CN114336254B - 一种高亮度主振荡功率放大皮秒激光系统 - Google Patents

一种高亮度主振荡功率放大皮秒激光系统 Download PDF

Info

Publication number
CN114336254B
CN114336254B CN202210244487.2A CN202210244487A CN114336254B CN 114336254 B CN114336254 B CN 114336254B CN 202210244487 A CN202210244487 A CN 202210244487A CN 114336254 B CN114336254 B CN 114336254B
Authority
CN
China
Prior art keywords
laser
traveling wave
wave amplifier
crystal
picosecond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210244487.2A
Other languages
English (en)
Other versions
CN114336254A (zh
Inventor
刘民哲
赵坤
刘梦霖
王丽莎
李欢欣
翟瑞占
贾中青
张振振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laser Institute of Shandong Academy of Science
Original Assignee
Laser Institute of Shandong Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser Institute of Shandong Academy of Science filed Critical Laser Institute of Shandong Academy of Science
Priority to CN202210244487.2A priority Critical patent/CN114336254B/zh
Publication of CN114336254A publication Critical patent/CN114336254A/zh
Application granted granted Critical
Publication of CN114336254B publication Critical patent/CN114336254B/zh
Priority to PCT/CN2023/078203 priority patent/WO2023174034A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明属于超快激光技术领域,公开了一种高亮度主振荡功率放大皮秒激光系统,包括沿激光传输方向依次设置的全保偏光纤皮秒种子激光器、光纤准直器、空间隔离器、45°全反镜、偏振分光棱镜、一级固体行波放大器、二级固体行波放大器和三级固体行波放大器,一级固体行波放大器位于偏振分光棱镜的透射光一侧,二级固体行波放大器位于偏振分光棱镜的反射光一侧,光纤准直器通过尾纤与全保偏光纤皮秒种子激光器相连。本发明所公开的皮秒激光系统结构简单、性能稳定、易于维护,可实现高亮度1064 nm激光输出,通过设置易于集成和拆卸的倍频模块,基于百瓦基频光,可实现超过50 W的绿光输出,能够满足广泛的工业应用市场需求。

Description

一种高亮度主振荡功率放大皮秒激光系统
技术领域
本发明属于超快激光技术领域,特别涉及一种高亮度主振荡功率放大皮秒激光系统。
背景技术
近年来,高亮度皮秒激光器由于兼具高光谱纯度和高峰值功率的优势,在微加工、精密测距、医学与光谱学等领域得到了重要应用,也是非线性光学变频应用中常用的泵浦光源。皮秒脉冲与物质相互作用的持续时间短,能够避免激光线性吸收、能量转移和扩散等效应的影响,从而实现材料的“冷加工”。
为了实现高亮度的皮秒激光输出,光纤激光系统可以表现出非常高的增益和低阈值,缺点是高峰值功率下往往会造成光学损伤、产生明显非线性效应等。基于半导体泵浦的全固态激光器具有新颖结构的增益介质,可以有效改善热光性能,例如薄片激光器采用几百微米厚的增益介质进行单面散热,优异的热管理能力可以保证良好的光束质量,同时获得高功率激光输出。但薄片形的激光晶体较低的单通增益和复杂的多通结构大大增加了系统的复杂性,再有板条激光器在技术复杂性上颇具优势,但因其特殊的泵浦结构,需要额外的耦合及整形技术,限制了其进一步的发展。
相比之下,采用光纤皮秒激光器作为种子源,利用行波固体放大器作为放大级,不仅能够获得非常高的增益,同时光束质量也能得到很好控制,是获取高功率皮秒激光的有效方案。通常固体放大器包括两种,一种是基于二极管泵浦的固体增益介质再生放大器,它可以提供很高的增益,但是结构复杂,价格昂贵;另一种是行波放大器,采用多通固体增益介质直接放大低功率的激光种子源,结构简单,易于实现,该类激光器按照泵浦方式分为端泵和侧泵。
端泵泵浦功率密度高,可实现泵浦光与振荡光良好的模式匹配,可在短的增益介质长度下实现高增益,代表晶体有Nd:YVO4、Nd:GdVO4,缺点是晶体不能承受过高的功率,且需要多级放大器结构,增加了系统的复杂性;侧面泵浦的优点是在高功率泵浦时不会轻易炸裂,模块水冷功率可达几千瓦量级,常用晶体包括Nd:YAG、Yb:YAG等,但该类方法所面临的主要问题是增益的热致球差效应,即光束质量难以控制,影响最终输出激光的亮度。
发明内容
为解决上述技术问题,本发明提供了一种高亮度主振荡功率放大皮秒激光系统,系统结构简单、可实现高亮度输出,并且能满足不同激光精密加工的需求。
为达到上述目的,本发明的技术方案如下:
一种高亮度主振荡功率放大皮秒激光系统,包括沿激光输出方向依次设置的全保偏光纤皮秒种子激光器、光纤准直器、空间隔离器、45°全反镜、偏振分光棱镜、一级固体行波放大器、二级固体行波放大器和三级固体行波放大器,所述一级固体行波放大器位于偏振分光棱镜的透射光一侧,所述二级固体行波放大器位于所述偏振分光棱镜的反射光一侧,所述光纤准直器通过尾纤与所述全保偏光纤皮秒种子激光器相连。
上述方案中,所述一级固体行波放大器包括沿激光入射方向依次设置的法拉第旋转器、第一半波片、第一45°二向色镜,所述第一45°二向色镜的一侧依次设置第一激光晶体和第一0°全反镜,所述第一45°二向色镜的另一侧依次设置第一透镜对和第一激光二极管。通过一级固体行波放大器,可以将皮秒种子激光功率放大。
上述方案中,所述二级固体行波放大器包括沿激光传输方向依次设置的第二激光晶体、第二45°二向色镜、第一透镜和第二半波片,所述第二45°二向色镜的一侧依次设置第二透镜对和第二激光二极管。通过二级固体行波放大器,可以将一级固体行波放大器的输出激光功率进一步放大。
上述方案中,所述三级固体行波放大器包括沿激光入射方向依次设置的第三45°二向色镜、第一56°偏振片、第一侧面泵浦模块、90°旋光器、4f系统、第二侧面泵浦模块、1/4波片和第二0°全反镜,所述第一56°偏振片的出射光一侧设置第二56°偏振片。通过三级固体行波放大器,采用第一侧面泵浦模块和第二侧面泵浦模块,可以将二级固体行波放大器输出的激光功率放大到百瓦以上,同时控制光束质量因子在一定范围内。
进一步的技术方案中,所述三级固体行波放大器后还设置倍频模块,所述倍频模块包括沿激光入射方向依次设置的第二透镜、倍频晶体、第三透镜、第四45°二向色镜,所述第四45°二向色镜的侧面设置激光吸收器,所述倍频晶体外包裹厚度0.05 mm的铟箔且置于夹具内,所述夹具与温度控制模块相连。通过增加倍频模块,基于百瓦以上的基频光,可实现超过50 W的绿光输出。
进一步的技术方案中,所述第一激光晶体和第二激光晶体的结构和材料均相同,均为长方体结构,材料选用键合的Nd:YVO4晶体,Nd3+离子的掺杂浓度为0.4%,该晶体输入和输出激光端面为4 mm*4 mm的正方形,长度为35 mm,其中,掺杂Nd3+离子的Nd:YVO4晶体长度33 mm,未掺杂Nd3+离子的YVO4晶体长度为2 mm。与非键合晶体相比,能够大大减小晶体热效应,利于光束质量的控制。
进一步的技术方案中,所述倍频晶体采用1类相位匹配LBO,非临界相位匹配角θ=90°、φ=0°,倍频晶体为长方体结构,端面为正方形,几何参数为6 mm*6 mm* 16 mm,其作用是将1064 nm基频光转换为532 nm激光。
进一步的技术方案中,所述全保偏光纤皮秒种子激光器用于产生1064 nm波长的皮秒脉冲激光,脉冲宽度<10 ps,光谱宽度<0.3 nm,最大单脉冲能量>100 nJ,重复频率调整范围10 kHz-20 MHz。该模块作用是为后续的固体放大器提供合适的皮秒种子脉冲激光。
进一步的技术方案中,所述一级固体行波放大器内的填充因子范围为0.7-0.9,所述二级固体行波放大器内的填充因子为0.85,该类参数的设计有利于输出激光光束质量的控制。
通过上述技术方案,本发明提供的一种高亮度主振荡功率放大皮秒激光系统具有如下有益效果:
(1)该系统结合了光纤激光器和固体激光器的优点,皮秒种子源采用全保偏光纤器件,具有结构简单、性能稳定、易于维护等优点,能够适合应用于不同的外界环境。
(2)固体放大器每级均为行波放大器,采用直接端面泵浦技术和侧面泵浦技术相结合,仅用三级放大器可将皮秒1064 nm输出激光的亮度提升到5.7*109 W·cm-2·Sr以上,这是传统的多级Nd:YVO4行波放大器难以实现的指标,既保持了端面泵浦下高增益、高提取效率的优势,同时由于侧泵具有很高的损伤阈值,可用一级侧泵放大器替代传统的多级端面泵浦行波放大器,简化激光器结构,易于集成,且提高激光器运行稳定性和延长使用寿命。
(3)在高功率激光泵浦条件下,尤其是侧面泵浦放大器,会有较强的热透镜效应,严重影响输出激光的光束质量,本系统在固体行波放大器中引入球差补偿,利用激光放大级中晶体所带正球差,将全反镜放置于激光放大器焦点处,同时调节放大级中的填充因子,最终改善光束质量。
(4)本发明研发了易于集成和拆卸的倍频模块,基于百瓦以上的基频光,可实现超过50 W的绿光输出,能够满足太阳能电池材料切割、隐形二维码打标、柔性电路板切割、有机发光二极管(OLED)材料加工及航空航天复合材料打孔等多领域的精密加工需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明实施例1所公开的一种高亮度主振荡功率放大皮秒激光系统示意图;
图2为一级固体行波放大器结构示意图;
图3为二级固体行波放大器结构示意图;
图4为三级固体行波放大器结构示意图;
图5为本发明实施例2所公开的一种高亮度主振荡功率放大皮秒激光系统示意图;
图6为倍频模块结构示意图;
图7为本发明实施例1输出1064 nm激光波长测试结果图;
图8为本发明实施例1输出1064 nm激光输出功率及稳定性测试结果;
图9为本发明实施例1输出1064 nm激光光束质量测试结果图;
图10为本发明实施例1输出1064 nm激光脉冲宽度测试结果图;
图11为本发明实施例2输出532 nm激光波长测试结果图;
图12为本发明实施例2输出532 nm激光输出功率及稳定性测试结果。
图中,1、全保偏光纤皮秒种子激光器;2、光纤准直器;3、空间隔离器;4、45°全反镜;5、偏振分光棱镜;6、一级固体行波放大器;61、法拉第旋转器;62、第一半波片;63、第一45°二向色镜;64、第一激光晶体;65、第一0°全反镜;66、第一透镜对;67、第一激光二极管;7、二级固体行波放大器;71、第二激光晶体;72、第二45°二向色镜;73、第二透镜对;74、第二激光二极管;75、第一透镜;76、第二半波片;8、三级固体行波放大器;801、第三激光晶体;802、第四激光晶体;81、第三45°二向色镜;82、第一56°偏振片;83、第一侧面泵浦模块;84、90°旋光器;85、4f系统;86、第二侧面泵浦模块;87、1/4波片;88、第二0°全反镜;89、第二56°偏振片;9、倍频模块;91、第二透镜;921、倍频晶体;922、夹具;923、温度控制模块;93、第三透镜;94、第四45°二向色镜;95、激光吸收器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1
本发明提供了一种高亮度主振荡功率放大皮秒激光系统,如图1所示,包括沿激光输出方向依次设置的全保偏光纤皮秒种子激光器1、光纤准直器2、空间隔离器3、45°全反镜4、偏振分光棱镜5(PBS)、一级固体行波放大器6、二级固体行波放大器7和三级固体行波放大器8,一级固体行波放大器6位于偏振分光棱镜5的透射光一侧,二级固体行波放大器7位于偏振分光棱镜5的反射光一侧。
全保偏光纤皮秒种子激光器1,用于产生1064 nm波长的皮秒脉冲激光,脉冲宽度<10 ps,光谱宽度<0.3 nm,最大单脉冲能量>100 nJ,重复频率调整范围10 kHz-20 MHz。
光纤准直器2尾纤与全保偏光纤皮秒种子激光器1的输出端连接,工作距离为1 m。
空间隔离器3用于隔离后续放大器中的返回激光,避免造成器件损伤,承受功率为30 W。
45°全反镜4对于1064 nm激光的反射率>99.9%。
偏振分光棱镜5(PBS)分光后,对于P偏振和S偏振激光的消光比>1000:1,针对脉冲宽度为10 ps的1064 nm激光,镀膜的损伤阈值>1J/cm2
具体的,如图2所示,一级固体行波放大器6包括沿激光入射方向依次设置的法拉第旋转器61、第一半波片62、第一45°二向色镜63,第一45°二向色镜63的一侧依次设置第一激光晶体64和第一0°全反镜65,第一45°二向色镜63的另一侧依次设置第一透镜对66和第一激光二极管67,上述各器件置于空间内相互独立,并且几何中心的高度一致,便于调节和提高效率。
法拉第旋转器61对应波长1064 nm,承受功率>30 W,激光通过后偏振态沿偏振平面非互易地旋转45°。
第一半波片62对应中心波长1064 nm,第一半波片62将激光偏振方向调整为P偏振进入第一激光晶体64中进行一次功率放大,光斑直径为D1。
法拉第旋转器61、第一半波片62与偏振分光棱镜5(PBS)构成一个空间隔离器,用于隔离后向传输的放大激光,保护全保偏光纤皮秒种子激光器1。
第一45°二向色镜63的镀膜参数:对于888 nm泵浦光透过率>98.5%,对于1064 nm激光反射率>99%。
第一激光晶体64为键合的Nd:YVO4晶体,可以为单端键合晶体(Nd:YVO4—YVO4)或双端键合晶体(YVO4—Nd:YVO4—YVO4),Nd3+离子的掺杂浓度为0.4%,该晶体输入和输出激光端面为4 mm*4 mm的正方形,长度为35 mm,其中,掺杂Nd3+离子的Nd:YVO4晶体长度33 mm,未掺杂Nd3+离子的YVO4晶体长度为2 mm。与非键合晶体相比,能够大大减小晶体热效应,利于光束质量的控制,第一激光晶体64需要采用水冷散热,水冷温度范围18-25℃。第一激光晶体64在工作过程中,吸收泵浦光会产生热透镜效应,其等效为一个热透镜。
第一0°全反镜65对于1064 nm激光反射率>99.9%,置于第一激光晶体64形成的热透镜的焦点处,使单程放大激光沿原路返回两次经过第一激光晶体64实现双程放大,提高增益和提取效率;同时能够补偿放大级中产生的正球差,防止光束质量的恶化。
第一透镜对66由两片镀膜透镜组成,镀膜要求对于泵浦光透过率>99.9%,其作用是将第一激光二极管67发出的泵浦激光先准直后聚焦到第一激光晶体64中,聚焦光斑直径为D2。为了保证较高的提取效率,同时保证较好的光束质量,填充因子(D1/D2)采用0.7-0.9。比如选用焦距为30 mm和45 mm组成的透镜对,可以将泵浦光扩束1.5倍,聚焦光斑直径为600 μm。
第一激光二极管67,泵浦激光波长采用888 nm,也可以采用878 nm、880 nm,输出平均功率>100 W,400 μm光纤芯径,数值孔径NA=0.22,与传统采用的808 nm泵浦相比,具有更低的量子亏损,可以大大降低激光晶体热效应,利于实现较好的光束质量。
双通放大后的光束经过第一半波片62和法拉第旋转器61后,变为S线偏振光,由偏振分光棱镜5(PBS)进入二级固体行波放大器7中进行功率放大。通过一级固体行波放大器6,采用平均功率100 W的第一激光二极管67,可以将20 mW、100 nJ的皮秒激光功率放大到>16 W。
如图3所示,二级固体行波放大器7包括沿激光传输方向依次设置的第二激光晶体71、第二45°二向色镜72、第一透镜75和第二半波片76,第二45°二向色镜72的一侧依次设置第二透镜对73和第二激光二极管74。上述各器件置于空间内相互独立,并且几何中心的高度一致,便于调节和提高效率。
第二激光晶体71和第一激光晶体64的结构和材料均相同,均为长方体结构,材料仍然选用键合的Nd:YVO4晶体,Nd3+离子的掺杂浓度为0.4%,该晶体输入和输出激光端面为4mm*4 mm的正方形,长度为35 mm,其中,掺杂Nd3+离子的Nd:YVO4晶体长度33 mm,未掺杂Nd3+离子的YVO4晶体长度为2 mm。
第二45°二向色镜72镀膜参数,对于泵浦光透过率>98.5%,对于1064 nm激光反射率>99%。
第一透镜75作用是对激光进行准直,用于进入下一级放大器。
第二半波片76的作用是将激光的偏振态调整为S线偏振方向。
第二激光二极管74激光波长采用888 nm,可以采用878 nm或880 nm,输出平均功率>120 W。
第二透镜对73的作用是调整泵浦光聚焦光斑直径。
一级固体行波放大器6输出的激光,经过偏振分光棱镜5(PBS)进入第二激光晶体71时光斑直径为D3,然后进入第二激光晶体71中进行放大。第二激光二极管74输出平均功率>120W的泵浦光,经由第二透镜对73聚焦到第二激光晶体71中,聚焦光斑直径大小为D4,二级固体行波放大器7中填充因子(D3/D4)设计为0.85。第二45°二向色镜72将放大后的S偏振光反射,经由第一透镜75进行准直后进入三级固体行波放大器8。第二半波片76的作用是将激光调整为P偏振光,便于后一级功率放大。 通过二级固体行波放大器7,采用平均功率120 W的第二激光二极管74,可以将一级固体行波放大器6输出的16 W激光功率放大到50 W以上。
如图4所示,三级固体行波放大器8包括沿激光入射方向依次设置的第三45°二向色镜81、第一56°偏振片82、第一侧面泵浦模块83、90°旋光器84、4f系统85、第二侧面泵浦模块86、1/4波片87和第二0°全反镜88,第一56°偏振片82的出射光一侧设置第二56°偏振片89。上述各器件置于空间内相互独立,并且几何中心的高度一致,便于调节和提高效率。
第一56°偏振片82用于激光偏振改变,第二56°偏振片89用于最终S偏振激光输出。
第一侧面泵浦模块83和第二侧面泵浦模块86由多个巴条阵列组成,波长为808nm,第三激光晶体801和第四激光晶体802为Nd:YAG晶体,分别放置于第一侧面泵浦模块83和第二侧面泵浦模块86中并采用水冷散热,水冷温度范围18-22℃。
4f系统85和90°旋光器84用于补偿第三激光晶体801和第四激光晶体802的热致双折射效应,改善光束质量。
1/4波片87用于将激光偏振态方向旋转45°。
第二0°全反镜88置于第四激光晶体802形成的热透镜的焦点处,镀膜参数对于泵浦光透过率>98.5%,对于1064 nm激光反射率>99%。
二级固体行波放大器7输出P偏振光经过第三45°二向色镜81和第一56°偏振片82依次进入第一侧面泵浦模块83和第二侧面泵浦模块86,两个模块用于提供泵浦源和激光增益介质。1/4波片87用于改变偏振方向,且隔离反射光,之后单次放大激光经过第二0°全反镜88反射后沿着原光路返回,依次经过第二侧面泵浦模块86和第一侧面泵浦模块83中进行二次放大。双通放大后激光为S偏振光,经由第二56°偏振片89输出。 通过三级固体行波放大器8,采用两个平均功率>200 W的第一侧面泵浦模块83和第二侧面泵浦模块86,可以将二级固体行波放大器7输出的50 W激光功率放大到百瓦以上,同时控制光束质量因子M2<1.3。
实施例2
本发明还提供了一种高亮度主振荡功率放大皮秒激光系统,如图5所示,在实施例1的结构基础上,在三级固体行波放大器8后还设置倍频模块9。如图6所示,倍频模块9包括沿激光入射方向依次设置的第二透镜91、倍频晶体921、第三透镜93、第四45°二向色镜94,第四45°二向色镜94的侧面设置激光吸收器95,倍频晶体921外包裹厚度0.05 mm的铟箔置于夹具922内保证紧密接触,夹具922材料可选用紫铜。夹具922与温度控制模块923相连。温度控制模块923可以采用半导体制冷器(Thermo Electric Cooler,TEC),主要改变夹具922的温度,从而精确控制倍频晶体921的温度,保证较高的倍频效率。
倍频晶体921采用1类相位匹配LBO,非临界相位匹配角θ=90°、φ=0°,倍频晶体921为长方体结构,端面为正方形,几何参数为6 mm*6 mm* 16 mm。
第四45°二向色镜94主要用于将1064 nm基频光和532 nm倍频光分开,其中1064nm激光被激光吸收器95完全吸收,保证器件和人员安全。
三级固体行波放大器8输出的基频光,经过第二透镜91聚焦到倍频晶体921上,倍频激光经由第三透镜93进行准直,第四45°二向色镜94作用是将残留的1064 nm激光反射到激光吸收器95中,保证单一532 nm波长绿光输出。该倍频模块9采用100 W的1064 nm基频光,可以实现>50 W的绿光输出,倍频效率>50%。
图7-图10分别展示了经过本发明实施例1的输出激光波长、平均功率及稳定性、光束质量和脉冲宽度测试结果。实验中全保偏光纤皮秒种子激光器输出参数为:平均功率20mW,单脉冲能量100 nJ,重复频率200 kHz,光束质量M2<1.1。结果表明:(1)采用YOKOGAWA(AQ6373B)光谱分析仪测试激光中心波长为1064.21 nm(图7所示);(2)Thorlabs(S425C-L探头和PM100D表头)测试1064 nm平均功率为103.24 W,以0.3 s/单次为步进连续记录4小时测试功率稳定性为1.74% rms(图8所示);(3)采用Duma Optronics(BeamOn WSR UV-NIR)光束质量测试系统测试1064 nm激光的光束质量为Mx 2=1.27,My 2=1.25(图9所示);(4)采用FEMTOCHROME(FR-103XL)自相关测试得到皮秒脉冲宽度为9.8 ps(图10所示)。综上,该系统输出的1064 nm皮秒激光亮度达到了5.74*109 W·cm-2·Sr。
图11和图12分别展示了本发明实施例2经倍频模块输出激光波长和平均功率及稳定性测试结果。结果表明:(1)采用YOKOGAWA(AQ6373B)光谱分析仪测试激光中心波长为532.23 nm(图11所示);(2)采用Thorlabs(S425C-L探头和PM100D表头)测试532 nm激光平均功率为52.04 W,以0.3 s/单次为步进连续记录4小时测试功率稳定性为1.89% rms(图12所示)。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (4)

1.一种高亮度主振荡功率放大皮秒激光系统,其特征在于,包括沿激光输出方向依次设置的全保偏光纤皮秒种子激光器、光纤准直器、空间隔离器、45°全反镜、偏振分光棱镜、一级固体行波放大器、二级固体行波放大器和三级固体行波放大器,所述一级固体行波放大器位于所述偏振分光棱镜的透射光一侧,所述二级固体行波放大器位于偏振分光棱镜的反射光一侧,所述光纤准直器通过尾纤与所述全保偏光纤皮秒种子激光器相连;
所述一级固体行波放大器包括沿激光入射方向依次设置的法拉第旋转器、第一半波片、第一45°二向色镜,所述第一45°二向色镜的一侧依次设置第一激光晶体和第一0°全反镜,所述第一45°二向色镜的另一侧依次设置第一透镜对和第一激光二极管;
所述二级固体行波放大器包括沿激光传输方向依次设置的第二激光晶体、第二45°二向色镜、第一透镜和第二半波片,所述第二45°二向色镜的一侧依次设置第二透镜对和第二激光二极管;
所述第一激光晶体和第二激光晶体的结构和材料均相同,均为长方体结构,材料选用键合的Nd:YVO4晶体,Nd3+离子的掺杂浓度为0.4%,该晶体输入和输出激光端面为4 mm*4 mm的正方形,长度为35 mm,其中,掺杂Nd3+离子的Nd:YVO4晶体长度33 mm,未掺杂Nd3+离子的YVO4晶体长度为2 mm;
所述全保偏光纤皮秒种子激光器用于产生1064 nm波长的皮秒脉冲激光,脉冲宽度<10ps,光谱宽度<0.3 nm,最大单脉冲能量>100 nJ,重复频率调整范围10 kHz-20 MHz;
所述一级固体行波放大器内的填充因子范围为0.7-0.9,所述二级固体行波放大器内的填充因子为0.85;
第一激光二极管泵浦激光波长采用888 nm,第二激光二极管激光波长采用888 nm,第一45°二向色镜的镀膜参数对于888 nm泵浦光透过率>98.5%,第二45°二向色镜镀膜参数,对于泵浦光透过率>98.5%。
2.根据权利要求1所述的一种高亮度主振荡功率放大皮秒激光系统,其特征在于,所述三级固体行波放大器包括沿激光入射方向依次设置的第三45°二向色镜、第一56°偏振片、第一侧面泵浦模块、90°旋光器、4f系统、第二侧面泵浦模块、1/4波片和第二0°全反镜,所述第一56°偏振片的出射光一侧设置第二56°偏振片。
3.根据权利要求1所述的一种高亮度主振荡功率放大皮秒激光系统,其特征在于,所述三级固体行波放大器后还设置倍频模块,所述倍频模块包括沿激光入射方向依次设置的第二透镜、倍频晶体、第三透镜、第四45°二向色镜,所述第四45°二向色镜的侧面设置激光吸收器,所述倍频晶体外包裹厚度0.05 mm的铟箔且置于夹具内,所述夹具与温度控制模块相连。
4.根据权利要求3所述的一种高亮度主振荡功率放大皮秒激光系统,其特征在于,所述倍频晶体采用1类相位匹配LBO,非临界相位匹配角θ=90°、φ=0°,倍频晶体为长方体结构,端面为正方形,几何参数为6 mm*6 mm* 16 mm。
CN202210244487.2A 2022-03-14 2022-03-14 一种高亮度主振荡功率放大皮秒激光系统 Active CN114336254B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210244487.2A CN114336254B (zh) 2022-03-14 2022-03-14 一种高亮度主振荡功率放大皮秒激光系统
PCT/CN2023/078203 WO2023174034A1 (zh) 2022-03-14 2023-02-24 高亮度皮秒激光系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210244487.2A CN114336254B (zh) 2022-03-14 2022-03-14 一种高亮度主振荡功率放大皮秒激光系统

Publications (2)

Publication Number Publication Date
CN114336254A CN114336254A (zh) 2022-04-12
CN114336254B true CN114336254B (zh) 2022-07-08

Family

ID=81033667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210244487.2A Active CN114336254B (zh) 2022-03-14 2022-03-14 一种高亮度主振荡功率放大皮秒激光系统

Country Status (2)

Country Link
CN (1) CN114336254B (zh)
WO (1) WO2023174034A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336254B (zh) * 2022-03-14 2022-07-08 山东省科学院激光研究所 一种高亮度主振荡功率放大皮秒激光系统
CN115021062B (zh) * 2022-08-09 2022-12-20 北京国光领航科技有限公司 一种用于多脉宽多模式输出的激光器及激光治疗仪

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373864B1 (en) * 2000-01-21 2002-04-16 Nanolase S.A. Sub-nanosecond passively q-switched microchip laser system
CN203826765U (zh) * 2014-04-23 2014-09-10 上海朗研光电科技有限公司 一种偏振自动稳定控制的全光纤级联激光放大装置
CN206498079U (zh) * 2016-12-12 2017-09-15 北京工业大学 一种光纤固体结合皮秒激光再生放大器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7443903B2 (en) * 2006-04-19 2008-10-28 Mobius Photonics, Inc. Laser apparatus having multiple synchronous amplifiers tied to one master oscillator
WO2013039668A1 (en) * 2011-09-14 2013-03-21 Fianium, Inc. Methods and apparatus pertaining to picosecond pulsed fiber based lasers
CN102510000B (zh) * 2011-12-29 2014-03-19 苏州德龙激光股份有限公司 用于皮秒激光脉冲放大的高增益双程行波放大器
CN103618205B (zh) * 2013-11-28 2016-09-21 清华大学 一种全固态单纵模黄光激光器
CN107465071B (zh) * 2017-07-20 2019-05-14 杭州波长光电科技有限公司 光纤-固体混合放大激光系统
CN209516304U (zh) * 2019-03-06 2019-10-18 北京工业大学 高效率光纤固体相结合皮秒激光行波放大器
CN213125045U (zh) * 2020-08-25 2021-05-04 精快激光科技(苏州)有限公司 一种二级多通双端泵浦固体激光放大器
CN112490840A (zh) * 2020-11-26 2021-03-12 浙江热刺激光技术有限公司 激光脉冲行波放大过程中连续成分抑制系统及方法
CN114336254B (zh) * 2022-03-14 2022-07-08 山东省科学院激光研究所 一种高亮度主振荡功率放大皮秒激光系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373864B1 (en) * 2000-01-21 2002-04-16 Nanolase S.A. Sub-nanosecond passively q-switched microchip laser system
CN203826765U (zh) * 2014-04-23 2014-09-10 上海朗研光电科技有限公司 一种偏振自动稳定控制的全光纤级联激光放大装置
CN206498079U (zh) * 2016-12-12 2017-09-15 北京工业大学 一种光纤固体结合皮秒激光再生放大器

Also Published As

Publication number Publication date
WO2023174034A1 (zh) 2023-09-21
CN114336254A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN114336254B (zh) 一种高亮度主振荡功率放大皮秒激光系统
WO2008055390A1 (fr) Laser ultra-violet de pompage de troisième harmonique à semi-conducteur à double face d&#39;extrémité
CN103022886B (zh) 全固态皮秒激光放大器
CN113629482A (zh) 一种亚纳秒绿光激光器
CN111478175A (zh) 一种激光能量放大器
CN102510000A (zh) 用于皮秒激光脉冲放大的高增益双程行波放大器
CN115084989A (zh) 一种固体激光放大器及飞秒脉冲激光装置
US7457328B2 (en) Polarization methods for diode laser excitation of solid state lasers
CN112886371A (zh) 基于碟片增益介质的激光再生放大器
CN112615238A (zh) 一种大能量高效率全固态绿光激光器
CN115224580B (zh) 一种偏振可切换的短脉冲激光系统
CN216981120U (zh) 基于cpa技术的碟片介质高能量超短脉冲激光再生放大器
CN212342993U (zh) 一种紫外光纤激光器
CN112636146B (zh) 一种高功率锁模碟片激光器
WO2021128828A1 (zh) 一种端泵多程板条激光放大器
CN212725943U (zh) 功率任意可调的高耦合效率千瓦级光纤输出纳秒激光器
CN114883896A (zh) 一种2μm激光器
CN114498257A (zh) 一种四程板条激光放大系统
CN218242548U (zh) 大能量双波长激光器
CN217789031U (zh) 一种激光装置
CN214478412U (zh) 基于碟片增益介质的激光再生放大器
CN218123954U (zh) 一种单纵模紫外全固态激光器
US20240235145A9 (en) Divided-pulse laser regeneration amplification apparatus and method
US20240136784A1 (en) Divided-pulse laser regeneration amplification apparatus and method
CN116722429B (zh) 一种高光束质量的长脉宽绿光激光器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant