮;
其中,燃料电池堆阳极侧的有效循环腔体容积为氢气回路的理论容积与燃料电池堆阳极侧生成水的体积之差,计算公式如下:
V2=V0-VH2O (Ⅰ)
式Ⅰ中,V2表示燃料电池堆阳极侧的有效循环腔体容积,单位为m3,V0表示氢气回路的理论容积,单位为m3,VH2O表示燃料电池堆阳极侧生成水的体积,单位为m3
燃料电池堆阳极侧的氮气百分比的计算公式如下:
Figure FDA0003447976190000021
式Ⅱ中,μN2表示氮气百分比,VN2表示Δt时间内燃料电池堆的阳极侧累计氮气的体积,单位为m3,V2表示燃料电池堆阳极侧的有效循环腔体容积,单位为m3,Δt表示燃料电池排水、排杂控制系统从t1时刻运行到t2时刻的时间差。
5.根据权利要求4所述的控制方法,其特征在于,所述燃料电池堆阳极侧生成水的体积VH2O的计算方法包括以下步骤:
S1、根据摩尔定律,计算得出不同电流下,燃料电池堆阴极侧理论生成水的体积,根据燃料电池系统稳态试验测试出不同工况下,燃料电池堆阴极侧排出水的理论摩尔数为
Figure FDA0003447976190000031
MΔt表示燃料电池堆阴极侧在Δt时间内生成水的理论累积质量,其中,Δt表示燃料电池排水、排杂控制系统从t1时刻运行到t2时的时间差;
根据公式III得到燃料电池堆阴极侧水分子浓度CH2OC,公式III如下:
Figure FDA0003447976190000032
式III中,I表示电流,单位为A,Ncell表示燃料电池堆的片数,MΔt表示燃料电池堆阴极侧在Δt时间内生成水的理论累积质量,Vdiffuse表示燃料电池堆里的质子交换膜的扩散层体积,单位为m3,CH2OC表示燃料电池堆阴极侧水分子浓度;
S2、通过公式IV-1和IV-2计算燃料电池堆阳极侧在Δt时间内生成水的体积,公式IV-1和IV-2如下:
Figure FDA0003447976190000033
Figure FDA0003447976190000034
式IV-1和IV-2中,M0表示燃料电池堆的含水量,CH2Oa,表示燃料电池堆阳极侧水分子浓度,单位为mol/m3,CH2OC表示燃料电池堆阴极侧水分子浓度,单位为mol/m3,Scell表示膜的有效反应面积,单位为m2,Ncell表示燃料电池堆的片数,k表示不同条件下的膜的渗透因子,单位为m2/s,lmemb表示膜的厚度,单位为m,M表示水的相对分子质量,MH2O表示燃料电池堆阳极侧在Δt时间内生成水的质量,单位为kg,ρ表示水的密度,单位为1000kg/m3,VH2O表示燃料电池堆阳极侧在Δt时间内生成水的体积,单位为m3
6.根据权利要求5所述的控制方法,其特征在于,所述燃料电池堆的含水量M0的初始值为0,运行过程中,在执行完排水动作后,M0=ρ(VH2O-V′H2O),VH2O表示燃料电池堆阳极侧在Δt时间内生成水的体积,单位为m3,V′H2O表示经过一个排水间隔时长tH2O后,执行一次排水动作排出水的量,单位为m3,V′H2O=nH2O·QH2O,nH2O表示排水时长,QH2O表示排水阀的流量,如没有执行排水动作,则V′H2O为0,ρ表示水的密度,单位为1000kg/m3
7.根据权利要求5所述的控制方法,其特征在于,所述Δt时间内燃料电池堆的阳极侧累计氮气的体积VN2的计算方法包括以下步骤:
S1、通过公式V计算燃料电池堆里的质子交换膜上水的体积分数fv,公式V如下:
Figure FDA0003447976190000041
式V中,fv表示质子交换膜上水的体积分数,Vw表示质子交换膜中液态水的摩尔体积,单位为m3/moL,Vmerb表示质子交换膜干膜中磺酸酯基的摩尔体积,单位为m3/mol,λH2O表示质子交换膜上的水含量;
S2、通过公式VI计算氮气通过质子交换膜的渗透率PermN2,公式VI如下:
Figure FDA0003447976190000042
式VI中,fv表示质子交换膜上水的体积分数,T0表示参考温度,单位为℃,T表示温度传感器检测得到的进入燃料电池堆中水的温度,单位为℃;
S3、通过公式VII计算氮气通过质子交换膜阴极到阳极的渗透速率dN2,公式VII如下:
Figure FDA0003447976190000043
式VII中,ΔP,表示质子交换膜两侧的压力差,单位为Pa,lmemb表示质子交换膜厚度,单位为m,Scell表示质子交换膜的有效反应面积,单位为m2,Ncell表示燃料电池堆的片数,PermN2表示氮气通过质子交换膜的渗透率,单位为mol/m/s/pa,dN2表示氮气通过质子交换膜阴极到阳极的渗透速率,单位为mol/s;
S4、当燃料电池排水、排杂控制系统从t1时刻运行到时刻t2时,对渗透速率dN2进行积分得到Δt时间内燃料电池堆的阳极侧累计氮气的体积VN2,其中,Δt表示t2-t1的时间差值,计算公式如下:
Figure FDA0003447976190000044
式VIII中,dN2表示氮气通过质子交换膜阴极到阳极的渗透速率,单位为mol/s,Panode表示燃料电池堆阳极侧氢气进入的压力,单位为bar,
Figure FDA0003447976190000045
表示阳极侧残余氮气体积,单位为m3,VN2表示Δt时间内燃料电池堆的阳极侧累计氮气的体积,单位为m3,P0表示标准大气压,单位为bar,Vmol表示理想气体体积,单位为L/mol。
8.根据权利要求7所述的控制方法,其特征在于,所述阳极侧残余氮气体积
Figure FDA0003447976190000051
的初始值为0,运行过程中,在执行完排氮动作后,
Figure FDA0003447976190000052
VN2表示Δt时间内燃料电池堆的阳极侧累计氮气的体积,单位为m3,V′N2表示经过一个排杂间隔tN2后,执行一次排氮动作排出的氮气的体积,单位为m3,V′N2=nN2·QN2,nN2为排氮时长,QN2为排杂阀的流量,若没有执行排氮动作,则V′N2为0。
9.根据权利要求7所述的控制方法,其特征在于,所述排水时长通过公式IX计算得到,公式IX如下:
Figure FDA0003447976190000053
式IX中,nH2O表示排水时长,tH2O表示每次排水间隔时长,QH2O为排水阀的流量,V2表示燃料电池堆阳极侧的有效循环腔体容积,V设定值表示燃料电池堆阳极侧的有效循环腔体容积的设定值。
10.根据权利要求9所述的控制方法,其特征在于,所述排氮时长通过公式X计算得到,公式X如下:
Figure FDA0003447976190000054
式X中,nN2表示排氮时长,tx2表示每次排氮间隔时长,QN2表示排杂阀的流量,μN2设定值表示氮气百分比的设定值,V2表示燃料电池堆阳极侧的有效循环腔体容积,单位为m3,V′N2表示Δt时间内燃料电池堆的阳极侧累计氮气的体积,单位为m3
CN202111664230.4A 2021-12-30 2021-12-30 一种燃料电池排水、排杂控制系统及控制方法 Active CN114361512B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111664230.4A CN114361512B (zh) 2021-12-30 2021-12-30 一种燃料电池排水、排杂控制系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111664230.4A CN114361512B (zh) 2021-12-30 2021-12-30 一种燃料电池排水、排杂控制系统及控制方法

Publications (2)

Publication Number Publication Date
CN114361512A true CN114361512A (zh) 2022-04-15
CN114361512B CN114361512B (zh) 2023-07-18

Family

ID=81105062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111664230.4A Active CN114361512B (zh) 2021-12-30 2021-12-30 一种燃料电池排水、排杂控制系统及控制方法

Country Status (1)

Country Link
CN (1) CN114361512B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824366A (zh) * 2022-05-24 2022-07-29 重庆交通大学绿色航空技术研究院 一种空冷型氢燃料电池系统及排放的控制方法
CN115084601A (zh) * 2022-08-23 2022-09-20 北京英博新能源有限公司 燃料电池的气液排出控制方法、系统及燃料电池系统
CN116845293A (zh) * 2023-08-30 2023-10-03 北京英博新能源有限公司 一种燃料电池用排氢阀控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060035122A1 (en) * 2004-08-13 2006-02-16 Weissman Jeffrey G Method for cooling oxygen sensitive components
CN101262068A (zh) * 2006-12-15 2008-09-10 通用汽车环球科技运作公司 用于自适应性氢排放策略的电池堆穿越率的在线检测
US20090214909A1 (en) * 2004-09-03 2009-08-27 Nissan Motor Co., Ltd. Fuel cell system
JP2010129276A (ja) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd 燃料電池システム
CN103035935A (zh) * 2011-10-07 2013-04-10 通用汽车环球科技运作有限责任公司 用于燃料电池系统的阳极吹扫和排放阀策略
CN112635794A (zh) * 2020-11-30 2021-04-09 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种质子交换膜燃料电池氢气循环系统及其杂质尾排控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060035122A1 (en) * 2004-08-13 2006-02-16 Weissman Jeffrey G Method for cooling oxygen sensitive components
US20090214909A1 (en) * 2004-09-03 2009-08-27 Nissan Motor Co., Ltd. Fuel cell system
CN101262068A (zh) * 2006-12-15 2008-09-10 通用汽车环球科技运作公司 用于自适应性氢排放策略的电池堆穿越率的在线检测
JP2010129276A (ja) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd 燃料電池システム
CN103035935A (zh) * 2011-10-07 2013-04-10 通用汽车环球科技运作有限责任公司 用于燃料电池系统的阳极吹扫和排放阀策略
CN112635794A (zh) * 2020-11-30 2021-04-09 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种质子交换膜燃料电池氢气循环系统及其杂质尾排控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824366A (zh) * 2022-05-24 2022-07-29 重庆交通大学绿色航空技术研究院 一种空冷型氢燃料电池系统及排放的控制方法
CN114824366B (zh) * 2022-05-24 2024-01-26 重庆交通大学绿色航空技术研究院 一种空冷型氢燃料电池系统及排放的控制方法
CN115084601A (zh) * 2022-08-23 2022-09-20 北京英博新能源有限公司 燃料电池的气液排出控制方法、系统及燃料电池系统
CN116845293A (zh) * 2023-08-30 2023-10-03 北京英博新能源有限公司 一种燃料电池用排氢阀控制系统
CN116845293B (zh) * 2023-08-30 2023-12-01 北京英博新能源有限公司 一种燃料电池用排氢阀控制系统

Also Published As

Publication number Publication date
CN114361512B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
CN114361512A (zh) 一种燃料电池排水、排杂控制系统及控制方法
CN112234228B (zh) 一种车载燃料电池氢气管道吹扫系统及方法
CN110380086B (zh) 一种燃料电池辅助系统及停机阴极快速吹扫方法
CN101599547B (zh) 控制燃料电池系统中阳极侧再循环泵的系统和方法
US8387441B2 (en) Injector flow measurement for fuel cell applications
CN101577339B (zh) 用于燃料电池系统的阳极回路观测器
CN201237636Y (zh) 一种燃料电池测试系统
CN102288370A (zh) 燃料电池系统中的轻微阳极泄露检测
CN114068997B (zh) 一种高效节能型燃料电池电堆测试系统
CN109888336A (zh) 燃料电池水含量的控制方法、计算机设备和储存介质
CN108963301A (zh) 用于冷启动质子交换膜燃料电池的方法和燃料电池发电系统
CN102386426B (zh) Pem燃料电池中的膜渗透调整
CN109390613A (zh) 燃料电池内阻的调整方法及系统
CN113346110A (zh) 测定燃料电池气液分离器分离效率的装置及其控制方法
CN207818786U (zh) 燃料电池增湿系统及燃料电池系统
CN101750583B (zh) 固体氧化物燃料电池测试应用中水蒸汽的控制装置及方法
CN113608137A (zh) 一种质子交换膜燃料电池电堆寿命预测方法
KR101240979B1 (ko) 연료전지의 냉시동성 개선을 위한 직접 가열 퍼징 장치 및 방법
CN110212221A (zh) 燃料电池、其湿度控制方法
CN102163725A (zh) 用于降低燃料电池汽车启动时间的前馈燃料控制算法
CN101820070A (zh) 两阶段、无hfr的冻结预备关闭方案
CN115966734B (zh) 一种质子交换膜燃料电池氢气浓度估计方法及控制策略
CN206074692U (zh) 电化学装置的交流阻抗测试系统
CN113497257A (zh) 一种燃料电池关机吹扫方法、装置及系统
CN114267852A (zh) 一种电池的实时氮与水管理的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 401133 room 208, 2 house, 39 Yonghe Road, Yu Zui Town, Jiangbei District, Chongqing

Applicant after: Deep Blue Automotive Technology Co.,Ltd.

Address before: 401133 room 208, 2 house, 39 Yonghe Road, Yu Zui Town, Jiangbei District, Chongqing

Applicant before: CHONGQING CHANGAN NEW ENERGY AUTOMOBILE TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant