CN114332672A - Video analysis method, device, electronic device and storage medium - Google Patents
Video analysis method, device, electronic device and storage medium Download PDFInfo
- Publication number
- CN114332672A CN114332672A CN202111350036.9A CN202111350036A CN114332672A CN 114332672 A CN114332672 A CN 114332672A CN 202111350036 A CN202111350036 A CN 202111350036A CN 114332672 A CN114332672 A CN 114332672A
- Authority
- CN
- China
- Prior art keywords
- scene
- video
- target
- video data
- video information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 91
- 239000003245 coal Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 31
- 230000008569 process Effects 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims description 39
- 238000012790 confirmation Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 abstract description 8
- 230000006870 function Effects 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 7
- 238000004590 computer program Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000006399 behavior Effects 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Landscapes
- Image Analysis (AREA)
Abstract
本公开提出一种视频分析方法、装置、电子设备及存储介质,该方法包括:确定多种目标视频信息,目标视频信息包括:视频数据帧、视频摘要、目标图像;确定多种场景规则;根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果。通过本公开,能够高效分析煤炭采集场景的视频数据,提升视频信息的分析效率,进而提升煤炭采集场景监控的可靠性。
The present disclosure provides a video analysis method, device, electronic device and storage medium. The method includes: determining a variety of target video information, where the target video information includes: video data frame, video abstract, and target image; determining a variety of scene rules; Various scene rules analyze and process various target video information respectively to generate target video analysis results. Through the present disclosure, the video data of the coal collection scene can be efficiently analyzed, the analysis efficiency of the video information can be improved, and the reliability of the monitoring of the coal collection scene can be improved.
Description
技术领域technical field
本公开涉及煤炭采集视频监控技术领域,尤其涉及一种视频分析方法、装置、电子设备及存储介质。The present disclosure relates to the technical field of coal collection video monitoring, and in particular, to a video analysis method, device, electronic device and storage medium.
背景技术Background technique
大型煤矿工程中,矿井下多达200路以上的视频数据,提供大量的数据信息,需要监控人员拥有极高的注意力、警惕性以及发现异常情况的能力,同时要求视频传输效率与视频质量。In large-scale coal mine projects, there are more than 200 channels of video data underground, providing a large amount of data information, which requires the monitoring personnel to have extremely high attention, vigilance, and ability to detect abnormal situations, as well as video transmission efficiency and video quality.
相关技术中,针对煤炭行业,缺乏高效的视频智能分析能力,没有充分发挥视频监控本身的自动监督作用。In the related technologies, for the coal industry, there is a lack of efficient video intelligent analysis capabilities, and the automatic supervision role of video surveillance itself is not fully exerted.
发明内容SUMMARY OF THE INVENTION
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。The present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
为此,本公开的目的在于提出一种视频分析方法、装置、电子设备及存储介质,能够高效分析煤炭采集场景的视频数据,提升视频信息的分析效率,进而提升煤炭采集场景监控的可靠性。Therefore, the purpose of the present disclosure is to provide a video analysis method, device, electronic device and storage medium, which can efficiently analyze video data of coal collection scenes, improve the analysis efficiency of video information, and further improve the reliability of coal collection scene monitoring.
为达到上述目的,本公开第一方面实施例提出的视频分析方法,包括:确定多种目标视频信息,目标视频信息包括:视频数据帧、视频摘要、目标图像;确定多种场景规则;根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果。In order to achieve the above purpose, the video analysis method proposed by the embodiment of the first aspect of the present disclosure includes: determining various target video information, the target video information includes: video data frame, video summary, target image; determining various scene rules; Each scene rule analyzes and processes various target video information to generate target video analysis results.
本公开第一方面实施例提出的视频分析方法,通过确定多种目标视频信息,目标视频信息包括:视频数据帧、视频摘要、目标图像,确定多种场景规则,根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果,能够高效分析煤炭采集场景的视频数据,提升视频信息的分析效率,进而提升煤炭采集场景监控的可靠性。The video analysis method proposed by the embodiment of the first aspect of the present disclosure determines a variety of target video information, the target video information includes: a video data frame, a video summary, and a target image, determines a variety of scene rules, and analyzes multiple scene rules according to the scene rules. A variety of target video information is analyzed and processed to generate target video analysis results, which can efficiently analyze the video data of coal collection scenes, improve the analysis efficiency of video information, and then improve the reliability of coal collection scene monitoring.
为达到上述目的,本公开第二方面实施例提出的视频分析装置,包括:第一确定模块,用于确定多种目标视频信息,目标视频信息包括:视频数据帧、视频摘要、目标图像;第二确定模块,用于确定多种场景规则;分析模块,用于根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果。In order to achieve the above purpose, the video analysis device proposed by the embodiment of the second aspect of the present disclosure includes: a first determination module, configured to determine a variety of target video information, and the target video information includes: video data frame, video abstract, and target image; The second determination module is used to determine various scene rules; the analysis module is used to analyze and process various target video information according to the various scene rules, so as to generate target video analysis results.
本公开第二方面实施例提出的视频分析装置,通过确定多种目标视频信息,目标视频信息包括:视频数据帧、视频摘要、目标图像,确定多种场景规则,根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果,能够高效分析煤炭采集场景的视频数据,提升视频信息的分析效率,进而提升煤炭采集场景监控的可靠性。The video analysis apparatus proposed by the embodiment of the second aspect of the present disclosure determines a variety of target video information, the target video information includes: a video data frame, a video summary, and a target image, determines a variety of scene rules, and analyzes multiple scene rules according to the scene rules. A variety of target video information is analyzed and processed to generate target video analysis results, which can efficiently analyze the video data of coal collection scenes, improve the analysis efficiency of video information, and then improve the reliability of coal collection scene monitoring.
根据本公开第三方面,提供了一种电子设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行本公开第一方面实施例的视频分析方法。According to a third aspect of the present disclosure, there is provided an electronic device, comprising: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores instructions executable by the at least one processor, and the instructions are executed by at least one processor. One processor executes to enable at least one processor to execute the video analysis method of the embodiment of the first aspect of the present disclosure.
根据本公开第四方面,提出了一种存储有计算机指令的非瞬时计算机可读存储介质,所述计算机指令用于使所述计算机执行本公开第一方面实施例的视频分析方法。According to a fourth aspect of the present disclosure, a non-transitory computer-readable storage medium storing computer instructions is proposed, wherein the computer instructions are used to cause the computer to execute the video analysis method of the embodiment of the first aspect of the present disclosure.
根据本公开第五方面,提供了一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现本公开第一方面实施例的视频分析方法。According to a fifth aspect of the present disclosure, there is provided a computer program product, including a computer program that, when executed by a processor, implements the video analysis method of the embodiment of the first aspect of the present disclosure.
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。It should be understood that what is described in this section is not intended to identify key or critical features of embodiments of the disclosure, nor is it intended to limit the scope of the disclosure. Other features of the present disclosure will become readily understood from the following description.
附图说明Description of drawings
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present disclosure will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1是本公开一实施例提出的视频分析方法的流程示意图;1 is a schematic flowchart of a video analysis method proposed by an embodiment of the present disclosure;
图2是本公开另一实施例提出的视频分析方法的流程示意图;2 is a schematic flowchart of a video analysis method proposed by another embodiment of the present disclosure;
图3是本公开另一实施例提出的视频分析方法的流程示意图;3 is a schematic flowchart of a video analysis method proposed by another embodiment of the present disclosure;
图4是根据本公开一实施例提出的视频分析装置的结构示意图;4 is a schematic structural diagram of a video analysis apparatus proposed according to an embodiment of the present disclosure;
图5是根据本公开另一实施例提出的视频分析装置的结构示意图;5 is a schematic structural diagram of a video analysis apparatus proposed according to another embodiment of the present disclosure;
图6示出了适于用来实现本公开实施方式的示例性电子设备的框图。6 shows a block diagram of an exemplary electronic device suitable for use in implementing embodiments of the present disclosure.
具体实施方式Detailed ways
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。相反,本公开的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。Embodiments of the present disclosure are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary and are only used to explain the present disclosure and should not be construed as a limitation of the present disclosure. On the contrary, the embodiments of the present disclosure include all changes, modifications and equivalents falling within the spirit and scope of the appended claims.
图1是本公开一实施例提出的视频分析方法的流程示意图。FIG. 1 is a schematic flowchart of a video analysis method proposed by an embodiment of the present disclosure.
其中,需要说明的是,本实施例的视频分析方法的执行主体为视频分析装置,该装置可以由软件和/或硬件的方式实现,该装置可以配置在电子设备中,电子设备可以包括但不限于终端、服务器端等。It should be noted that the executive body of the video analysis method in this embodiment is a video analysis device, which may be implemented by software and/or hardware, and the device may be configured in an electronic device, which may include but not Limited to terminal, server, etc.
如图1所示,该视频分析方法,包括:As shown in Figure 1, the video analysis method includes:
S101:确定多种目标视频信息,目标视频信息包括:视频数据帧、视频摘要、目标图像。S101: Determine a variety of target video information, where the target video information includes: a video data frame, a video abstract, and a target image.
其中,对视频数据进行帧解析,得到的各帧视频数据,可以被称为视频数据帧,从多个视频数据帧中解析得到的包含需求视频语义的视频数据帧,可以被称为关键帧,关键帧还可以被称为视频摘要,该关键帧中的视频图像,可以被称为目标图像,由此,前述视频数据帧、视频摘要、目标图像,可以被共同称为目标视频信息。Among them, each frame of video data obtained by frame parsing of the video data may be called a video data frame, and the video data frame containing the required video semantics obtained by parsing from multiple video data frames may be called a key frame, The key frame may also be referred to as a video abstract, and the video image in the key frame may be referred to as a target image. Therefore, the aforementioned video data frame, video abstract, and target image may be collectively referred to as target video information.
可选地,一些实施例中,在确定多种目标视频信息时,可以是从煤炭采集场景中获取多种初始视频数据;分别将相应的初始视频数据输入至预训练的视频数据处理模型之中,以得到视频数据处理模型输出的视频处理结果;根据视频处理结果,从初始视频数据之中解析得到视频数据帧、视频摘要、目标图像,并将视频数据帧、视频摘要、目标图像作为目标视频信息,通过使用预训练的视频数据处理模型处理多种初始视频数据,便于确定目标视频信息,通过调整预训练的视频数据处理模型,能够适应多种视频格式与目标视频信息的选择要求,保证目标视频信息获取的便捷性与多样性。Optionally, in some embodiments, when determining various target video information, various initial video data may be obtained from the coal collection scene; the corresponding initial video data are respectively input into the pre-trained video data processing model. , to obtain the video processing result output by the video data processing model; according to the video processing result, the video data frame, video abstract, and target image are parsed from the initial video data, and the video data frame, video abstract, and target image are taken as the target video By using the pre-trained video data processing model to process a variety of initial video data, it is convenient to determine the target video information. By adjusting the pre-trained video data processing model, it can adapt to the selection requirements of various video formats and target video information, ensuring the target video information. The convenience and diversity of video information acquisition.
本公开实施例中,对多种初始视频数据的采集,可以是根据需要采集场景中的监控装置拍摄到的实时的视频数据,也可以是采集到的预先存储的视频数据,对此不做限制。In the embodiment of the present disclosure, the collection of various initial video data may be real-time video data captured by a monitoring device in a scene as required, or pre-stored video data collected, which is not limited .
其中,预训练的视频数据处理模型,可以是对采集到的视频数据进行编码、解码与图像处理等的处理模型,例如,对视频的编码与解码,可以是基于块分割的混合编码框架的传统视频编码,也可以根据煤炭采集场景的需要,使用高分辨率(例如2K、4K分辨率等)视频的编码解码技术等,对图像的处理,可以根据贝叶斯-全概率公式等算法公式对图像进行分割,或通过光流法利用图像序列中像素强度数据的时域变化和相关性来确定各自像素位置的变化情况,或使用光流法与贝叶斯-全概率公式的结合等,对此不做限制。Among them, the pre-trained video data processing model may be a processing model for encoding, decoding, and image processing of the collected video data. For example, the encoding and decoding of the video may be a traditional hybrid encoding framework based on block segmentation. Video coding can also be used according to the needs of the coal collection scene, using high-resolution (such as 2K, 4K resolution, etc.) video coding and decoding technology, etc., the image processing can be based on the Bayesian-full probability formula and other algorithm formulas. The image is segmented, or the temporal change and correlation of the pixel intensity data in the image sequence is used to determine the change of the respective pixel position by the optical flow method, or the combination of the optical flow method and the Bayes-total probability formula is used to determine the change of the pixel position. This does not limit.
经由上述预训练的视频数据处理模型处理后,生成视频处理结果,根据视频生成结果,将初始视频进行解析,得到视频数据帧、视频摘要、目标图像等类型的数据集合,并将其作为目标视频信息进行存储。After being processed by the above-mentioned pre-trained video data processing model, a video processing result is generated. According to the video generation result, the initial video is parsed to obtain a data set of types such as video data frame, video summary, and target image, and use it as the target video. information is stored.
另一些实施例中,也可以采用提取关键帧和关键特征的方式来实现确定多种目标视频信息,例如,使用关键帧和关键特征提取算法的方式,使用人工标注关键特征的方式等,对此不做限制。In other embodiments, the method of extracting key frames and key features can also be used to determine various target video information, for example, the method of using key frame and key feature extraction algorithms, the method of manually labeling key features, etc. No restrictions.
本公开实施例中,对多种目标视频信息的确定,可以使用视频采集和压缩技术、编解码技术和海量视频存储技术等技术,构建矿井场景视频分布式对象存储系统,为视频智能分析提供目标视频信息,还可以使用视频样本标注技术,构建视频数据标注平台,形成视频训练样本库,进一步提供更多的目标视频信息。In the embodiments of the present disclosure, for the determination of various target video information, technologies such as video acquisition and compression technology, encoding and decoding technology, and mass video storage technology can be used to build a mine scene video distributed object storage system to provide targets for intelligent video analysis. Video information, video sample annotation technology can also be used to build a video data annotation platform to form a video training sample library to further provide more target video information.
S102:确定多种场景规则。S102: Determine multiple scene rules.
其中,针对场景的特殊性对煤炭采集任务中的多种场景设置的与之对应的多种视频信息分析规则,可以被称为场景规则。Among them, a variety of video information analysis rules corresponding to the various scenes in the coal collection task are set according to the particularity of the scene, which may be called scene rules.
本公开实施例中,场景规则可以例如是单虚拟警戒线规则:在视频场景中加入一条虚拟的检测线,如果目标中心移动至单虚拟警戒线上时,可以认定该目标违反了单虚拟警戒线规则;虚拟矩形警戒区域规则:视频序列中加入一个虚拟的矩形框,如果目标中心移动至虚拟矩形警戒区域内,可以认定该目标违反了虚拟矩形警戒区域规则;和虚拟多边形警戒区域规则:建立一个多边形目标异常判定模型,判定目标是否进入了视频场景中绘制的虚拟多边形内,判定目标是否在多边形内属于异常等。In the embodiment of the present disclosure, the scene rule may be, for example, a single virtual warning line rule: a virtual detection line is added to the video scene, and if the center of the target moves to the single virtual warning line, it can be determined that the target violates the single virtual warning line rule; virtual rectangle warning area rule: a virtual rectangular frame is added to the video sequence, if the center of the target moves to the virtual rectangular warning area, it can be determined that the target violates the virtual rectangular warning area rule; and virtual polygon warning area rule: establish a The polygon target abnormality determination model determines whether the target enters the virtual polygon drawn in the video scene, and determines whether the target is abnormal in the polygon.
S103:根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果。S103: Perform analysis and processing on a variety of target video information according to a variety of scene rules to generate a target video analysis result.
其中,根据煤炭采集任务中不同场景设置的多种场景规则,分别确定对应的多种目标视频信息中的目标,并对目标行为进行判断与分析,生成的结果可以被称为目标视频分析结果。Among them, according to the various scene rules set in different scenes in the coal collection task, the target in the corresponding various target video information is determined respectively, and the target behavior is judged and analyzed, and the generated result can be called the target video analysis result.
本公开实施例中,对目标分析结果的生成,可以将提取的目标进行判断分类,并对应到煤炭采集场景中的事物上,进而更好的对图像进行理解、行为分析等提供数据支持。In the embodiment of the present disclosure, for the generation of target analysis results, the extracted targets can be judged and classified, and corresponding to the things in the coal collection scene, so as to better provide data support for image understanding and behavior analysis.
本实施例中,通过确定多种目标视频信息,目标视频信息包括:视频数据帧、视频摘要、目标图像,确定多种场景规则,根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果,能够高效分析煤炭采集场景的视频数据,提升视频信息的分析效率,进而提升煤炭采集场景监控的可靠性。In this embodiment, by determining a variety of target video information, the target video information includes: a video data frame, a video summary, and a target image, determining a variety of scene rules, and analyzing and processing the various target video information according to the scene rules, respectively, In order to generate the target video analysis results, the video data of the coal collection scene can be efficiently analyzed, the analysis efficiency of the video information can be improved, and the reliability of the monitoring of the coal collection scene can be improved.
图2是本公开另一实施例提出的视频分析方法的流程示意图。FIG. 2 is a schematic flowchart of a video analysis method proposed by another embodiment of the present disclosure.
如图2所示,该视频分析方法,包括:As shown in Figure 2, the video analysis method includes:
S201:确定多种目标视频信息,目标视频信息包括:视频数据帧、视频摘要、目标图像。S201: Determine a variety of target video information, where the target video information includes: a video data frame, a video summary, and a target image.
S201的描述说明可以具体参见上述实施例,在此不再赘述。The description of S201 may refer to the above-mentioned embodiment for details, and details are not repeated here.
S202:响应于规则确认指令,从规则确认指令中解析得到场景类型标识。S202: In response to the rule confirmation instruction, parsing the rule confirmation instruction to obtain the scene type identifier.
其中,对多个不同的煤炭生产场景类型进行标识,用于区分不同的场景类型,可以被称为场景类型标识。Among them, the identification of a plurality of different coal production scene types is used to distinguish different scene types, which may be referred to as scene type identification.
本公开实施例中,多种场景类型可以是根据不同的业务类型划分的不同的业务场景类型,也可以是根据不同的设备划分的不同的设备场景类型,对此不做限制。In the embodiment of the present disclosure, the multiple scene types may be different service scene types divided according to different service types, or different device scene types divided according to different devices, which are not limited.
举例而言,在采煤场景中,根据业务类型,可以将场景类型划分为破煤场景、装煤场景、运煤场景、支护场景和采空区处理场景等。For example, in a coal mining scenario, according to the business type, the scenario types can be divided into coal breaking scenarios, coal loading scenarios, coal transportation scenarios, support scenarios, and gob processing scenarios.
S203:根据场景类型标识,获取与多种目标视频信息对应的多种场景类型。S203: Acquire multiple scene types corresponding to multiple target video information according to the scene type identifier.
本公开实施例中,一个目标视频信息中可以包含多种场景类型标识,因此,一种目标视频信息中可以对应一种或多种场景类型,一种场景类型也可以对应多种目标视频信息,对此不做限制。In this embodiment of the present disclosure, one target video information may contain multiple scene type identifiers. Therefore, one type of target video information may correspond to one or more scene types, and one type of scene may also correspond to multiple types of target video information. There is no restriction on this.
S204:根据场景类型标识与场景识别结果,确定多种场景类型所属的多种场景规则,场景识别结果是目标视频信息在多种场景类型中的识别结果。S204: Determine multiple scene rules to which multiple scene types belong according to the scene type identifier and the scene identification result, where the scene identification result is the identification result of the target video information in the multiple scene types.
本公开实施例中,不同的场景类型可以对应能够相同或不同的场景规则,同一场景类型中,不同的目标也可能对应不同的场景规则,对场景规则的确认可以根据实际的场景需要设定的专属的规则设计,也可以是预先设定好的场景规则。In the embodiment of the present disclosure, different scene types may correspond to the same or different scene rules, and in the same scene type, different targets may also correspond to different scene rules, and the confirmation of scene rules may be set according to actual scene needs. Exclusive rule design, or pre-set scene rules.
S205:根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果。S205: Perform analysis and processing on various target video information according to various scene rules to generate target video analysis results.
S205的描述说明可以具体参见上述实施例,在此不再赘述。The description of S205 may refer to the above-mentioned embodiment for details, and details are not repeated here.
S206:分别针对多种场景类型配置对应的多种报警规则。S206: Configure multiple alarm rules corresponding to multiple scene types respectively.
本公开实施例中,多种报警规则可以是在控制台利用声音报警或灯光报警,或声音与灯光的结合,通过灯光的闪烁频率与灯光的颜色,和不同的声音信号对不同的场景类型配置报警规则,也可以是利用远程设备在移动终端进行报警,对此不做限制。In the embodiment of the present disclosure, various alarm rules may be configured by using sound alarm or light alarm at the console, or a combination of sound and light, through the flashing frequency of the light, the color of the light, and different sound signals for different scene types The alarm rule can also use a remote device to alarm on the mobile terminal, which is not limited.
S207:当目标视频分析结果超过报警规则指示的报警阈值时,启动与目标视频分析结果对应的报警规则。S207: When the target video analysis result exceeds the alarm threshold indicated by the alarm rule, start an alarm rule corresponding to the target video analysis result.
其中,预先设定的启动报警的临界点,可以被称为报警阈值,报警阈值,可以是一个表示程度的数值,也可以是表示一定程度的数值区间,例如,温度的报警可以是确定当温度超过某一具体的数值后触发报警,距离报警可以是目标距离某一点位的一定范围内时,触发报警。Among them, the preset critical point for starting the alarm can be called the alarm threshold, and the alarm threshold can be a numerical value representing a degree or a numerical range representing a certain degree. For example, the temperature alarm can be determined when the temperature is determined. The alarm is triggered when a specific value is exceeded, and the distance alarm can be triggered when the target is within a certain range from a certain point.
本公开实施例中,一种报警规则可以对应一种场景类型,也可以根据场景中的实际情况,将多种报警规则进行组合,用于区分不同的分析结果。In the embodiment of the present disclosure, one alarm rule may correspond to one type of scenario, and multiple alarm rules may be combined according to the actual situation in the scenario to distinguish different analysis results.
本实施例中,通过确定多种目标视频信息,目标视频信息包括:视频数据帧、视频摘要、目标图像,响应于规则确认指令,从规则确认指令中解析得到场景类型标识,根据场景类型标识,获取与多种目标视频信息对应的多种场景类型,根据场景类型标识与场景识别结果,确定多种场景类型所属的多种场景规则,场景识别结果是目标视频信息在多种场景类型中的识别结果,根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果,分别针对多种场景类型配置对应的多种报警规则,当目标视频分析结果超过报警规则指示的报警阈值时,启动与目标视频分析结果对应的报警规则,通过对场景类型与场景识别结果的确定,能够准确地确定多种场景规则,将场景类型进行细分,能够保证场景规则的适用性,通过在不同的业务场景中预设不同的报警规则,能够及时反馈场景中的异常情况,使得视频分析更加智能化。In this embodiment, by determining a variety of target video information, the target video information includes: video data frame, video summary, target image, in response to the rule confirmation instruction, the scene type identifier is obtained by parsing the rule confirmation instruction, and according to the scene type identifier, Obtain multiple scene types corresponding to multiple target video information, and determine multiple scene rules to which multiple scene types belong according to scene type identifiers and scene recognition results. The scene recognition result is the identification of target video information in multiple scene types. As a result, various target video information is analyzed and processed according to various scene rules to generate target video analysis results, and various alarm rules corresponding to various scene types are configured respectively. When the target video analysis result exceeds the alarm indicated by the alarm rule When the threshold is reached, the alarm rule corresponding to the target video analysis result is activated. By determining the scene type and the scene recognition result, a variety of scene rules can be accurately determined, and the scene type can be subdivided to ensure the applicability of the scene rules. Different alarm rules are preset in different business scenarios, which can timely feedback abnormal situations in the scenario, making video analysis more intelligent.
图3是本公开另一实施例提出的视频分析方法的流程示意图。FIG. 3 is a schematic flowchart of a video analysis method proposed by another embodiment of the present disclosure.
如图3所示,该视频分析方法,包括:As shown in Figure 3, the video analysis method includes:
S301:确定多种目标视频信息,目标视频信息包括:视频数据帧、视频摘要、目标图像。S301: Determine a variety of target video information, where the target video information includes: a video data frame, a video summary, and a target image.
S302:确定多种场景规则。S302: Determine multiple scene rules.
S303:根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果。S303: Perform analysis and processing on a variety of target video information according to a variety of scene rules to generate a target video analysis result.
S301-S303的描述说明可以具体参见上述实施例,在此不再赘述。For the description and description of S301-S303, reference may be made to the foregoing embodiments, and details are not repeated here.
S304:根据目标视频分析结果,识别目标特征。S304: Identify the target feature according to the target video analysis result.
本公开实施例中,对目标特征的识别,可以是通过图像的突出点等,将突出点作为关键特征向量,对关键特征向量进行识别,进而识别目标特征,也可以是使用特征的方向和局部结构作为描述目标边界的边缘特征。In the embodiment of the present disclosure, the identification of the target feature may be through the salient points of the image, etc., the salient points are used as the key feature vector, the key feature vector is identified, and then the target feature is identified, or the direction and locality of the feature may be used. The structure acts as an edge feature describing the boundary of the object.
举例而言,对采煤场景中的破煤业务进行特征分析,可以是根据煤炭自身颜色的差别,将煤炭颜色作为图像的突出点识别煤炭特征,也可以是根据颜色划定煤炭的边缘轮廓将轮廓作为目标特征。For example, to analyze the characteristics of the coal breaking business in the coal mining scene, it can be based on the difference in the color of the coal itself, using the color of the coal as the prominent point of the image to identify the characteristics of the coal, or it can be based on the color to define the edge of the coal. The contour is used as the target feature.
S305:对目标特征进行跟踪识别,以确定与目标特征对应的变化趋势。S305: Track and identify the target feature to determine a change trend corresponding to the target feature.
上述识别目标特征之后,对目标特征进行跟踪识别,目标特征跟踪可以分为不同的种类。如果根据从被跟踪的目标中提取目标特征的不同,目标跟踪主要可以分为四类:基于目标区域的跟踪、基于目标特征点的跟踪、基于目标活动轮廓的跟踪和基于模型的跟踪。After identifying the target features above, the target features are tracked and identified, and the target feature tracking can be divided into different types. According to the difference of target features extracted from the tracked target, target tracking can be divided into four categories: target area-based tracking, target feature point-based tracking, target active contour-based tracking and model-based tracking.
本公开实施例中,目标特征进行跟踪识别,可以是使用贝叶斯-全概率公式模型中的多目标跟踪功能,解决目标遮挡问题或大面积类似颜色干扰时跟踪失效的问题,也可以是用贝叶斯-全概率前景检测算法提取视频场景中的前景移动目标,并用所提取移动目标的前景掩膜的外接矩形自动初始化搜索口,实现利用相关算法的自动跟踪。In the embodiment of the present disclosure, the tracking and identification of target features can be performed by using the multi-target tracking function in the Bayesian-full probability formula model to solve the problem of target occlusion or the problem of tracking failure in the case of large-area similar color interference. The Bayesian-total probability foreground detection algorithm extracts the foreground moving objects in the video scene, and automatically initializes the search port with the circumscribed rectangle of the foreground mask of the extracted moving objects, so as to realize the automatic tracking using the correlation algorithm.
本实施例中,通过确定多种目标视频信息,目标视频信息包括:视频数据帧、视频摘要、目标图像,确定多种场景规则,根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果,之后根据目标视频分析结果,识别目标特征,对目标特征进行跟踪识别,以确定与目标特征对应的变化趋势,识别目标特征并跟踪与行为分析,能够理解目标的变化趋势并进一步预判目标的下一步行为,提升视频分析的适用性,同时对目标行为的预测,能够辅助及时发现场景中的各种异常情况,使得视频分析更加智能化。In this embodiment, by determining a variety of target video information, the target video information includes: a video data frame, a video summary, and a target image, determining a variety of scene rules, and analyzing and processing the various target video information according to the scene rules, respectively, To generate target video analysis results, then identify target features according to the target video analysis results, track and identify the target features to determine the changing trend corresponding to the target features, identify the target features, track and analyze the behavior, and be able to understand the changing trend of the target And further predict the next behavior of the target, improve the applicability of video analysis, and predict the behavior of the target, which can assist in timely detection of various abnormal situations in the scene, making video analysis more intelligent.
图4是根据本公开一实施例提出的视频分析装置的结构示意图。FIG. 4 is a schematic structural diagram of a video analysis apparatus according to an embodiment of the present disclosure.
如图4所示,该视频分析装置40,包括:As shown in Figure 4, the
第一确定模块401,用于确定多种目标视频信息,目标视频信息包括:视频数据帧、视频摘要、目标图像;The first determination module 401 is used to determine various target video information, the target video information includes: video data frame, video summary, and target image;
第二确定模块402,用于确定多种场景规则;a second determining module 402, configured to determine multiple scene rules;
分析模块403,用于根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果。The analysis module 403 is configured to analyze and process a variety of target video information according to a variety of scene rules, so as to generate a target video analysis result.
在本公开的一些实施例中,如图5所示,图5是根据本公开另一实施例提出的视频分析装置的结构示意图,第一确定模块401,具体用于:In some embodiments of the present disclosure, as shown in FIG. 5 , which is a schematic structural diagram of a video analysis apparatus proposed according to another embodiment of the present disclosure, the first determination module 401 is specifically used for:
从煤炭采集场景中获取多种初始视频数据;Obtain a variety of initial video data from coal collection scenarios;
分别将相应的初始视频数据输入至预训练的视频数据处理模型之中,以得到视频数据处理模型输出的视频处理结果;respectively input the corresponding initial video data into the pre-trained video data processing model to obtain the video processing result output by the video data processing model;
根据视频处理结果,从初始视频数据之中解析得到视频数据帧、视频摘要、目标图像,并将视频数据帧、视频摘要、目标图像作为目标视频信息。According to the video processing result, the video data frame, video abstract, and target image are obtained by parsing the initial video data, and the video data frame, video abstract, and target image are used as target video information.
在本公开的一些实施例中,如图5所示,第二确定模块402,包括:In some embodiments of the present disclosure, as shown in FIG. 5 , the second determination module 402 includes:
解析子模块4021,用于响应于规则确认指令,从规则确认指令中解析得到场景类型标识;The parsing submodule 4021 is used to parse and obtain the scene type identifier from the rule confirmation instruction in response to the rule confirmation instruction;
获取子模块4022,用于根据场景类型标识,获取与多种目标视频信息对应的多种场景类型;Obtaining submodule 4022, configured to obtain multiple scene types corresponding to multiple target video information according to the scene type identifier;
确定子模块4023,用于根据场景类型标识与场景识别结果,确定多种场景类型所属的多种场景规则,场景识别结果是目标视频信息在多种场景类型中的识别结果。The determination sub-module 4023 is configured to determine multiple scene rules to which multiple scene types belong according to the scene type identifier and the scene identification result, where the scene identification result is the identification result of the target video information in the multiple scene types.
在本公开的一些实施例中,如图5所示,还包括:In some embodiments of the present disclosure, as shown in FIG. 5 , it further includes:
配置模块404,用于在根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果之后,分别针对多种场景类型配置对应的多种报警规则;The configuration module 404 is configured to, after analyzing and processing a variety of target video information according to a variety of scene rules, respectively, to generate a target video analysis result, configure corresponding multiple alarm rules for a variety of scene types;
启动模块405,用于在目标视频分析结果超过报警规则指示的报警阈值时,启动与目标视频分析结果对应的报警规则。The starting module 405 is configured to start an alarm rule corresponding to the target video analysis result when the target video analysis result exceeds the alarm threshold indicated by the alarm rule.
在本公开的一些实施例中,如图5所示,装置还包括:In some embodiments of the present disclosure, as shown in FIG. 5 , the apparatus further includes:
识别模块406,用于根据目标视频分析结果,识别目标特征;The identification module 406 is used for identifying the target feature according to the target video analysis result;
第三确定模块407,用于对目标特征进行跟踪识别,以确定与目标特征对应的变化趋势。The third determining module 407 is configured to track and identify the target feature to determine a change trend corresponding to the target feature.
与上述图1至图3实施例提供的视频分析方法相对应,本公开还提供一种视频分析装置,由于本公开实施例提供的视频分析装置与上述图1至图3实施例提供的视频分析方法相对应,因此在视频分析方法的实施方式也适用于本公开实施例提供的视频分析装置,在本公开实施例中不再详细描述。Corresponding to the video analysis methods provided by the above embodiments of FIGS. 1 to 3 , the present disclosure further provides a video analysis apparatus, because the video analysis apparatus provided by the embodiments of the present disclosure is the same as the video analysis provided by the above embodiments of FIGS. 1 to 3 . Therefore, the implementation of the video analysis method is also applicable to the video analysis apparatus provided in the embodiment of the present disclosure, and will not be described in detail in the embodiment of the present disclosure.
本实施例中,通过确定多种目标视频信息,目标视频信息包括:视频数据帧、视频摘要、目标图像,确定多种场景规则,根据多种场景规则分别对多种目标视频信息进行分析处理,以生成目标视频分析结果,能够高效分析煤炭采集场景的视频数据,提升视频信息的分析效率,进而提升煤炭采集场景监控的可靠性。In this embodiment, by determining a variety of target video information, the target video information includes: a video data frame, a video summary, and a target image, determining a variety of scene rules, and analyzing and processing the various target video information according to the scene rules, respectively, In order to generate the target video analysis results, the video data of the coal collection scene can be efficiently analyzed, the analysis efficiency of the video information can be improved, and the reliability of the monitoring of the coal collection scene can be improved.
为了实现上述实施例,本公开还提出一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本公开前述实施例提出的视频分析方法。In order to realize the above-mentioned embodiments, the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the video analysis method proposed in the foregoing embodiments of the present disclosure.
为了实现上述实施例,本公开还提出一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时,实现如本公开前述实施例提出的视频分析方法。In order to implement the above-mentioned embodiments, the present disclosure also proposes an electronic device, including: a memory, a processor, and a computer program stored in the memory and running on the processor. When the processor executes the program, the above-mentioned embodiments of the present disclosure are implemented. The proposed video analysis method.
为了实现上述实施例,本公开还提出一种计算机程序产品,当计算机程序产品中的指令处理器执行时,执行如本公开前述实施例提出的视频分析方法。In order to implement the above embodiments, the present disclosure also provides a computer program product, when an instruction processor in the computer program product executes, executes the video analysis method proposed in the foregoing embodiments of the present disclosure.
图6示出了适于用来实现本公开实施方式的示例性电子设备的框图。图6显示的电子设备12仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。6 shows a block diagram of an exemplary electronic device suitable for use in implementing embodiments of the present disclosure. The
如图6所示,电子设备12以通用计算设备的形式表现。电子设备12的组件可以包括但不限于:一个或者多个处理器或者处理单元16,系统存储器28,连接不同系统组件(包括系统存储器28和处理单元16)的总线18。总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Standard Architecture;以下简称:ISA)总线,微通道体系结构(MicroChannel Architecture;以下简称:MAC)总线,增强型ISA总线、视频电子标准协会(VideoElectronics Standards Association;以下简称:VESA)局域总线以及外围组件互连(Peripheral Component Interconnection;以下简称:PCI)总线。As shown in FIG. 6, the
电子设备12典型地包括多种计算机系统可读介质。这些介质可以是任何能够被电子设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
存储器28可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(Random Access Memory;以下简称:RAM)30和/或高速缓存存储器32。电子设备12可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统34可以用于读写不可移动的、非易失性磁介质(图6未显示,通常称为“硬盘驱动器”)。The
尽管图6中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如:光盘只读存储器(Compact Disc Read OnlyMemory;以下简称:CD-ROM)、数字多功能只读光盘(Digital Video Disc Read OnlyMemory;以下简称:DVD-ROM)或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本公开各实施例的功能。Although not shown in FIG. 6, a magnetic disk drive for reading and writing to removable non-volatile magnetic disks (eg "floppy disks") and removable non-volatile optical disks (eg compact disk read only memory) may be provided Disc Read OnlyMemory; hereinafter referred to as: CD-ROM), Digital Video Disc Read Only Memory (hereinafter referred to as: DVD-ROM) or other optical media) read and write optical disc drives. In these cases, each drive may be connected to
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如存储器28中,这样的程序模块42包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块42通常执行本公开所描述的实施例中的功能和/或方法。A program/
电子设备12也可以与一个或多个外部设备14(例如键盘、指向设备、显示器24等)通信,还可与一个或者多个使得用户能与该电子设备12交互的设备通信,和/或与使得该电子设备12能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口22进行。并且,电子设备12还可以通过网络适配器20与一个或者多个网络(例如局域网(Local Area Network;以下简称:LAN),广域网(Wide Area Net work;以下简称:WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器20通过总线18与电子设备12的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。The
处理单元16通过运行存储在系统存储器28中的程序,从而执行各种功能应用以及数据处理,例如实现前述实施例中提及的视频分析方法。The
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。Other embodiments of the present disclosure will readily occur to those skilled in the art upon consideration of the specification and practice of the invention disclosed herein. This disclosure is intended to cover any variations, uses, or adaptations of this disclosure that follow the general principles of this disclosure and include common general knowledge or techniques in the technical field not disclosed by this disclosure . The specification and examples are to be regarded as exemplary only, with the true scope and spirit of the disclosure being indicated by the following claims.
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。It is to be understood that the present disclosure is not limited to the precise structures described above and illustrated in the accompanying drawings, and that various modifications and changes may be made without departing from the scope thereof. The scope of the present disclosure is limited only by the appended claims.
需要说明的是,在本公开的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。It should be noted that, in the description of the present disclosure, the terms "first", "second", etc. are only used for description purposes, and cannot be understood as indicating or implying relative importance. Also, in the description of the present disclosure, unless stated otherwise, "plurality" means two or more.
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。Any description of a process or method in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing a specified logical function or step of the process , and the scope of the preferred embodiments of the present disclosure includes alternative implementations in which the functions may be performed out of the order shown or discussed, including performing the functions substantially concurrently or in the reverse order depending upon the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present disclosure pertain.
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。It should be understood that portions of the present disclosure may be implemented in hardware, software, firmware, or a combination thereof. In the above-described embodiments, various steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system. For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or a combination of the following techniques known in the art: Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。Those of ordinary skill in the art can understand that all or part of the steps carried by the methods of the above embodiments can be completed by instructing the relevant hardware through a program, and the program can be stored in a computer-readable storage medium, and the program is stored in a computer-readable storage medium. When executed, one or a combination of the steps of the method embodiment is included.
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。In addition, each functional unit in each embodiment of the present disclosure may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
上述提到的存储介质可以是只读存储器,磁盘或光盘等。The above-mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structures, materials, or features are included in at least one embodiment or example of the present disclosure. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present disclosure have been shown and described above, it should be understood that the above-described embodiments are exemplary and should not be construed as limitations of the present disclosure, and those of ordinary skill in the art may interpret the above-described embodiments within the scope of the present disclosure. Embodiments are subject to variations, modifications, substitutions and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111350036.9A CN114332672A (en) | 2021-11-15 | 2021-11-15 | Video analysis method, device, electronic device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111350036.9A CN114332672A (en) | 2021-11-15 | 2021-11-15 | Video analysis method, device, electronic device and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114332672A true CN114332672A (en) | 2022-04-12 |
Family
ID=81044854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111350036.9A Pending CN114332672A (en) | 2021-11-15 | 2021-11-15 | Video analysis method, device, electronic device and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114332672A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114900661A (en) * | 2022-05-10 | 2022-08-12 | 上海浦东发展银行股份有限公司 | A monitoring method, device, equipment and storage medium |
CN114979225A (en) * | 2022-05-12 | 2022-08-30 | 北京天玛智控科技股份有限公司 | Coal mine production control method and device based on video analysis |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101859436A (en) * | 2010-06-09 | 2010-10-13 | 王巍 | Large-amplitude regular movement background intelligent analysis and control system |
US20130038737A1 (en) * | 2011-08-10 | 2013-02-14 | Raanan Yonatan Yehezkel | System and method for semantic video content analysis |
CN113642443A (en) * | 2021-08-06 | 2021-11-12 | 深圳市宏电技术股份有限公司 | Model testing method and device, electronic equipment and storage medium |
-
2021
- 2021-11-15 CN CN202111350036.9A patent/CN114332672A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101859436A (en) * | 2010-06-09 | 2010-10-13 | 王巍 | Large-amplitude regular movement background intelligent analysis and control system |
US20130038737A1 (en) * | 2011-08-10 | 2013-02-14 | Raanan Yonatan Yehezkel | System and method for semantic video content analysis |
CN113642443A (en) * | 2021-08-06 | 2021-11-12 | 深圳市宏电技术股份有限公司 | Model testing method and device, electronic equipment and storage medium |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114900661A (en) * | 2022-05-10 | 2022-08-12 | 上海浦东发展银行股份有限公司 | A monitoring method, device, equipment and storage medium |
CN114979225A (en) * | 2022-05-12 | 2022-08-30 | 北京天玛智控科技股份有限公司 | Coal mine production control method and device based on video analysis |
CN114979225B (en) * | 2022-05-12 | 2024-01-23 | 北京天玛智控科技股份有限公司 | Coal mine production control method and device based on video analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110610510B (en) | Target tracking method and device, electronic equipment and storage medium | |
JP7270617B2 (en) | Pedestrian flow rate funnel generation method and device, program, storage medium, electronic device | |
US8134596B2 (en) | Classifying an object in a video frame | |
CN116188821B (en) | Copyright detection method, system, electronic device and storage medium | |
Lee et al. | Real-time illegal parking detection in outdoor environments using 1-D transformation | |
CN112200131B (en) | A vehicle collision detection method based on vision, intelligent terminal and storage medium | |
CN111241343A (en) | A road information monitoring, analysis and detection method, and an intelligent traffic control system | |
JP2018509678A (en) | Target acquisition method and apparatus | |
CN102231820B (en) | Monitoring image processing method, device and system | |
US20210312799A1 (en) | Detecting traffic anomaly event | |
JP7329572B2 (en) | TRAFFIC STATE ACQUISITION METHOD AND DEVICE, ROAD SIDE DEVICE, AND CLOUD CONTROL PLATFORM | |
CN114332672A (en) | Video analysis method, device, electronic device and storage medium | |
CN113763425B (en) | Road area calibration method and electronic equipment | |
JP2022106926A (en) | Camera shielding detection method, device, electronic apparatus, storage medium and computer program | |
US10672132B2 (en) | Post processing to improve motion detection results | |
CN110390813B (en) | Big data processing system based on vehicle type identification | |
CN102789645A (en) | Multi-objective fast tracking method for perimeter precaution | |
CN111915713A (en) | Three-dimensional dynamic scene creating method, computer equipment and storage medium | |
WO2022198507A1 (en) | Obstacle detection method, apparatus, and device, and computer storage medium | |
CN115565135A (en) | Target tracking method and device and electronic equipment | |
CN118429615A (en) | Method, equipment, storage medium and product for detecting obstacle broken outside transmission line | |
CN114820695A (en) | Object tracking, feature tracking method, device, system and storage medium | |
CN113762027B (en) | Abnormal behavior identification method, device, equipment and storage medium | |
CN110059591B (en) | Method for identifying moving target area | |
CN114882229A (en) | Target detection picture generation method, device, equipment and medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |