CN114325245A - 基于行波数据深度学习的输电线路故障选线与定位方法 - Google Patents

基于行波数据深度学习的输电线路故障选线与定位方法 Download PDF

Info

Publication number
CN114325245A
CN114325245A CN202210040970.9A CN202210040970A CN114325245A CN 114325245 A CN114325245 A CN 114325245A CN 202210040970 A CN202210040970 A CN 202210040970A CN 114325245 A CN114325245 A CN 114325245A
Authority
CN
China
Prior art keywords
traveling wave
line
wave data
fault
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210040970.9A
Other languages
English (en)
Other versions
CN114325245B (zh
Inventor
万望龙
王瑞
秦拯
邓名高
张吉昕
欧露
高诗慧
尹键溶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUNAN XIANGNENG SMART ELECTRICAL EQUIPMENT CO Ltd
Hunan University
Original Assignee
HUNAN XIANGNENG SMART ELECTRICAL EQUIPMENT CO Ltd
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUNAN XIANGNENG SMART ELECTRICAL EQUIPMENT CO Ltd, Hunan University filed Critical HUNAN XIANGNENG SMART ELECTRICAL EQUIPMENT CO Ltd
Priority to CN202210040970.9A priority Critical patent/CN114325245B/zh
Publication of CN114325245A publication Critical patent/CN114325245A/zh
Application granted granted Critical
Publication of CN114325245B publication Critical patent/CN114325245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Abstract

本发明公开了一种基于行波数据深度学习的输电线路故障选线与定位方法,利用深度学习模型不断迭代,从而自适应调整参数并学习行波数据的特征,计算输电线路组中各条线路之间的差异,选出故障线路;基于选取的故障线路,利用滑动窗口将双端故障行波数据分组,采用孪生神经网络构建双端行波数据相似度匹配模型,根据计算出的最大相似度来获取双端行波数据匹配窗口,从而根据窗口时间比例计算输电线路故障点所在位置。本发明使得行波数据的时序性得到了保障,可更好的使用特征选出故障线路。孪生神经网络根据匹配窗口计算双端行波传递时间比例从而确定故障发生的位置,具有较高的准确性。

Description

基于行波数据深度学习的输电线路故障选线与定位方法
【技术领域】
本发明涉及输电线路技术领域,具体涉及一种基于行波数据深度学习的输电线路故障选线与定位方法。
【背景技术】
输电线路故障会对用电端带来极大的不便,因此,需要快速对输电线路中的故障点进行定位。输电线路故障的定位主要包括两个部分,其中一个部分为判别发生故障的线路,另一个部分为判别故障点在线路中的位置。
相关技术中,输电线路的故障定位方法通常为:根据经验构建数据库,然后预设规则将待判别的线路与数据库中的相关数据进行匹配来确定发生故障的线路,然后基于双端匹配法计算故障点的位置。但是该种故障定位方法存在以下两个不足:(1)输电线路发生故障时,故障线路会对其他同组线路产生电磁干扰,使得选取的故障线路容易出现偏差;(2)故障线路中行波数据传递时因能量损耗,使得双端行波数据因能量损耗不同步导致大量信号损失,从而造成匹配不准确的问题。
因此,有必要提供一种基于行波数据深度学习的输电线路故障选线与定位方法以解决上述问题。
【发明内容】
本发明要解决的技术问题是在于提供一种基于行波数据深度学习的输电线路故障选线与定位方法以解决上述问题,可以提高故障点及故障位置的匹配准确性。
为实现上述目的,本发明的技术方案为:
一种基于行波数据深度学习的输电线路故障选线与定位方法,包括如下步骤:
S1:获取多个输电线路组的时序行波数据,对所述时序行波数据标注标签后形成数据集,将所述数据集分为训练集和测试集;
S2:提取所述数据集的特征,然后将提取的特征及其标签送入循环神经网络模型进行多次迭代训练,将训练好的模型采用所述测试集进行测试,得到输电线路故障选线模型;
S3:针对任意线路组内的线路故障,采用所述输电线路故障选线模型确定故障线路,然后将故障线路的行波数据两等分形成两个滑动窗口,逐渐减小其中一个所述滑动窗口的大小,此时另外一个滑动窗口的大小对应增加,确保两个滑动窗口完全包含所述故障线路的全部行波数据,将两个所述滑动窗口的行波数据分别送入孪生神经网络模型的两个子网络中输出对应的表征,计算两个表征的欧式距离,得到两个所述滑动窗口行波数据的相似程度,当两个所述滑动窗口的相似程度达到最大时,则此时两个所述滑动窗口相接位置所对应的点即为线路故障点;
S4:分别记录线路两端接收到故障点信号的时间,计算两个接收时间的比值,即为线路故障点分别到故障线路两端的距离比值,确定线路故障点的具体位置。
优选的,所述时序行波数据为电流行波数据或电压行波数据。
优选的,所述输电线路组中包含若干条正常线路和一条故障线路,标注的过程是为了每条线路的时序行波数据打上标签,故障线路标记为1,正常线路标记为0。
优选的,所述数据集中训练集与测试集的比例为8:2。
优选的,提取的特征包括行波数据的平均欧式偏离度、平均差分偏离度、最大欧式偏离度、最小欧式偏离度,最大差分偏离度及最小差分偏离度。
优选的,所述步骤S2中“提取所述数据集的特征”具体为:
在提取特征之前,需要计算输电线路组中各线路的欧式距离Si,形成集合S={S1,S2…Si…Sn},任意线路i的欧式距离Si等于该条线路与其他所有线路的欧式距离之和;
任意线路i的欧式偏离度是计算除Si和集合S中的最大值外,集合S中其他数值相比于Si的偏离度,欧式偏离度Xi表示为:
Figure BDA0003470193860000021
式中,n表示输电线路组中线路的数量;
计算所述输电线路中所有线路的欧式偏离度,形成集合X={X1,X2…Xi…Xn},则平均欧式偏离度为average(X1,X2…Xi…Xn),最大欧式偏离度为max(X1,X2…Xi…Xn),最小欧式偏离度特征为min(X1,X2…Xi…Xn);
计算输电线路组中各输电线路行波数据中最大值与最小值的差值,形成集合C={C1,C2…Ci…Cn};任意线路i的差分偏离度是计算除Ci和集合C中的最大值外,集合C中其他数值相比于Ci的偏离度,差分偏离度Zi表示为:
Figure BDA0003470193860000031
计算所述输电线路中所有线路的差分偏离度,形成集合Z={Z1,Z2…Zi…Zn},则平均差分偏离度为average(Z1,Z2…Zi…Zn),最大差分偏离度为max(Z1,Z2…Zi…Zn),最小欧式偏离度特征为min(Z1,Z2…Zi…Zn)。
优选的,所述循环神经网络模型包括输入层,两个隐藏层和一个输出层组成,隐藏层分别使用relu函数,sigmoid函数激活,输出层使用softmax函数激活;将提取的特征及其标签送入所述输入层,从所述输出层输出线路的分类预测标签,将线路的真实标签与模型的预测标签相对比,采用大量数据进行训练,计算模型的准确率,保存测试准确率最高的模型,该模型作为输电线路故障选线模型。
优选的,所述孪生神经网络模型中两个子网络相同,具有相同的参数和权重,每个子网络均包括两个卷积层、最大值池化层、flatten层及全连接层,各层都使用relu函数作为激活函数,通过最小化损失函数值来学习优化模型的所有参数,最小化损失函数的计算公式为:
Figure BDA0003470193860000032
其中N表示样本数量,Y表示标签,即相似为0,不相似为1,Ew表示两个样本的欧式距离,m表示不相似样本的距离阈值,即两个不相似样本的距离范围为[0,m],超过m时,两个不相似样本的loss可以看作0,根据标签的不同,在网络计算过程中,loss影响因素会随着变化:
当Y=1时,
Figure BDA0003470193860000033
通过减小Ew使得相似样本距离变小;
当Y=0时,
Figure BDA0003470193860000034
通过增大Ew使得不相似样本距离变大。
与相关技术相比,本发明利用深度学习的循环神经网络模型对输电线路进行故障选线,保留了上下文的状态信息,从而使得行波数据的时序性得到了保障,可更好的使用特征选出故障线路。孪生神经网络将窗口大小相等的故障线路双端行波数据进行时序特征最大相似度匹配,根据匹配窗口计算双端行波传递时间比例从而确定故障发生的位置,可以对故障点的位置进行精确定位。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明提供的一种基于行波数据深度学习的输电线路故障选线与定位方法的步骤流程图。
【具体实施方式】
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明的上述目的、特征和优点能够更加明显易懂,下面结合本申请的附图对本发明的具体实施方式作进一步的说明。
请结合参阅图1,本发明提供一种基于行波数据深度学习的输电线路故障选线与定位方法,包括如下步骤:
S1:获取多个输电线路组的时序行波数据,对所述时序行波数据标注标签后形成数据集,将所述数据集分为训练集和测试集。
所述时序行波数据为电流行波数据或电压行波数据。
所述输电线路组中包含若干条正常线路和一条故障线路,标注的过程是为了每条线路的时序行波数据打上标签,故障线路标记为1,正常线路标记为0,标注的过程可以由人工手动进行。
所述数据集可以用矩阵的形式表示,其中矩阵的列表示同一线路在不同采样时间下的行波数据;矩阵的行表示同一采样时间下不同线路的行波数据;矩阵的列数表示输电线路组中线路的数量,矩阵的行数表示采样时间的节点个数。
所述数据集中,训练集与测试集的比例为8:2。
S2:提取所述数据集的特征,然后将提取的特征及其标签送入循环神经网络模型进行多次迭代训练,将训练好的模型采用所述测试集进行测试,得到输电线路故障选线模型。
提取的特征包括行波数据的平均欧式偏离度、平均差分偏离度、最大欧式偏离度、最小欧式偏离度,最大差分偏离度及最小差分偏离度。
在提取特征之前,需要计算输电线路组中各线路的欧式距离Si,形成集合S={S1,S2…Si…Sn},任意线路i的欧式距离Si等于该条线路与其他所有线路的欧式距离之和。
任意线路i的欧式偏离度是计算除Si和集合S中的最大值外,集合S中其他数值相比于Si的偏离度,欧式偏离度Xi表示为:
Figure BDA0003470193860000051
式中,n表示输电线路组中线路的数量。
计算所述输电线路中所有线路的欧式偏离度,形成集合X={X1,X2…Xi…Xn},则平均欧式偏离度为average(X1,X2…Xi…Xn),最大欧式偏离度为max(X1,X2…Xi…Xn),最小欧式偏离度特征为min(X1,X2…Xi…Xn)。
计算输电线路组中各输电线路行波数据中最大值与最小值的差值,形成集合C={C1,C2…Ci…Cn};任意线路i的差分偏离度是计算除Ci和集合C中的最大值外,集合C中其他数值相比于Ci的偏离度,差分偏离度Zi表示为
Figure BDA0003470193860000052
计算所述输电线路中所有线路的差分偏离度,形成集合Z={Z1,Z2…Zi…Zn},则平均差分偏离度为average(Z1,Z2…Zi…Zn),最大差分偏离度为max(Z1,Z2…Zi…Zn),最小欧式偏离度特征为min(Z1,Z2…Zi…Zn)。
所述循环神经网络模型包括输入层,两个隐藏层和一个输出层组成。隐藏层分别使用relu函数,sigmoid函数激活,输出层使用softmax函数激活。将提取的特征及其标签送入所述输入层,从所述输出层输出线路的分类预测标签,将线路的真实标签与模型的预测标签相对比,采用大量数据进行训练,计算模型的准确率,保存测试准确率最高的模型,该模型作为输电线路故障选线模型。
S3:针对任意线路组内的线路故障,采用所述输电线路故障选线模型确定故障线路,然后将故障线路的行波数据两等分形成两个滑动窗口,逐渐减小其中一个所述滑动窗口的大小,此时另外一个滑动窗口的大小对应增加,确保两个滑动窗口完全包含所述故障线路的全部行波数据,将两个所述滑动窗口的行波数据分别送入孪生神经网络模型的两个子网络中输出对应的表征,计算两个表征的欧式距离,得到两个所述滑动窗口行波数据的相似程度,当两个所述滑动窗口的相似程度达到最大时,则此时两个所述滑动窗口相接位置所对应的点即为线路故障点。
当线路上发生故障后,故障点会向线路的两端发送信号,由于故障点与线路两端的距离并不一样相同,并且信号在传播过程中会存在一定的衰减,因此在线路的两端采集到的故障点的行波数据会存在一定的差异。此时,在线路的双端行波数据上设置两个滑动窗口,当两个滑动窗口相接的位置正好位于故障点时,此时两个滑动窗口内行波数据的相似程度最高。
所述孪生神经网络模型中两个子网络相同,具有相同的参数和权重。每个子网络均包括两个卷积层、最大值池化层、flatten层及全连接层,各层都使用relu函数作为激活函数。通过最小化损失函数值来学习优化模型的所有参数,最小化损失函数的计算公式为:
Figure BDA0003470193860000061
其中N表示样本数量,Y表示标签,即相似为0,不相似为1,Ew表示两个样本的欧式距离,m表示不相似样本的距离阈值,即两个不相似样本的距离范围为[0,m],超过m时,两个不相似样本的loss可以看作0。根据标签的不同,在网络计算过程中,loss影响因素会随着变化:
当Y=1时,
Figure BDA0003470193860000062
通过减小Ew使得相似样本距离变小。
当Y=0时,
Figure BDA0003470193860000071
通过增大Ew使得不相似样本距离变大。
S4:分别记录线路两端接收到故障点信号的时间,计算两个接收时间的比值,即为线路故障点分别到故障线路两端的距离比值,确定线路故障点的具体位置。
故障点信号向故障线路两端的传播速度是相同的,根据距离=时间·速度,当速度相同时,距离与时间是呈正比的,因此故障点信号到故障线路两端的时间比值即为故障点到故障线路两端的距离比值,再结合故障线路的总长度,即可得到故障点到故障线路任意一端的距离,完成故障点的定位。
与相关技术相比,本发明利用深度学习的循环神经网络模型对输电线路进行故障定位,保留了上下文的状态信息,从而使得行波数据的时序性得到了保障,可更好的使用特征选出故障线路。孪生神经网络将窗口大小相等的故障线路双端行波数据进行时序特征最大相似度匹配,根据匹配窗口计算双端行波传递时间比例从而确定故障发生的位置,可以对故障点的位置进行精确定位。
以上对本发明的实施方式作出详细说明,但本发明不局限于所描述的实施方式。对本领域的技术人员而言,在不脱离本发明的原理和精神的情况下对这些实施例进行的多种变化、修改、替换和变型均仍落入在本发明的保护范围之内。

Claims (8)

1.一种基于行波数据深度学习的输电线路故障选线与定位方法,其特征在于,包括如下步骤:
S1:获取多个输电线路组的时序行波数据,对所述时序行波数据标注标签后形成数据集,将所述数据集分为训练集和测试集;
S2:提取所述数据集的特征,然后将提取的特征及其标签送入循环神经网络模型进行多次迭代训练,将训练好的模型采用所述测试集进行测试,得到输电线路故障选线模型;
S3:针对任意线路组内的线路故障,采用所述输电线路故障选线模型确定故障线路,然后将故障线路的行波数据两等分形成两个滑动窗口,逐渐减小其中一个所述滑动窗口的大小,此时另外一个滑动窗口的大小对应增加,确保两个滑动窗口完全包含所述故障线路的全部行波数据,将两个所述滑动窗口的行波数据分别送入孪生神经网络模型的两个子网络中输出对应的表征,计算两个表征的欧式距离,得到两个所述滑动窗口行波数据的相似程度,当两个所述滑动窗口的相似程度达到最大时,则此时两个所述滑动窗口相接位置所对应的点即为线路故障点;
S4:分别记录线路两端接收到故障点信号的时间,计算两个接收时间的比值,即为线路故障点分别到故障线路两端的距离比值,确定线路故障点的具体位置。
2.根据权利要求1所述的基于行波数据深度学习的输电线路故障选线与定位方法,其特征在于,所述时序行波数据为电流行波数据或电压行波数据。
3.根据权利要求1所述的基于行波数据深度学习的输电线路故障选线与定位方法,其特征在于,所述输电线路组中包含若干条正常线路和一条故障线路,标注的过程是为了每条线路的时序行波数据打上标签,故障线路标记为1,正常线路标记为0。
4.根据权利要求1所述的基于行波数据深度学习的输电线路故障选线与定位方法,其特征在于,所述数据集中训练集与测试集的比例为8:2。
5.根据权利要求1所述的基于行波数据深度学习的输电线路故障选线与定位方法,其特征在于,提取的特征包括行波数据的平均欧式偏离度、平均差分偏离度、最大欧式偏离度、最小欧式偏离度,最大差分偏离度及最小差分偏离度。
6.根据权利要求5所述的基于行波数据深度学习的输电线路故障选线与定位方法,其特征在于,所述步骤S2中“提取所述数据集的特征”具体为:
在提取特征之前,需要计算输电线路组中各线路的欧式距离Si,形成集合S={S1,S2…Si…Sn},任意线路i的欧式距离Si等于该条线路与其他所有线路的欧式距离之和;
任意线路i的欧式偏离度是计算除Si和集合S中的最大值外,集合S中其他数值相比于Si的偏离度,欧式偏离度Xi表示为:
Figure FDA0003470193850000021
式中,n表示输电线路组中线路的数量;
计算所述输电线路中所有线路的欧式偏离度,形成集合X={X1,X2…Xi…Xn},则平均欧式偏离度为average(X1,X2…Xi…Xn),最大欧式偏离度为max(X1,X2…Xi…Xn),最小欧式偏离度特征为min(X1,X2…Xi…Xn);
计算输电线路组中各输电线路行波数据中最大值与最小值的差值,形成集合C={C1,C2…Ci…Cn};任意线路i的差分偏离度是计算除Ci和集合C中的最大值外,集合C中其他数值相比于Ci的偏离度,差分偏离度Zi表示为:
Figure FDA0003470193850000022
计算所述输电线路中所有线路的差分偏离度,形成集合Z={Z1,Z2…Zi…Zn},则平均差分偏离度为average(Z1,Z2…Zi…Zn),最大差分偏离度为max(Z1,Z2…Zi…Zn),最小欧式偏离度特征为min(Z1,Z2…Zi…Zn)。
7.根据权利要求1所述的基于行波数据深度学习的输电线路故障选线与定位方法,其特征在于,所述循环神经网络模型包括输入层,两个隐藏层和一个输出层组成,隐藏层分别使用relu函数,sigmoid函数激活,输出层使用softmax函数激活;将提取的特征及其标签送入所述输入层,从所述输出层输出线路的分类预测标签,将线路的真实标签与模型的预测标签相对比,采用大量数据进行训练,计算模型的准确率,保存测试准确率最高的模型该模型作为输电线路故障选线模型。
8.根据权利要求1所述的基于行波数据深度学习的输电线路故障选线与定位方法,其特征在于,所述孪生神经网络模型中两个子网络相同,具有相同的参数和权重,每个子网络均包括两个卷积层、最大值池化层、flatten层及全连接层,各层都使用relu函数作为激活函数,通过最小化损失函数值来学习优化模型的所有参数,最小化损失函数的计算公式为:
Figure FDA0003470193850000031
其中N表示样本数量,Y表示标签,即相似为0,不相似为1,Ew表示两个样本的欧式距离,m表示不相似样本的距离阈值,即两个不相似样本的距离范围为[0,m],超过m时,两个不相似样本的loss可以看作0,根据标签的不同,在网络计算过程中,loss影响因素会随着变化:
当Y=1时,
Figure FDA0003470193850000032
通过减小Ew使得相似样本距离变小;
当Y=0时,
Figure FDA0003470193850000033
通过增大Ew使得不相似样本距离变大。
CN202210040970.9A 2022-01-14 2022-01-14 基于行波数据深度学习的输电线路故障选线与定位方法 Active CN114325245B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210040970.9A CN114325245B (zh) 2022-01-14 2022-01-14 基于行波数据深度学习的输电线路故障选线与定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210040970.9A CN114325245B (zh) 2022-01-14 2022-01-14 基于行波数据深度学习的输电线路故障选线与定位方法

Publications (2)

Publication Number Publication Date
CN114325245A true CN114325245A (zh) 2022-04-12
CN114325245B CN114325245B (zh) 2023-07-14

Family

ID=81026716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210040970.9A Active CN114325245B (zh) 2022-01-14 2022-01-14 基于行波数据深度学习的输电线路故障选线与定位方法

Country Status (1)

Country Link
CN (1) CN114325245B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114609479A (zh) * 2022-05-09 2022-06-10 广东电网有限责任公司珠海供电局 故障定位方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043116A (zh) * 2011-01-19 2011-05-04 华北电力大学(保定) 电网故障点定位方法
US20120006117A1 (en) * 2010-07-10 2012-01-12 Kordon Ulrich Method and Apparatus for Locating Cable Faults
CN105738770A (zh) * 2016-04-01 2016-07-06 昆明理工大学 一种基于故障行波沿线分布特性的线缆混合线路单端行波测距方法
US20170089971A1 (en) * 2015-08-13 2017-03-30 State Grid Corporation Of China Fault Point Locating Method of Hybrid Lines Based on Analysis of Comprehensive Characteristics of Single-end Electric Quantity and Transient Travelling Waves
CN106600452A (zh) * 2016-11-11 2017-04-26 国网新疆电力公司巴州供电公司 基于时间分析矩阵及聚类分析的配电网行波故障定位方法
CN107247219A (zh) * 2017-07-27 2017-10-13 云南电网有限责任公司 一种基于波形相似性的高压输电线路故障位置判定方法
US20190056436A1 (en) * 2016-05-13 2019-02-21 Hitachi, Ltd. Similarity detection of abnormal waveforms using pmu measurement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120006117A1 (en) * 2010-07-10 2012-01-12 Kordon Ulrich Method and Apparatus for Locating Cable Faults
CN102043116A (zh) * 2011-01-19 2011-05-04 华北电力大学(保定) 电网故障点定位方法
US20170089971A1 (en) * 2015-08-13 2017-03-30 State Grid Corporation Of China Fault Point Locating Method of Hybrid Lines Based on Analysis of Comprehensive Characteristics of Single-end Electric Quantity and Transient Travelling Waves
CN105738770A (zh) * 2016-04-01 2016-07-06 昆明理工大学 一种基于故障行波沿线分布特性的线缆混合线路单端行波测距方法
US20190056436A1 (en) * 2016-05-13 2019-02-21 Hitachi, Ltd. Similarity detection of abnormal waveforms using pmu measurement
CN106600452A (zh) * 2016-11-11 2017-04-26 国网新疆电力公司巴州供电公司 基于时间分析矩阵及聚类分析的配电网行波故障定位方法
CN107247219A (zh) * 2017-07-27 2017-10-13 云南电网有限责任公司 一种基于波形相似性的高压输电线路故障位置判定方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAMIDI, RJ: "Traveling-Wave Detection Technique Using Short-Time Matrix Pencil Method", IEEE TRANSACTIONS ON POWER DELIVERY *
SHERRIT, S.ETC: "Acoustic sensor network for planetary exploration", CONFERENCE ON SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS *
童晓阳等: "基于改进DTW的行波波形相似性的高压直流输电线路保护方案", 中国电机工程学报 *
韩思雨: "故障指示器系统中的中心站故障定位算法研究", 中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114609479A (zh) * 2022-05-09 2022-06-10 广东电网有限责任公司珠海供电局 故障定位方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN114325245B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
CN111898634B (zh) 一种基于深度对抗域自适应的智能故障诊断方法
CN110162018B (zh) 基于知识蒸馏与隐含层共享的增量式设备故障诊断方法
Zhang et al. A fault diagnosis method for wind turbines gearbox based on adaptive loss weighted meta-ResNet under noisy labels
CN111368920B (zh) 基于量子孪生神经网络的二分类方法及其人脸识别方法
CN110222748B (zh) 基于1d-cnn多域特征融合的ofdm雷达信号识别方法
CN107944410B (zh) 一种基于卷积神经网络的跨领域面部特征解析方法
CN111612051B (zh) 一种基于图卷积神经网络的弱监督目标检测方法
CN112101085B (zh) 一种基于重要性加权域对抗自适应的智能故障诊断方法
CN111143567B (zh) 一种基于改进神经网络的评论情感分析方法
CN110417694A (zh) 一种通信信号调制方式识别方法
CN115563536A (zh) 基于子域自适应的滚动轴承故障诊断方法
CN113486578A (zh) 一种工业过程中设备剩余寿命的预测方法
CN114218292A (zh) 一种多元时间序列相似性检索方法
CN111553186A (zh) 一种基于深度长短时记忆网络的电磁信号识别方法
CN111340076A (zh) 一种对新体制雷达目标未知模式的零样本识别方法
CN115270872A (zh) 雷达辐射源个体小样本学习识别方法、系统、装置及介质
CN114325245A (zh) 基于行波数据深度学习的输电线路故障选线与定位方法
CN112784872A (zh) 一种基于开放集联合迁移学习的跨工况故障诊断方法
CN112000689A (zh) 一种基于文本分析的多知识图谱融合方法
Mudronja et al. Data-based modelling of significant wave height in the Adriatic sea
CN115800274B (zh) 一种5g配电网馈线自动化自适应方法、装置及存储介质
CN116800202A (zh) 基于参数辨识的光伏组件故障诊断方法和系统
CN113496255B (zh) 基于深度学习与决策树驱动的配电网混合观测布点方法
CN114814776A (zh) 基于图注意力网络和迁移学习的pd雷达目标检测方法
CN113869238A (zh) 一种认知车联网智能频谱感知方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant