CN114323590A - 一种红外光学系统mtf测试系统及其方法 - Google Patents

一种红外光学系统mtf测试系统及其方法 Download PDF

Info

Publication number
CN114323590A
CN114323590A CN202111666386.6A CN202111666386A CN114323590A CN 114323590 A CN114323590 A CN 114323590A CN 202111666386 A CN202111666386 A CN 202111666386A CN 114323590 A CN114323590 A CN 114323590A
Authority
CN
China
Prior art keywords
mtf
optical system
slit
infrared
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111666386.6A
Other languages
English (en)
Inventor
李旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN202111666386.6A priority Critical patent/CN114323590A/zh
Publication of CN114323590A publication Critical patent/CN114323590A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明提供一种红外光学系统MTF测试系统,包括:目标发生器、平行光管、载物台、信号接收器和电控系统;载物台用于固定被测光学系统;平行光管用于将红外目标投射到被测光学系统的入曈处;目标发生器产生红外目标后,红外目标经过平行光管的反射后通过被测光学系统,被信号接收器接收后生成红外光强信号,并将红外光强信号传输至电控系统;电控系统用于对测试系统进行控制和对红外光强信号进行处理,最终得到被测光学系统的MTF值。本发明采用倾斜狭缝作为目标靶,既解决了传统星点靶标测试光强不足的问题,又解决了直线狭缝靶标的欠采样问题,进一步提高了测试精度和准确度。

Description

一种红外光学系统MTF测试系统及其方法
技术领域
本发明涉及光学测试技术领域,特别涉及一种红外光学系统MTF测试系统及其方法。
背景技术
红外光学系统利用一切物体都具有红外线辐射的特点,进一步扩展了人类的视觉范围,广泛应用于天文观测、航空航天遥感、国防安全、灾害预警、汽车安全、及自动驾驶等领域。近红外光谱(NIR,1.0μm-2.5μm)是分析化学领域迅猛发展的高新技术,被誉为分析“巨人”。中波(3.0μm-5.0μm)及长波(8.0μm-12.0μm)红外光谱区内,在军事方面的应用更为普遍,无论是光电经纬仪、航空航天遥感相机等观测侦察设备还是光学瞄准镜、导弹导引头等武器系统均离不开红外光学系统的支持。
光学传递函数OTF(Optical Transfer Function)是以谐波分析和频率滤波的观点来进行光学系统像质评价的,它具有检测准确、客观、快速等优点,故从上世纪80年代开始,光学传递函数已广泛应用于光学成像系统的检测和评价等领域。调制传递函数MTF(Module Transfer Function)是光学传递函数的模量,是目前国际公认的光学系统成像性能核心评价指标。MTF值的高低将直接关系到光学系统成像质量的优劣。它能把衍射、像差及杂散光等影响成像质量的各种因素综合在一起,客观的评价光学系统的综合性能。MTF测试既适用于光学系统的设计阶段,也适用于光学仪器的装调、检验阶段,且具有普遍适用性。
因此,建立一套高效、可行、准确的红外光学系统MTF测试方法将有力提升我国红外光学系统的研制水平,在光学设计、加工、装调、检测全流程提供测试保障。
发明内容
鉴于上述问题,本发明提出一种红外光学系统MTF测试方法。采用倾斜狭缝作为目标靶,既解决了传统星点靶标测试光强不足的问题,又解决了直线狭缝靶标的欠采样问题,进一步提高了测试精度和准确度。
为实现上述目的,本发明采用以下具体技术方案:
本发明提供的一种红外光学系统MTF测试系统,包括:目标发生器、平行光管、载物台、信号接收器和电控系统;
载物台用于固定被测光学系统;
平行光管用于将红外目标投射到被测光学系统的入曈处;
目标发生器产生红外目标后,红外目标经过平行光管的反射后通过被测光学系统,被信号接收器接收后生成红外光强信号,并将红外光强信号传输至电控系统;
电控系统用于对测试系统进行控制和对红外光强信号进行处理,最终得到被测光学系统的MTF值。
优选地,平行光管包括主镜和次镜;
红外目标依次经过次镜和主镜的反射后进入被测光学系统。
优选地,目标发生器产生不同形状、不同入射能量、不同光谱分布的红外目标。
本发明还提供一种红外光学系统MTF测试方法,包括以下步骤:
S1、通过狭缝为被测光学系统提供线光源;
S2、根据线光源在探测器像面上的亮度分布得到被测光学系统的线扩散函数LSF;
S3、通过对线扩散函数LSF进行傅里叶变换得到被测光学系统的光学传递函数MTFmeasure
S4、根据狭缝的宽度对光学传递函数MTFmeasure进行校正得到被测光学系统的最终光学传递函数MTFsystem
优选地,步骤S3中光学传递函数MTFmeasure的计算过程为:
Figure BDA0003448402260000031
Figure BDA0003448402260000032
其中,d为狭缝的宽度,I(x)为狭缝像,M为平行光管和被测光学系统的联合放大倍率,f为空间频率,i为虚数单位,H(f)为狭缝像I(x)的傅里叶变换,H(0)为狭缝宽度为Md的傅里叶变换。
优选地,步骤S4包括以下子步骤:
S401、根据狭缝的宽度通过对矩形函数进行傅里叶变换得到狭缝的光学传递函数MTFslit
MTFslit=sinc(df) (3)
S402、根据狭缝的光学传递函数MTFslit对被测光学系统的光学传递函数MTFsystem进行校正;
校正后的被测光学系统的光学传递函数MTFsystem表示为:
Figure BDA0003448402260000033
其中,MTFmeasure为测试得到的被测光学系统的MTF值,MTFslit为狭缝的MTF值。
优选地,狭缝为倾斜狭缝。
与现有的技术相比,本发明采用倾斜狭缝作为目标靶,既解决了传统星点靶标测试光强不足的问题,又解决了直线狭缝靶标的欠采样问题,进一步提高了测试精度和准确度。
附图说明
图1是根据本发明实施例提供的红外光学系统MTF测试系统示意图。
图2是根据本发明实施例提供的红外光学系统MTF测试系统组成图。
图3是根据本发明实施例提供的红外光学系统MTF测试系统的光路示意图。
图4是根据本发明实施例提供的红外光学系统MTF测试系统的工作原理示意图。
图5是根据本发明实施例提供的红外光学系统MTF测试方法的流程图。
其中的附图标记包括:目标发生器1、主镜2-1、次镜2-2、被测光学系统3、信号接收器4和电控系统5。
具体实施方式
在下文中,将参考附图描述本发明的实施例。在下面的描述中,相同的模块使用相同的附图标记表示。在相同的附图标记的情况下,它们的名称和功能也相同。因此,将不重复其详细描述。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,而不构成对本发明的限制。
图1示出了根据本发明实施例提供的红外光学系统MTF测试系统。
图2示出了根据本发明实施例提供的红外光学系统MTF测试系统的组成图。
如图1和图2所示,本发明实施例提供的红外光学系统MTF测试系统包括:目标发生器1、主镜2-1、次镜2-2、被测光学系统3、信号接收器4和电控系统5。
目标投射系统包括:目标发生器1和平行光管。
目标发生器1用于产生测试光学传递函数的红外目标,目标发生器1包括:信号调制器、源扫描机构和程控电源。可模拟不同形状、不同入射能量、不同光谱分布的红外目标。
平行光管包括主镜2-1和次镜2-2。平行光管用于将目标发生器产生的红外目标投射到被测光学系统3的入曈处。
测试系统中平行光管采用离轴抛物面反射式光学系统,主镜口径为400mm,焦距4m。这种结构可以有效的减小光管整体尺寸,但对装调精度要求较高,实现高精度的装配要求,是保证测试精度的关键。
为实现平行光管波像差达到预期值,采用计算机辅助装调技术。即使用大口径平面反射镜与待装调平行光管、干涉仪构成封闭检测、装调系统,通过计算机对干涉条纹的实时处理得到平行光管0视场及±1视场的波像差信息。并使用ZAMEX软件,通过阻尼最小二乘法求解系统灵敏度矩阵,计算得到平行光管主、次镜的失调量,逐次逼近系统的最佳波像差位置完成平行光管的装调。
被测光学系统3通过载物台进行固定,载物台包括:转台、调节机构和三爪定心卡盘。可实现被测光学系统3的俯仰、偏摆、升降调节,同时能够利用载物台的旋转来测试不同视场角的参数。
信号接收器4包括:显微物镜、红外探测器和三维调整机构。信号接收器4用于接收通过被测光学系统3的目标像,生成红外光强信号,并传输至电控系统5。
电控系统5包括:主控计算机和控制器。电控系统5用于实现系统各运动组件的控制,以及信号的处理,测试结果的计算、显示和保存。
图3示出了根据本发明实施例提供的红外光学系统MTF测试系统的光路。
图4示出了根据本发明实施例提供的红外光学系统MTF测试系统的工作原理。
如图3和图4所示,目标发生器1产生测试光学传递函数的红外目标,红外目标依次经过次镜2-2和主镜2-1的反射后进入被测光学系统3,被信号接收器4接收,生成红外光强信号,并传输至电控系统5。
同时,红外目标进行匀速扫描运动。在红外目标扫描过程中,信号接收器4不断地将接收到的红外光强信号通过接口实时传送至电控系统5,电控系统5对采集到的红外目标图像红外光强信号进行分析处理,并通过光学参数测试算法解算出光学传递函数测试值。
图5示出了根据本发明实施例提供的红外光学系统MTF测试方法的流程图。
如图5所示,本发明实施例提供的红外光学系统MTF测试方法包括以下步骤:
S1、通过狭缝为被测光学系统提供线光源。
S2、根据线光源在探测器像面上的亮度分布得到线扩散函数LSF。
测试方法采用狭缝法对红外光学系统MTF进行测试。通过狭缝靶标为成像系统提供线光源的输入,其在探测器像面上的亮度分布就是线扩散函数(LSF)。
S3、通过对线扩散函数LSF进行傅里叶变换得到垂直于狭缝方向上的光学传递函数MTF。
由于线光源可以等效为点光源沿狭缝方向的集合,因此通过对LSF的傅里叶变换便可以求得垂直于狭缝方向上的MTF数值。
设狭缝的宽度为d,狭缝像为I(x),M为平行光管和被测光学系统的联合放大倍率,f为空间频率,i为虚数单位,则根据傅里叶光学理论,光学传递函数MTFmeasure(f)按照以下两式进行计算:
Figure BDA0003448402260000061
Figure BDA0003448402260000062
其中,H(f)为狭缝像I(x)的傅里叶变换,H(0)为狭缝宽度为Md的傅里叶变换。
利用狭缝靶标测试红外光学系统的MTF其主要优点在于:狭缝靶所提供的能量要多于星点靶,这对成像系统的测试是有利的。但是,受探测器离散像元的影响,成像系统往往会出现欠采样的问题,影响系统MTF的测试精度。
对此,在实际测试中将采用倾斜狭缝靶标的方法来提高数据的采样率。采用倾斜狭缝测试时,所有像元将倾斜地投影到垂直于狭缝的方向上,各个像元之间出现错位,从而提高了采样频率。
S4、根据狭缝的宽度对被测光学系统的光学传递函数MTFmeasure进行校正。
步骤S4包括以下子步骤:
S401、根据狭缝的宽度通过对矩形函数进行傅里叶变换得到狭缝的光学传递函数MTFslit
设狭缝的宽度为d,则通过对矩形函数进行傅里叶变换处理,狭缝的光学传递函数MTFslit可以表示为:
MTFslit=sinc(df) (3)
其中,f为空间频率。
由上式可知,在选择狭缝的宽度时,应使得MTFslit的截止频率大于MTFmeasure的截止频率,以保证狭缝的宽度不会对系统的测试结果产生较大影响。
S402、根据狭缝的光学传递函数MTFslit对被测光学系统的光学传递函数MTFmeasure进行校正。
考虑到测试所需的光能量和狭缝靶标的加工难度,在实际的测试过程中狭缝靶不可能做得无限小,其具有一定宽度。
因此,被测光学系统的最终光学传递函数MTFsystem需要根据狭缝的宽度d来进行校正,可以表示为:
Figure BDA0003448402260000071
其中,MTFsystem为过校正后的被测光学系统的MTF值,MTFmeasure表示狭缝法测试所得的被测光学系统的MTF值,MTFslit表示狭缝靶自身的MTF值。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
以上本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所作出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

Claims (7)

1.一种红外光学系统MTF测试系统,其特征在于,包括:目标发生器、平行光管、载物台、信号接收器和电控系统;
所述载物台用于固定被测光学系统;
所述平行光管用于将所述红外目标投射到所述被测光学系统的入曈处;
所述目标发生器产生红外目标后,所述红外目标经过所述平行光管的反射后通过所述被测光学系统,被所述信号接收器接收后生成红外光强信号,并将所述红外光强信号传输至所述电控系统;
所述电控系统用于对所述测试系统进行控制和对所述红外光强信号进行处理,最终得到所述被测光学系统的MTF值。
2.根据权利要求1所述的红外光学系统MTF测试系统,其特征在于,所述平行光管包括主镜和次镜;
所述红外目标依次经过次镜和主镜的反射后进入所述被测光学系统。
3.根据权利要求1所述的红外光学系统MTF测试系统,其特征在于,所述目标发生器产生不同形状、不同入射能量、不同光谱分布的红外目标。
4.一种红外光学系统MTF测试方法,应用于如权利要求1-3任一项所述的红外光学系统MTF测试系统,其特征在于,包括以下步骤:
S1、通过狭缝为被测光学系统提供线光源;
S2、根据所述线光源在探测器像面上的亮度分布得到被测光学系统的线扩散函数LSF;
S3、通过对所述线扩散函数LSF进行傅里叶变换得到被测光学系统的光学传递函数MTFmeasure
S4、根据所述狭缝的宽度对所述光学传递函数MTFmeasure进行校正得到所述被测光学系统的最终光学传递函数MTFsystem
5.根据权利要求4所述的红外光学系统MTF测试方法,其特征在于,所述步骤S3中光学传递函数MTFmeasure的计算过程为:
Figure FDA0003448402250000021
Figure FDA0003448402250000022
其中,d为狭缝的宽度,I(x)为狭缝像,M为平行光管和被测光学系统的联合放大倍率,f为空间频率,i为虚数单位,H(f)为狭缝像I(x)的傅里叶变换,H(0)为狭缝宽度为Md的傅里叶变换。
6.根据权利要求5所述的红外光学系统MTF测试方法,其特征在于,所述步骤S4包括以下子步骤:
S401、根据所述狭缝的宽度通过对矩形函数进行傅里叶变换得到狭缝的光学传递函数MTFslit
MTFslit=sinc(df) (3)
S402、根据所述狭缝的光学传递函数MTFslit对被测光学系统的光学传递函数MTFsystem进行校正;
校正后的被测光学系统的光学传递函数MTFsystem表示为:
Figure FDA0003448402250000023
其中,MTFmeasure为测试得到的被测光学系统的MTF值,MTFslit为狭缝的MTF值。
7.根据权利要求6所述的红外光学系统MTF测试方法,其特征在于,所述狭缝为倾斜狭缝。
CN202111666386.6A 2021-12-30 2021-12-30 一种红外光学系统mtf测试系统及其方法 Pending CN114323590A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111666386.6A CN114323590A (zh) 2021-12-30 2021-12-30 一种红外光学系统mtf测试系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111666386.6A CN114323590A (zh) 2021-12-30 2021-12-30 一种红外光学系统mtf测试系统及其方法

Publications (1)

Publication Number Publication Date
CN114323590A true CN114323590A (zh) 2022-04-12

Family

ID=81021555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111666386.6A Pending CN114323590A (zh) 2021-12-30 2021-12-30 一种红外光学系统mtf测试系统及其方法

Country Status (1)

Country Link
CN (1) CN114323590A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255230A (ja) * 2000-03-09 2001-09-21 Nippon Sheet Glass Co Ltd レンズアレイの結像位置ずれ評価方法
CN101813558A (zh) * 2010-04-29 2010-08-25 苏州大学 一种测量光学系统调制传递函数的装置及方法
US20130258313A1 (en) * 2012-03-31 2013-10-03 Daniel Orband Image analysis system and methods for ir optics
CN109186759A (zh) * 2018-09-19 2019-01-11 北京空间机电研究所 一种光栅光谱仪像质测量方法和装置
CN110460839A (zh) * 2019-08-15 2019-11-15 中国科学院长春光学精密机械与物理研究所 一种光学测试系统及测试方法
CN113188765A (zh) * 2021-04-23 2021-07-30 长光卫星技术有限公司 一种用于可见光探测器mtf与抗弥散测试的测试系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255230A (ja) * 2000-03-09 2001-09-21 Nippon Sheet Glass Co Ltd レンズアレイの結像位置ずれ評価方法
CN101813558A (zh) * 2010-04-29 2010-08-25 苏州大学 一种测量光学系统调制传递函数的装置及方法
US20130258313A1 (en) * 2012-03-31 2013-10-03 Daniel Orband Image analysis system and methods for ir optics
CN109186759A (zh) * 2018-09-19 2019-01-11 北京空间机电研究所 一种光栅光谱仪像质测量方法和装置
CN110460839A (zh) * 2019-08-15 2019-11-15 中国科学院长春光学精密机械与物理研究所 一种光学测试系统及测试方法
CN113188765A (zh) * 2021-04-23 2021-07-30 长光卫星技术有限公司 一种用于可见光探测器mtf与抗弥散测试的测试系统

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
丁帅: "机载红外小目标探测系统非均匀性校正技术研究", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅱ辑》 *
丁帅: "机载红外小目标探测系统非均匀性校正技术研究", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅱ辑》, no. 08, 15 August 2021 (2021-08-15), pages 45 - 46 *
卞江 等: "红外光电成像系统MTF测试技术分析", 《应用光学》 *
卞江 等: "红外光电成像系统MTF测试技术分析", 《应用光学》, vol. 34, no. 5, 15 September 2013 (2013-09-15), pages 2 *
姚梦远 等: "离轴大口径全反射式平行光管装调技术研究", 天文学报, vol. 60, no. 02, pages 4 *
官明朕: "CCD相机成像系统调制传递函数测量方法的研究", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 *
官明朕: "CCD相机成像系统调制传递函数测量方法的研究", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》, no. 08, 15 August 2016 (2016-08-15), pages 56 - 57 *
袁理 等: "便携式调制传递函数测试仪的研制", 《光学学报》 *
袁理 等: "便携式调制传递函数测试仪的研制", 《光学学报》, vol. 35, no. 11, 10 November 2015 (2015-11-10), pages 3 - 4 *

Similar Documents

Publication Publication Date Title
US8934097B2 (en) Laser beam centering and pointing system
CN104567738A (zh) 光轴平行度精确测量系统及方法
JPH01101432A (ja) 距離シミュレーション光学システム
CN111006855B (zh) 大口径离轴反射式真空平行光管光轴标定方法及装置
CN103471820A (zh) 便携式多光谱光电设备实时标校测试仪
CN109596227A (zh) 一种卷积神经网络先验增强的光学元件中频误差的相位恢复检测系统
CN101520343A (zh) 热红外光谱成像系统装校装置及装校方法
CN104359424B (zh) 一种椭球镜面形检测装置及方法
CN103499433B (zh) 一种用于f‑θ光学系统畸变的标定方法
CN112747904B (zh) 红外传递函数测量仪的装调方法
CN102840964A (zh) 大口径、长焦距平行光管焦点实时监测系统
CN109799672B (zh) 非完善成像镜头的检测装置和方法
CN103868680B (zh) 基于斑点干涉成像的地基望远镜离焦像差探测方法
CN110657952A (zh) 一种用于光电仪器性能检测的通用性设备
Coquand et al. Backward-gazing method for heliostats shape errors measurement and calibration
Tyson et al. LSST optical beam simulator
CN110927116B (zh) 一种测量标记结构的方法、装置及系统
CN105911716A (zh) 一种传函测试中被测镜头的光路调节装置及其调节方法
CN109883656B (zh) 非完善成像镜头的检测装置和方法
Pan et al. FEA based opto-mechanisms design and thermal analysis of a dynamic SFS with an ultra-long exit pupil distance
CN114323590A (zh) 一种红外光学系统mtf测试系统及其方法
CN110657959A (zh) 一种用于光电夜视仪器性能检测的通用性设备
CN103148807A (zh) 外场环境下紫外与可见光双光轴平行性校准装置
CN103105283A (zh) 单光谱大口径长焦距透镜的焦距测量装置
Mieda et al. Multiconjugate adaptive optics simulator for the Thirty Meter Telescope: design, implementation, and results

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination