CN110136128B - 基于Rao检验的SAR影像变化检测方法 - Google Patents
基于Rao检验的SAR影像变化检测方法 Download PDFInfo
- Publication number
- CN110136128B CN110136128B CN201910421617.3A CN201910421617A CN110136128B CN 110136128 B CN110136128 B CN 110136128B CN 201910421617 A CN201910421617 A CN 201910421617A CN 110136128 B CN110136128 B CN 110136128B
- Authority
- CN
- China
- Prior art keywords
- sar image
- rao
- image
- neighborhood
- sar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008859 change Effects 0.000 title claims abstract description 53
- 238000001514 detection method Methods 0.000 title claims abstract description 41
- 238000012360 testing method Methods 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000011159 matrix material Substances 0.000 claims abstract description 20
- 238000007476 Maximum Likelihood Methods 0.000 claims abstract description 18
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 3
- 230000017105 transposition Effects 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 4
- 238000007689 inspection Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000006467 substitution reaction Methods 0.000 abstract description 2
- 230000011218 segmentation Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
- G06T2207/10044—Radar image
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Image Processing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于Rao检验的SAR影像变化检测方法,适用于图像处理领域。其步骤为:获取同一地区两个时刻的两幅不同时相SAR影像,作出Rao检验的零假设H0和备择假设H1;计算H0约束条件下参数θ的极大似然估计值计算H0约束条件下参数θ的Fisher信息矩阵把H0约束条件下参数θ极大似然估计值代入H1约束条件下SAR影像I1和SAR影像I2同一位置包含N0个像元的邻域联合概率密度函数计算关于参数θ的偏导数;生成SAR影像I1和SAR影像I2基于Rao检验的差异影像DRao;通过差异影像阈值分割生成变化检测结果图。该方法基于Rao检验理论,具有完备的数学基础,提高了从两幅SAR影像中检测地表覆盖信息变化区域的精度;对SAR影像变化检测效果好。
Description
技术领域
本发明涉及一种影像变化检测方法,尤其适用于图像处理技术领域中基于Rao检验的SAR影像变化检测方法。
背景技术
变化检测属于图像处理领域,是指利用覆盖同一地理区域的多时相遥感影像提取地表覆盖的变化信息,该技术已经被广泛应用于环境监测、城市研究、森林监测、农业调查和灾害评估等领域。遥感影像变化检测过程通常可以分为图像预处理、通过比较多时相影像生成差异影像和差异影像分析3个步骤。其中,生成差异影像是进行变化检测的关键步骤。
与光学影像相比,合成孔径雷达采用侧视方式成像,覆盖面积大,具有穿透云雨雾霾,全天时、全天候获取地面信息的能力。自20世纪50年代以来,已被广泛用于地表沉降监测、地形测绘、资源勘探、环境遥感以及军事等领域。近年来随着SAR技术和图像处理技术的发展,利用SAR影像进行变化检测逐渐成为遥感影像信息提取研究的热点之一。
生成差异影像是进行变化检测的关键步骤。与差值法相比,比值法能减小校正和辐射测量误差的影响,更适合于SAR影像变化检测。考虑到SAR影像含有的噪声为乘性斑点噪声,而对数变换不仅可以把乘性噪声转换为加性噪声,而且可以压缩比值法的数据范围,对数比值法在变化检测中得到了较多的应用。为了利用邻域信息减小斑点噪声对变化检测的影响,均值比值法被提出并在SAR影像变化检测中得到了广泛的应用。然而,差值法、对数比值法和均值比值法都是以简单直接地方式定义的方法,在SAR影像变化检测中的应用缺少严密的数学理论支持,从而限制了变化检测的精度。
发明内容
本发明的目的在于针对上述已有技术的问题,提供一种数学理论严密、精度高、检测效果好的基于Rao检验的SAR影像变化检测方法。
为实现上述目的,本发明的基于Rao检验的SAR影像变化检测方法,包括如下步骤:
a获取覆盖同一地理区域经过配准和几何校正的两幅不同时相SAR影像I1和SAR影像I2;
b作出用于SAR影像变化检测的Rao检验零假设H0和备择假设H1;
c针对SAR影像I1和SAR影像I2,设置Rao检验的邻域窗口大小N,利用公式:计算零假设H0约束条件下参数θ的极大似然估计值其中是H0约束条件下SAR影像I1窗口大小为N的邻域内像元强度均值的极大似然估计值,是H0约束条件下SAR影像I2窗口大小为N的邻域内像元强度均值的极大似然估计值,T为矩阵转置符号,参数θ=[u1 u2]T是SAR影像I1和SAR影像I2相同位置窗口大小为N的邻域内像元强度均值组成的列向量,u1是SAR影像I1窗口大小为N的邻域内像元强度均值,u2是SAR影像I2窗口大小为N的邻域内像元强度均值;
e把极大似然估计值代入备择假设H1约束条件下SAR影像I1和SAR影像I2同一位置包含N0个像元的邻域联合概率密度函数计算邻域联合概率密度函数关于参数θ的偏导数其中是数学中的偏导数符号,ln是计算自然对数的数学符号,z是SAR影像I1和SAR影像I2同一位置包含N0个像元的邻域的观测值,N0=N×N为窗口大小为N的邻域内像元数量;
f生成SAR影像I1和SAR影像I2基于Rao检验的差异影像DRao;
g采用最大化熵法确定差异影像DRao的分割阈值TD;
h利用阈值TD分割差异影像DRao,生成包含变化区域和不变化区域的二值变化检测结果图,并利用白色区域表示SAR影像I1和SAR影像I2之间的地表覆盖信息发生了变化,利用黑色的区域表示SAR影像I1和SAR影像I2之间的地表覆盖信息没有发生变化,最终直观的将SAR影像I1和SAR影像I2之间的地表覆盖变化信息展现出来。
所述步骤b中零假设H0和备择假设H1均为假设,其中零假设H0为SAR影像I1和SAR影像I2之间的地表覆盖信息发生了变化,SAR影像I1和SAR影像I2之间的有效散射截面积不同,具有未知的模式;备择假设H1为:SAR影像I1和SAR影像I2之间的地表覆盖信息没有发生变化,SAR影像I1和SAR影像I2之间的有效散射截面积相同。
式中:N0=N×N为窗口大小为N的邻域内像元数量,zn,i是第i幅影像中位置为n的像元强度值。
式中,p=1,2,q=1,2,v为等效视数,N0=N×N为窗口大小为N的邻域内像元数量,zn,p为第p幅影像中位置为n的像元强度值,zn,q为第q幅影像中位置为n的像元强度值,E为数学期望符号。
式中,v是等效视数,N0=N×N为窗口大小为N的邻域内像元数量,u是备择假设H1约束条件下SAR影像I1和SAR影像I2同一位置包含N0个像元的邻域的实际均值。
所述步骤f中生成SAR影像I1和SAR影像I2基于Rao检验的差异影像DRao步骤如下:
f1利用公式:计算SAR影像I1和SAR影像I2在同一位置(j,k)处包含N0个像元的邻域的Rao检验统计量tRao(j,k),式中,z是SAR影像I1和SAR影像I2同一位置包含N0个像元的邻域的观测值,是零假设H0约束条件下参数θ的Fisher信息矩阵的逆矩阵;
f2利用公式:DRao(j,k)=tRao(j,k)生成差异影像DRao,式中,DRao(j,k)为差异影像DRao中位置(j,k)处的像元灰度值。
附图说明
图1是本发明基于Rao检验的SAR影像变化检测方法的流程框图;
图2(a)是本发明基于Rao检验的SAR影像变化检测方法实施例中的SAR影像I1;
图2(b)是本发明基于Rao检验的SAR影像变化检测方法实施例中的SAR影像I2;
图3是本发明基于Rao检验的SAR影像变化检测方法得到的变化检测结果图。
具体实施方式
下面结合附图及实施例对本发明作进一步的详细描述;
如图1所示,本发明的基于Rao检验的SAR影像变化检测方法,包括如下步骤:
步骤a:如图2(a)和图2(b)所示,获取覆盖同一地理区域经过配准和几何校正的两幅不同时相的影像:时相t1的SAR影像I1和时相t2的SAR影像I2;
步骤b:作出用于SAR影像变化检测的Rao检验零假设H0:SAR影像I1和SAR影像I2之间的地表覆盖信息发生了变化,SAR影像I1和SAR影像I2之间的有效散射截面积不同,具有未知的模式;作出用于SAR影像变化检测的Rao备择假设H1;SAR影像I1和SAR影像I2之间的地表覆盖信息没有发生变化,SAR影像I1和SAR影像I2之间的有效散射截面积相同;
步骤c:针对SAR影像I1和SAR影像I2,设置Rao检验的邻域窗口大小N,对SAR影像I1和SAR影像I2相同位置窗口大小为N的邻域,利用公式:计算零假设H0约束条件下参数θ=[u1 u2]T的极大似然估计值的元素式中:N0=N×N为窗口大小为N的邻域内像元数量,zn,i是第i幅影像中位置为n的像元强度值,是H0约束条件下SAR影像I1窗口大小为N的邻域内像元强度均值的极大似然估计值,是H0约束条件下SAR影像I2窗口大小为N的邻域内像元强度均值的极大似然估计值,u1是SAR影像I1窗口大小为N的邻域内像元强度均值,u2是SAR影像I2窗口大小为N的邻域内像元强度均值,T为矩阵转置符号;
步骤d:利用公式:计算矩阵中位置为(p,q)的矩阵元素式中,是零假设H0约束条件下参数θ极大似然估计值,是零假设H0约束条件下参数θ的Fisher信息矩阵,大小为2×2,p=1,2,q=1,2,v是等效视数,N0=N×N为窗口大小为N的邻域内像元数量,zn,p是第p幅影像中位置为n的像元强度值,zn,q是第q幅影像中位置为n的像元强度值,E为数学期望符号;
步骤e:利用公式:计算关于参数θ的偏导数式中:为备择假设H1约束条件下SAR影像I1和SAR影像I2同一位置包含N0个像元的邻域联合概率密度函数,是零假设H0约束条件下参数θ极大似然估计值,是数学中的偏导数符号,ln是计算自然对数的数学符号,z是SAR影像I1和SAR影像I2同一位置包含N0个像元的邻域的观测值,N0=N×N为窗口大小为N的邻域内像元数量,v是等效视数,N0=N×N为窗口大小为N的邻域内像元数量,u是备择假设H1约束条件下SAR影像I1和SAR影像I2同一位置包含N0个像元的邻域的实际均值;
步骤f:生成SAR影像I1和SAR影像I2基于Rao检验的差异影像DRao,具体步骤为:
f1)利用公式:计算SAR影像I1和SAR影像I2在同一位置(j,k)处包含N0个像元的邻域的Rao检验统计量tRao(j,k),式中,z是SAR影像I1和SAR影像I2同一位置包含N0个像元的邻域的观测值,是零假设H0约束条件下参数θ的Fisher信息矩阵的逆矩阵;
f2)利用公式:DRao(j,k)=tRao(j,k)生成差异影像DRao,式中,DRao(j,k)为差异影像DRao中位置(j,k)处的像元灰度值;
步骤g:采用最大化熵法确定差异影像DRao的分割阈值TD;
步骤h:如图3所示,利用阈值TD分割差异影像DRao,生成包含变化区域和不变化区域的二值变化检测结果图,其中白色区域表示SAR影像I1和SAR影像I2之间的地表覆盖信息发生了变化,黑色的区域表示SAR影像I1和SAR影像I2之间的地表覆盖信息没有发生变化。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
应当理解的是。上述针对实施示例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围的情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。
Claims (6)
1.一种基于Rao检验的SAR影像变化检测方法,其特征在于包括如下步骤:
a获取覆盖同一地理区域经过配准和几何校正的两幅不同时相SAR影像I1和SAR影像I2;
b作出用于SAR影像变化检测的Rao检验零假设H0和备择假设H1;
c针对SAR影像I1和SAR影像I2,设置Rao检验的邻域窗口大小N,利用公式:计算零假设H0约束条件下参数θ的极大似然估计值其中是H0约束条件下SAR影像I1窗口大小为N的邻域内像元强度均值的极大似然估计值,是H0约束条件下SAR影像I2窗口大小为N的邻域内像元强度均值的极大似然估计值,T为矩阵转置符号,参数θ=[u1 u2]T是SAR影像I1和SAR影像I2相同位置窗口大小为N的邻域内像元强度均值组成的列向量,u1是SAR影像I1窗口大小为N的邻域内像元强度均值,u2是SAR影像I2窗口大小为N的邻域内像元强度均值;
e把极大似然估计值代入备择假设H1约束条件下SAR影像I1和SAR影像I2同一位置包含N0个像元的邻域联合概率密度函数计算邻域联合概率密度函数关于参数θ的偏导数其中是数学中的偏导数符号,ln是计算自然对数的数学符号,z是SAR影像I1和SAR影像I2同一位置包含N0个像元的邻域的观测值,N0=N×N为窗口大小为N的邻域内像元数量;
f生成SAR影像I1和SAR影像I2基于Rao检验的差异影像DRao;
g采用最大化熵法确定差异影像DRao的分割阈值TD;
h利用阈值TD分割差异影像DRao,生成包含变化区域和不变化区域的二值变化检测结果图,并利用白色区域表示SAR影像I1和SAR影像I2之间的地表覆盖信息发生了变化,利用黑色的区域表示SAR影像I1和SAR影像I2之间的地表覆盖信息没有发生变化,最终直观的将SAR影像I1和SAR影像I2之间的地表覆盖变化信息展现出来。
2.根据权利要求1所述的基于Rao检验的SAR影像变化检测方法,其特征在于:所述步骤b中零假设H0和备择假设H1均为假设,其中零假设H0为SAR影像I1和SAR影像I2之间的地表覆盖信息发生了变化,SAR影像I1和SAR影像I2之间的有效散射截面积不同,具有未知的模式;备择假设H1为:SAR影像I1和SAR影像I2之间的地表覆盖信息没有发生变化,SAR影像I1和SAR影像I2之间的有效散射截面积相同。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910421617.3A CN110136128B (zh) | 2019-05-20 | 2019-05-20 | 基于Rao检验的SAR影像变化检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910421617.3A CN110136128B (zh) | 2019-05-20 | 2019-05-20 | 基于Rao检验的SAR影像变化检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110136128A CN110136128A (zh) | 2019-08-16 |
CN110136128B true CN110136128B (zh) | 2021-03-02 |
Family
ID=67571894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910421617.3A Active CN110136128B (zh) | 2019-05-20 | 2019-05-20 | 基于Rao检验的SAR影像变化检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110136128B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112577438B (zh) * | 2020-11-16 | 2021-12-28 | 中国矿业大学 | 一种利用无人机影像的煤矿区三维形变监测方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104867150A (zh) * | 2015-05-22 | 2015-08-26 | 武汉大学 | 遥感影像模糊聚类的波段修正变化检测方法及系统 |
CN106093940A (zh) * | 2016-06-03 | 2016-11-09 | 中国科学院电子学研究所 | 合成孔径雷达图像序列生成方法 |
CN107689055A (zh) * | 2017-08-24 | 2018-02-13 | 河海大学 | 一种多时相遥感影像变化检测方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104166128B (zh) * | 2014-08-06 | 2016-11-09 | 电子科技大学 | 基于广义似然比的多航过sar相干变化检测方法 |
CN104766341B (zh) * | 2015-05-04 | 2018-01-12 | 福建师范大学 | 一种基于dsm和核密度估计的遥感影像建筑物变化检测方法 |
CN106934797B (zh) * | 2017-02-16 | 2019-09-06 | 中国测绘科学研究院 | 一种基于邻域相对熵的sar影像变化检测方法 |
-
2019
- 2019-05-20 CN CN201910421617.3A patent/CN110136128B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104867150A (zh) * | 2015-05-22 | 2015-08-26 | 武汉大学 | 遥感影像模糊聚类的波段修正变化检测方法及系统 |
CN106093940A (zh) * | 2016-06-03 | 2016-11-09 | 中国科学院电子学研究所 | 合成孔径雷达图像序列生成方法 |
CN107689055A (zh) * | 2017-08-24 | 2018-02-13 | 河海大学 | 一种多时相遥感影像变化检测方法 |
Non-Patent Citations (3)
Title |
---|
An improved neighborhood-based ratio approach for chage detection in SAE images;Zhuang Huifu 等;《European Journal of Remote Sensing》;20180131;第51卷(第1期);第723-738页 * |
SAR变化检测技术发展综述;陈富龙 等;《遥感技术与应用》;20070228;第22卷(第1期);第109-115页 * |
一种基于统计分析的图像变化检测方法;胡岩峰;《光子学报》;20050131;第34卷(第1期);第146-149页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110136128A (zh) | 2019-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108830819B (zh) | 一种深度图像与红外图像的图像融合方法及装置 | |
Tian et al. | Building change detection based on satellite stereo imagery and digital surface models | |
Zhang et al. | Object-oriented shadow detection and removal from urban high-resolution remote sensing images | |
CN108765488B (zh) | 一种基于阴影的高分辨率遥感影像建筑物高度估测方法 | |
CN109214439B (zh) | 一种基于多特征融合的红外图像结冰河流检测方法 | |
CN112307901B (zh) | 一种面向滑坡检测的sar与光学影像融合方法及系统 | |
Jarabo-Amores et al. | Spatial-range mean-shift filtering and segmentation applied to SAR images | |
CN112285710B (zh) | 一种多源遥感水库蓄水量估算方法与装置 | |
Osorio et al. | An algorithm for the measurement of shoreline and intertidal beach profiles using video imagery: PSDM | |
CN105894520B (zh) | 一种基于高斯混合模型的卫星影像自动云检测方法 | |
CN105139396B (zh) | 一种全自动遥感影像云雾检测方法 | |
Kwon et al. | ETVOS: An enhanced total variation optimization segmentation approach for SAR sea-ice image segmentation | |
CN114332085B (zh) | 一种光学卫星遥感影像检测方法 | |
Li et al. | Automatic infrared ship target segmentation based on structure tensor and maximum histogram entropy | |
CN110136128B (zh) | 基于Rao检验的SAR影像变化检测方法 | |
Ni et al. | Hurricane eye morphology extraction from SAR images by texture analysis | |
CN104700427B (zh) | 一种基于sar图像的道路损毁信息提取方法 | |
Dellepiane et al. | Processing and segmentation of COSMO-SkyMed images for flood monitoring | |
Wang et al. | An automatic thresholding method for water body detection from SAR image | |
CN106204596B (zh) | 一种基于高斯拟合函数与模糊混合估计的全色波段遥感影像云检测方法 | |
Aytekin et al. | Automatic and unsupervised building extraction in complex urban environments from multi spectral satellite imagery | |
Vijayan et al. | A novel shadow removal algorithm using Niblack segmentation in satellite images | |
Sidike et al. | Automatic building change detection through adaptive local textural features and sequential background removal | |
Karvonen et al. | Ice thickness estimation using SAR data and ice thickness history | |
Revollo et al. | Automatic methodology for mapping of coastal zones in video sequences |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |