CN114332085B - 一种光学卫星遥感影像检测方法 - Google Patents

一种光学卫星遥感影像检测方法 Download PDF

Info

Publication number
CN114332085B
CN114332085B CN202210237369.9A CN202210237369A CN114332085B CN 114332085 B CN114332085 B CN 114332085B CN 202210237369 A CN202210237369 A CN 202210237369A CN 114332085 B CN114332085 B CN 114332085B
Authority
CN
China
Prior art keywords
image
area
region
remote sensing
satellite remote
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210237369.9A
Other languages
English (en)
Other versions
CN114332085A (zh
Inventor
秦静
祝青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Zhongkexiguang Aerospace Technology Co ltd
Original Assignee
Xi'an Zhongkexiguang Aerospace Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Zhongkexiguang Aerospace Technology Co ltd filed Critical Xi'an Zhongkexiguang Aerospace Technology Co ltd
Priority to CN202210237369.9A priority Critical patent/CN114332085B/zh
Publication of CN114332085A publication Critical patent/CN114332085A/zh
Application granted granted Critical
Publication of CN114332085B publication Critical patent/CN114332085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)

Abstract

本发明公开一种光学卫星遥感影像检测方法。本发明提供的一种光学卫星遥感影像检测方法,通过获取光学卫星遥感影像,对光学卫星遥感影像中的阴影区进行提取,对阴影区进行阴影区重建处理,基于阴影区重建处理后的光学卫星遥感影像,构建比值图及多尺度细节图,对多尺度细节图进行二值化,区分出目标区域,在目标区域的下视影像中提取感兴趣区域,根据感兴趣区域,在目标区域中的前视影像、后视影像上进行相同感兴趣区域的预测,基于核线约束条件,对下视影像、前视影像、后视影像进行三幅影像的最小二乘匹配,根据匹配结果进行前方交会,得到数字地表模型,对遥感卫星影像数据的处理效率得到进一步提升。

Description

一种光学卫星遥感影像检测方法
技术领域
本发明涉及遥感技术领域,尤其涉及一种光学卫星遥感影像检测方法。
背景技术
遥感影像(简称:RS,英文:Remote Sensing Image)是指记录各种地物电磁波大小的胶片或照片,主要分为航空像片和卫星相片。随着光学卫星遥感影像的快速发展,这一技术在国土防御、区域侦察等军事应用领域,灾害监测、应急救灾、防灾预警等民用领域都有着极其重要的作用。
申请号202110879945.5的中国专利公开了一种遥感卫星影像数据的处理方法,包括如下步骤:S1、利用信源编码为不同区域的遥感卫星影像数据分配独立的数据标识,并在数据缓存单元设置独立的逻辑编号;S2、根据数据缓存单元中数据的逻辑编号,完成各区域遥感卫星影像数据的依次输出;S3、采用基于vgg16网络的两阶段检测器实现遥感卫星影像数据中目标的检测;S4、基于连通分量外接矩形的长宽比实现遥感卫星影像数据中目标尺寸的测量;S5、以超链接的形式在每一张遥感影像上标记其对应的目标检测结果和目标尺寸测量结果;S6、为每一张遥感影像在数据库内找到合适的位置,完成遥感影像数据的定位储存。然而,目前遥感卫星应用效能飞速提升,遥感卫星获取的数据量呈几何级数增长,上述方法对遥感卫星影像数据的处理时间过长,存在遥感数据处理不及时的情况,处理效率仍有待进一步提升。因此,有必要提出一种光学卫星遥感影像检测方法,以解决上述问题。
发明内容
本发明提供一种光学卫星遥感影像检测方法,以解决现有方法对遥感卫星影像数据的处理时间过长,存在遥感数据处理不及时的情况,处理效率仍有待进一步提升的问题。
本发明提供一种光学卫星遥感影像检测方法,包括:获取光学卫星遥感影像;对所述光学卫星遥感影像中的阴影区进行提取;对所述阴影区进行阴影区重建处理;基于阴影区重建处理后的光学卫星遥感影像,构建比值图及多尺度细节图;对所述多尺度细节图进行二值化,区分出目标区域;在所述目标区域的下视影像中提取感兴趣区域;根据所述感兴趣区域,在所述目标区域中的前视影像、后视影像上进行相同感兴趣区域的预测;基于核线约束条件,对所述下视影像、前视影像、后视影像进行三幅影像的最小二乘匹配;根据匹配结果进行前方交会,得到数字地表模型。
进一步地,对所述光学卫星遥感影像中的阴影区进行提取,包括:建立原始图像的梯度图;在梯度图中选择出点建立二值图;对二值图每个亮区求图像平均灰度;判断图像平均灰度是否大于预设阈值;如果图像平均灰度大于预设阈值,去除二值图对应区域以及二值图中的小图斑,得到基本阴影区;将每一图斑用灰度形态学的方法向外膨胀,新增加的像素点是灰度值与附近阴影区平均灰度值变化小于预定范围的点,一直扩展到梯度及灰度变化大于预定范围的边沿部分结束,得到阴影区。
进一步地,对所述光学卫星遥感影像中的阴影区进行提取,还包括:对二值图中亮区部分求出梯度的分布,确定低梯度点占总数的百分比;判断低梯度点占总数的百分比是否高于预设阈值;如果所述百分比高于预设阈值,识别为水系,从阴影区去除;对阴影区作灰度直方图分析,若在低灰度区及中灰度区有两个明显的峰值,根据直方图的谷值,去除高灰度的像素后得到的区域作为阴影区。
进一步地,对所述光学卫星遥感影像中的阴影区进行提取,还包括:获取基本阴影区的高梯度边界,对边界内每一像素点在太阳方位角的方向上作Hough变换投影;针对累积点数较大的极值位置作线性检测,检测首尾部分是否有明显的长直线,或是检测区域中是否存在多个较长的平行线段;如果有明显的长直线或存在多个较长的平行线段,确定该区域边界与太阳方位角相关为阴影区,否则认为是其他特殊地物。
进一步地,对所述光学卫星遥感影像中的阴影区进行提取,还包括:将二值图上表现为白色区域中的黑色区域填充成白色,得到完整的阴影内部区域。
进一步地,对所述光学卫星遥感影像中的阴影区进行提取,还包括:在阴影区外沿建立边界区;读取边界区的梯度值;找出最大梯度的位置,在边界区内跟踪出一条最大梯度的封闭曲线为边界线;在边界线内部作填充,得到边界清晰的阴影区。
进一步地,在所述目标区域的下视影像中提取感兴趣区域,包括:建立目标区域的下视影像中当前成像行的严格成像模型;计算当前成像行首尾端点的地理坐标,得到点
Figure 262025DEST_PATH_IMAGE001
;从T0时刻开始,每隔Δt时间,重复上述步骤,对当前成像行首尾端点的地理坐标进行实时计算,在T1=T0+Δt时刻得到点
Figure 357020DEST_PATH_IMAGE002
Figure 885084DEST_PATH_IMAGE003
;判断感兴趣区域中心点是否位于矩形
Figure 989306DEST_PATH_IMAGE004
内,如果感兴趣区域中心点不位于矩形
Figure 817585DEST_PATH_IMAGE005
内,则Δt时间后继续重复上述计算;如果感兴趣区域中心点位于矩形
Figure 286744DEST_PATH_IMAGE006
内,计算该点准确图像坐标和感兴趣区域范围。
进一步地,计算该点准确图像坐标和感兴趣区域范围之后,所述方法还包括:获取相对辐射校正系数,建立相对辐射校正系数查找表;根据感兴趣区定位结果,获取感兴趣区域对应图像的探元成像范围;依据成像增益、级数信息,在相对辐射校正系数查找表中查找对应的相对辐射校正系数;
根据下式计算校正后影像灰度
Figure 833263DEST_PATH_IMAGE007
式中,
Figure 741176DEST_PATH_IMAGE008
为相对辐射校正后第i号探元的DN值,
Figure 704189DEST_PATH_IMAGE009
为原始图像第i号探元的DN值,
Figure 609828DEST_PATH_IMAGE010
为第i号探元的偏移值,
Figure 378063DEST_PATH_IMAGE011
为第i号探元的归一化増益。
进一步地,计算校正后影像灰度之后,所述方法还包括:基于原始多片CCD建立覆盖整景影像范围的全视场虚拟CCD的内方位元素模型,并依据成像时间建立其几何成像模型;针对感兴趣区域成像区域进行传感器校正,依据感兴趣区域地理范围,通过全视场虚拟CCD的几何成像模型反算得到感兴趣区域在全视场虚拟CCD的起始探元号,以全视场虚拟CCD的起始探元号对应的内方位参数作为动态虚拟CCD的内方位参数,建立传感器校正模型;在校正模型建立的基础上,通过原始影像和校正后影像的坐标映射关系即可重采样得到传感器校正影像,即获取到感兴趣区域传感器校正影像及其精确的RPC文件。
进一步地,根据所述感兴趣区域,在所述目标区域中的前视影像、后视影像上进行相同感兴趣区域的预测包括:对于参考影像上的一个给定特征点ρ0,其物方空间的对应点位于通过点ρ0的摄影光线上,假设Z0为点ρ0的概略高程值,通过共线方程式获得点的三维坐标ρ0(X0,Y0,Z0);假设给定概略高程值Z0的容差为ΔZ,得到对应于高程Z0-ΔZ和Z0+ΔZ的两个物方点ρmin和ρmax;将该两点通过有理函数模型投影到前视和后视影像上,每个影像上可以得到对应的像点坐标ρ'min(xmin,ymin)和ρ'max(xmax,ymax);
利用影像的精确定向参数,将摄影光线段ρminρmax分别投影到搜索影像li上,以得到给定点ρ0在影像li上的同名核线ρ'minρ'max,点ρ0的匹配点位于搜索影像的li上的核线上。
本发明的有益效果如下:本发明提供的一种光学卫星遥感影像检测方法,通过获取光学卫星遥感影像,对光学卫星遥感影像中的阴影区进行提取,对阴影区进行阴影区重建处理,基于阴影区重建处理后的光学卫星遥感影像,构建比值图及多尺度细节图,对多尺度细节图进行二值化,区分出目标区域,在目标区域的下视影像中提取感兴趣区域,根据感兴趣区域,在目标区域中的前视影像、后视影像上进行相同感兴趣区域的预测,基于核线约束条件,对下视影像、前视影像、后视影像进行三幅影像的最小二乘匹配,根据匹配结果进行前方交会,得到数字地表模型,对遥感卫星影像数据的处理效率得到进一步提升。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种光学卫星遥感影像检测方法的流程图;
图2为本发明实施例提供的一种光学卫星遥感影像检测方法一实施例的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。以下结合附图,详细说明本发明各实施例提供的技术方案。
请参阅图1,本发明提供一种光学卫星遥感影像检测方法,包括:
步骤S101,获取光学卫星遥感影像。
步骤S102,对所述光学卫星遥感影像中的阴影区进行提取。
光学卫星遥感影像中不可避免会出现阴影,这些阴影可能是建筑物、树木等对光线遮挡,导致遮挡区域的反射光强度减弱、光学传感器接收信号降低,而在相应位置的影像区内形成较暗灰度图像的结果。阴影的存在对后续的图像处理如图像分割、特征抽取和分类识别都带来了极大的困难,有必要对图像的阴影区域专门处理,高分辨率卫星遥感影像数据量大、内容复杂、各类细小地物数量多、干扰严重。
因此,在本实施例中,对所述光学卫星遥感影像中的阴影区进行提取,包括:
步骤S201,建立原始图像的梯度图。
步骤S202,在梯度图中选择出点建立二值图。
其中,在梯度图中选择出梯度较小的点建立二值图,亮区对应小梯度。
步骤S203,对二值图每个亮区求图像平均灰度。
步骤S204,判断图像平均灰度是否大于预设阈值。
步骤S205,如果图像平均灰度大于预设阈值,去除二值图对应区域以及二值图中的小图斑,得到基本阴影区。
其中,基本阴影区只是较为均匀的阴影中间区, 还需将它扩展获得完整的阴影区。
步骤S206,将每一图斑用灰度形态学的方法向外膨胀,新增加的像素点是灰度值与附近阴影区平均灰度值变化小于预定范围的点,一直扩展到梯度及灰度变化大于预定范围的边沿部分结束,得到阴影区。
在本实施例中,对所述光学卫星遥感影像中的阴影区进行提取,还包括:对二值图中亮区部分求出梯度的分布,确定低梯度点占总数的百分比。判断低梯度点占总数的百分比是否高于预设阈值;如果所述百分比高于预设阈值,识别为水系,从阴影区去除。水系的特点是均质性很高,对应于二值图中每一个较大的亮区部分,求出梯度的分布,确定低梯度点占总数的百分比,若该值很高就认为是水系,从基本阴影区去除。
在基本阴影区形成时, 部分提取的建筑物区域中会包括阴影。对阴影区作灰度直方图分析,若在低灰度区及中灰度区有两个明显的峰值,根据直方图的谷值,去除高灰度的像素后得到的区域作为阴影区。获取基本阴影区的高梯度边界,对边界内每一像素点在太阳方位角的方向上作Hough变换投影;针对累积点数较大的极值位置作线性检测,检测首尾部分是否有明显的长直线,或是检测区域中是否存在多个较长的平行线段;如果有明显的长直线或存在多个较长的平行线段,确定该区域边界与太阳方位角相关为阴影区,否则认为是其他特殊地物。将二值图上表现为白色区域中的黑色区域填充成白色,得到完整的阴影内部区域。在阴影区外沿建立边界区;读取边界区的梯度值;找出最大梯度的位置,在边界区内跟踪出一条最大梯度的封闭曲线为边界线;在边界线内部作填充,得到边界清晰的阴影区。
步骤S103,对所述阴影区进行阴影区重建处理。
步骤S104,基于阴影区重建处理后的光学卫星遥感影像,构建比值图及多尺度细节图。
步骤S105,对所述多尺度细节图进行二值化,区分出目标区域。
步骤S106,在所述目标区域的下视影像中提取感兴趣区域。
在本实施例中,在所述目标区域的下视影像中提取感兴趣区域,包括:建立目标区域的下视影像中当前成像行的严格成像模型;计算当前成像行首尾端点的地理坐标,得到点
Figure 27351DEST_PATH_IMAGE012
;从T0时刻开始,每隔Δt时间,重复上述步骤,对当前成像行首尾端点的地理坐标进行实时计算,在T1=T0+Δt时刻得到点
Figure 626959DEST_PATH_IMAGE013
Figure 437920DEST_PATH_IMAGE014
;判断感兴趣区域中心点是否位于矩形
Figure 959032DEST_PATH_IMAGE015
内,如果感兴趣区域中心点不位于矩形
Figure 943168DEST_PATH_IMAGE016
内,则Δt时间后继续重复上述计算;如果感兴趣区域中心点位于矩形
Figure 600546DEST_PATH_IMAGE017
内,计算该点准确图像坐标和感兴趣区域范围。
感兴趣区域定位需要根据任务指令中指定的感兴趣区域中心的经纬度和尺寸,反算整个感兴趣区域在原始影像上的覆盖范围,从而对该区域进行后续处理。高分辨率光学卫星通常采用时间延迟积分 CCD 作为成像器件,通过线阵推扫获取条带数据。由于每一行成像数据所对应的姿态和轨道数据不同,导致每一行影像的严密成像几何模型各不相同,通过经纬度坐标反算图像坐标需要迭代进行。
在本实施例中,计算该点准确图像坐标和感兴趣区域范围之后,所述方法还包括:获取相对辐射校正系数,建立相对辐射校正系数查找表;根据感兴趣区定位结果,获取感兴趣区域对应图像的探元成像范围;依据成像增益、级数信息,在相对辐射校正系数查找表中查找对应的相对辐射校正系数;
根据下式计算校正后影像灰度
Figure 641795DEST_PATH_IMAGE018
式中,
Figure 384623DEST_PATH_IMAGE019
为相对辐射校正后第i号探元的DN值,
Figure 375713DEST_PATH_IMAGE020
为原始图像第i号探元的DN值,
Figure 949914DEST_PATH_IMAGE021
为第i号探元的偏移值,
Figure 368257DEST_PATH_IMAGE022
为第i号探元的归一化増益。
基于原始多片CCD建立覆盖整景影像范围的全视场虚拟CCD的内方位元素模型,并依据成像时间建立其几何成像模型;针对感兴趣区域成像区域进行传感器校正,依据感兴趣区域地理范围,通过全视场虚拟CCD的几何成像模型反算得到感兴趣区域在全视场虚拟CCD的起始探元号,以全视场虚拟CCD的起始探元号对应的内方位参数作为动态虚拟CCD的内方位参数,建立传感器校正模型;在校正模型建立的基础上,通过原始影像和校正后影像的坐标映射关系即可重采样得到传感器校正影像,即获取到感兴趣区域传感器校正影像及其精确的RPC文件。
步骤S107,根据所述感兴趣区域,在所述目标区域中的前视影像、后视影像上进行相同感兴趣区域的预测。
具体地,对于参考影像上的一个给定特征点ρ0,其物方空间的对应点位于通过点ρ0的摄影光线上,假设Z0为点ρ0的概略高程值,通过共线方程式获得点的三维坐标ρ0(X0,Y0,Z0);假设给定概略高程值Z0的容差为ΔZ,得到对应于高程Z0-ΔZ和Z0+ΔZ的两个物方点ρmin和ρmax;将该两点通过有理函数模型投影到前视和后视影像上,每个影像上可以得到对应的像点坐标ρ'min(xmin,ymin)和ρ'max(xmax,ymax);利用影像的精确定向参数,将摄影光线段ρminρmax分别投影到搜索影像li上,以得到给定点ρ0在影像li上的同名核线ρ'minρ'max,点ρ0的匹配点位于搜索影像的li上的核线上。
步骤S108,基于核线约束条件,对所述下视影像、前视影像、后视影像进行三幅影像的最小二乘匹配。
步骤S109,根据匹配结果进行前方交会,得到数字地表模型。
本发明实施例还提供一种存储介质,本发明实施例还提供一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现本发明提供的光学卫星遥感影像检测方法的各实施例中的部分或全部步骤。所述的存储介质可为磁碟、光盘、只读存储记忆体(英文:Read-OnlyMemory,简称:ROM)或随机存储记忆体(英文:RandomAccessMemory,简称:RAM)等。
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
以上所述的本发明实施方式并不构成对本发明保护范围的限定。

Claims (10)

1.一种光学卫星遥感影像检测方法,其特征在于,包括:
获取光学卫星遥感影像;
对所述光学卫星遥感影像中的阴影区进行提取;
对所述阴影区进行阴影区重建处理;
基于阴影区重建处理后的光学卫星遥感影像,构建比值图及多尺度细节图;
对所述多尺度细节图进行二值化,区分出目标区域;
在所述目标区域的下视影像中提取感兴趣区域;
根据所述感兴趣区域,在所述目标区域中的前视影像、后视影像上进行相同感兴趣区域的预测;
基于核线约束条件,对所述下视影像、前视影像、后视影像进行三幅影像的最小二乘匹配;
根据匹配结果进行前方交会,得到数字地表模型。
2.如权利要求1所述的光学卫星遥感影像检测方法,其特征在于,对所述光学卫星遥感影像中的阴影区进行提取,包括:
建立原始图像的梯度图;
在梯度图中选择出点建立二值图;
对二值图每个亮区求图像平均灰度;
判断图像平均灰度是否大于预设阈值;
如果图像平均灰度大于预设阈值,去除二值图对应区域以及二值图中的小图斑,得到基本阴影区;
将每一图斑用灰度形态学的方法向外膨胀,新增加的像素点是灰度值与附近阴影区平均灰度值变化小于预定范围的点,一直扩展到梯度及灰度变化大于预定范围的边沿部分结束,得到阴影区。
3.如权利要求2所述的光学卫星遥感影像检测方法,其特征在于,对所述光学卫星遥感影像中的阴影区进行提取,还包括:
对二值图中亮区部分求出梯度的分布,确定低梯度点占总数的百分比;
判断低梯度点占总数的百分比是否高于预设阈值;
如果所述百分比高于预设阈值,识别为水系,从阴影区去除;
对阴影区作灰度直方图分析,若在低灰度区及中灰度区有两个明显的峰值,根据直方图的谷值,去除高灰度的像素后得到的区域作为阴影区。
4.如权利要求3所述的光学卫星遥感影像检测方法,其特征在于,对所述光学卫星遥感影像中的阴影区进行提取,还包括:
获取基本阴影区的高梯度边界,对边界内每一像素点在太阳方位角的方向上作Hough变换投影;
针对累积点数较大的极值位置作线性检测,检测首尾部分是否有明显的长直线,或是检测区域中是否存在多个较长的平行线段;
如果有明显的长直线或存在多个较长的平行线段,确定该区域边界与太阳方位角相关为阴影区,否则认为是其他特殊地物。
5.如权利要求4所述的光学卫星遥感影像检测方法,其特征在于,对所述光学卫星遥感影像中的阴影区进行提取,还包括:
将二值图上表现为白色区域中的黑色区域填充成白色,得到完整的阴影内部区域。
6.如权利要求5所述的光学卫星遥感影像检测方法,其特征在于,对所述光学卫星遥感影像中的阴影区进行提取,还包括:
在阴影区外沿建立边界区;
读取边界区的梯度值;
找出最大梯度的位置,在边界区内跟踪出一条最大梯度的封闭曲线为边界线;
在边界线内部作填充,得到边界清晰的阴影区。
7.如权利要求1所述的光学卫星遥感影像检测方法,其特征在于,在所述目标区域的下视影像中提取感兴趣区域,包括:
建立目标区域的下视影像中当前成像行的严格成像模型;
计算当前成像行首尾端点的地理坐标,得到点
Figure 960487DEST_PATH_IMAGE001
从T0时刻开始,每隔Δt时间,重复上述步骤,对当前成像行首尾端点的地理坐标进行实时计算,在T1=T0+Δt时刻得到点
Figure 755268DEST_PATH_IMAGE002
;
判断感兴趣区域中心点是否位于矩形
Figure 183975DEST_PATH_IMAGE003
内,
如果感兴趣区域中心点不位于矩形
Figure 507640DEST_PATH_IMAGE003
内,则Δt时间后继续重复上述计算;
如果感兴趣区域中心点位于矩形
Figure 287378DEST_PATH_IMAGE004
内,计算该点准确图像坐标和感兴趣区域范围。
8.如权利要求7所述的光学卫星遥感影像检测方法,其特征在于,计算该点准确图像坐标和感兴趣区域范围之后,所述方法还包括:
获取相对辐射校正系数,建立相对辐射校正系数查找表;
根据感兴趣区定位结果,获取感兴趣区域对应图像的探元成像范围;
依据成像增益、级数信息,在相对辐射校正系数查找表中查找对应的相对辐射校正系数;
根据下式计算校正后影像灰度
Figure 354691DEST_PATH_IMAGE005
式中,
Figure 637905DEST_PATH_IMAGE006
为相对辐射校正后第i号探元的DN值,
Figure 398050DEST_PATH_IMAGE007
为原始图像第i号探元的DN值,
Figure 399504DEST_PATH_IMAGE008
为第i号探元的偏移值,
Figure 270508DEST_PATH_IMAGE009
为第i号探元的归一化増益。
9.如权利要求8所述的光学卫星遥感影像检测方法,其特征在于,计算校正后影像灰度之后,所述方法还包括:
基于原始多片CCD建立覆盖整景影像范围的全视场虚拟CCD的内方位元素模型,并依据成像时间建立其几何成像模型;
针对感兴趣区域成像区域进行传感器校正,依据感兴趣区域地理范围,通过全视场虚拟CCD的几何成像模型反算得到感兴趣区域在全视场虚拟CCD的起始探元号,以全视场虚拟CCD的起始探元号对应的内方位参数作为动态虚拟CCD的内方位参数,建立传感器校正模型;
在校正模型建立的基础上,通过原始影像和校正后影像的坐标映射关系即可重采样得到传感器校正影像,即获取到感兴趣区域传感器校正影像及其精确的RPC文件。
10.如权利要求9所述的光学卫星遥感影像检测方法,其特征在于,根据所述感兴趣区域,在所述目标区域中的前视影像、后视影像上进行相同感兴趣区域的预测包括:
对于参考影像上的一个给定特征点ρ0,其物方空间的对应点位于通过点ρ0的摄影光线上,假设Z0为点ρ0的概略高程值,通过共线方程式获得点的三维坐标ρ0(X0,Y0,Z0);
假设给定概略高程值Z0的容差为ΔZ,得到对应于高程Z0-ΔZ和Z0+ΔZ的两个物方点ρmin和ρmax;
将该两点通过有理函数模型投影到前视和后视影像上,每个影像上可以得到对应的像点坐标ρ'min(xmin,ymin)和ρ'max(xmax,ymax);
利用影像的精确定向参数,将摄影光线段ρminρmax分别投影到搜索影像li上,以得到给定点ρ0在影像li上的同名核线ρ'minρ'max,点ρ0的匹配点位于搜索影像的li上的核线上。
CN202210237369.9A 2022-03-11 2022-03-11 一种光学卫星遥感影像检测方法 Active CN114332085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210237369.9A CN114332085B (zh) 2022-03-11 2022-03-11 一种光学卫星遥感影像检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210237369.9A CN114332085B (zh) 2022-03-11 2022-03-11 一种光学卫星遥感影像检测方法

Publications (2)

Publication Number Publication Date
CN114332085A CN114332085A (zh) 2022-04-12
CN114332085B true CN114332085B (zh) 2022-06-24

Family

ID=81034123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210237369.9A Active CN114332085B (zh) 2022-03-11 2022-03-11 一种光学卫星遥感影像检测方法

Country Status (1)

Country Link
CN (1) CN114332085B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792369B (zh) * 2022-06-29 2022-09-23 上海启迪睿视智能科技有限公司 基于光投影的烟条盒填充状态检测方法及系统
CN117664087B (zh) * 2024-01-31 2024-04-02 中国人民解放军战略支援部队航天工程大学 垂轨环扫式卫星影像核线生成方法、系统及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308031A (zh) * 2013-05-23 2013-09-18 中国人民解放军理工大学 一种基于卫星三线阵ccd影像的云顶高度反演方法
CN103927759A (zh) * 2014-04-30 2014-07-16 武汉大学 一种航空图像自动云检测方法
CN112258422A (zh) * 2020-08-17 2021-01-22 中国人民解放军61540部队 立体影像有理多项式参数(rpc)自动精化方法
CN112598608A (zh) * 2020-11-25 2021-04-02 湖北工业大学 一种基于目标区域的光学卫星快速融合产品制作方法
CN112765095A (zh) * 2020-12-24 2021-05-07 山东省国土测绘院 一种立体测绘卫星影像数据归档方法和系统
CN113358091A (zh) * 2021-06-02 2021-09-07 自然资源部国土卫星遥感应用中心 一种利用三线阵立体卫星影像生产数字高程模型方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9760805B2 (en) * 2014-10-10 2017-09-12 The Penn State Research Foundation Identifying visual storm signatures from satellite images
CN110287898B (zh) * 2019-06-27 2023-04-18 苏州中科天启遥感科技有限公司 一种光学卫星遥感影像云检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308031A (zh) * 2013-05-23 2013-09-18 中国人民解放军理工大学 一种基于卫星三线阵ccd影像的云顶高度反演方法
CN103927759A (zh) * 2014-04-30 2014-07-16 武汉大学 一种航空图像自动云检测方法
CN112258422A (zh) * 2020-08-17 2021-01-22 中国人民解放军61540部队 立体影像有理多项式参数(rpc)自动精化方法
CN112598608A (zh) * 2020-11-25 2021-04-02 湖北工业大学 一种基于目标区域的光学卫星快速融合产品制作方法
CN112765095A (zh) * 2020-12-24 2021-05-07 山东省国土测绘院 一种立体测绘卫星影像数据归档方法和系统
CN113358091A (zh) * 2021-06-02 2021-09-07 自然资源部国土卫星遥感应用中心 一种利用三线阵立体卫星影像生产数字高程模型方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DSM Building Shape Refinement from Combined Remote Sensing Images Based on WNET-CGANS;Ksenia Bittner 等;《IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium》;20191114;全文 *
基于梯度特征的高分辨率卫星遥感影像阴影检测;郑茜颖 等;《福州大学学报(自然科学版)》;20081031;全文 *
贵阳城区建立三维模型中SPOT遥感影像阴影处理方法的探讨;王立志等;《安徽农业科学》;20070630(第18期);全文 *
面向高精度目标立体重建的信息恢复与补偿技术;宿南;《中国知网博士电子期刊》;20171115;全文 *

Also Published As

Publication number Publication date
CN114332085A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN107463918B (zh) 基于激光点云与影像数据融合的车道线提取方法
CN114332085B (zh) 一种光学卫星遥感影像检测方法
Tian et al. Building change detection based on satellite stereo imagery and digital surface models
US10521694B2 (en) 3D building extraction apparatus, method and system
CN108765488B (zh) 一种基于阴影的高分辨率遥感影像建筑物高度估测方法
Hong et al. A robust technique for precise registration of radar and optical satellite images
CN110569861B (zh) 一种基于点特征和轮廓特征融合的图像匹配定位方法
CN111144213B (zh) 一种对象检测方法和相关设备
CN115761550A (zh) 一种基于激光雷达点云和相机图像融合的水面目标检测方法
CN111798509B (zh) 一种基于半球图像法测量叶面积指数的方法
CN115063689A (zh) 一种基于局部显著性增强的cfar舰船目标检测方法
Parmehr et al. Automatic registration of optical imagery with 3d lidar data using local combined mutual information
Ren et al. Automated SAR reference image preparation for navigation
CN107765257A (zh) 一种基于反射强度辅助外部校准的激光探测与测量方法
CN116403114A (zh) 一种基于深度学习的遥感影像目标识别方法及系统
CN113034555B (zh) 一种基于最小生成树的特征精匹配方法及应用
CN110136128B (zh) 基于Rao检验的SAR影像变化检测方法
Qayyum et al. Monitoring of vegetation near power lines based on dynamic programming using satellite stereo images
Kuttikkad et al. Building 2D wide-area site models from single-and multipass single-polarization SAR data
CN117557584B (zh) 水体提取方法、装置、电子设备及存储介质
CN113989505B (zh) 基于融合多层级模糊聚类软决策结果的sar目标检测方法
CN115797362B (zh) 高分遥感影像的质量评估方法、装置及电子设备
Garzelli et al. Urban footprint from VHR SAR images: Toward a fully operational procedure
Zaletelj Reliable subpixel ground control point estimation algorithm using vector roads
Bakhshiev et al. Analysis of the applicability of visual navigation methods in arctic conditions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant