CN114320799A - 一种固态工质射频离子电推进系统 - Google Patents

一种固态工质射频离子电推进系统 Download PDF

Info

Publication number
CN114320799A
CN114320799A CN202111479371.9A CN202111479371A CN114320799A CN 114320799 A CN114320799 A CN 114320799A CN 202111479371 A CN202111479371 A CN 202111479371A CN 114320799 A CN114320799 A CN 114320799A
Authority
CN
China
Prior art keywords
radio frequency
working medium
power supply
screen grid
solid working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111479371.9A
Other languages
English (en)
Inventor
李兴达
王小军
耿海
吴先明
蒲彦旭
李建鹏
吴辰宸
郭宁
贾连军
孙新锋
吕方伟
贺亚强
岳士超
刘士永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Physics of Chinese Academy of Space Technology
Original Assignee
Lanzhou Institute of Physics of Chinese Academy of Space Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Physics of Chinese Academy of Space Technology filed Critical Lanzhou Institute of Physics of Chinese Academy of Space Technology
Priority to CN202111479371.9A priority Critical patent/CN114320799A/zh
Publication of CN114320799A publication Critical patent/CN114320799A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

本申请涉及航天空间推进技术领域,具体而言,涉及一种固态工质射频离子电推进系统,包括固态工质贮供单元、射频离子推力器、电源、以及控制单元,其中:固态工质贮供单元与射频离子推力器通过气体分配网连接;电源分别与固态工质贮供单元和射频离子推力器电连接,用于向固态工质贮供单元和射频离子推力器供电;控制单元与固态工质贮供单元、射频离子推力器、和电源分别电连接,用于接收固态工质贮供单元以及射频离子推力器的反馈信息,并根据反馈信息调节电源的输出。本申请的固态工质射频离子电推进系统,最大限度的减小了系统体积、提升了系统紧凑度和集成度、提高了推力输出精度和稳定度。

Description

一种固态工质射频离子电推进系统
技术领域
本申请涉及航天空间推进技术领域,具体而言,涉及一种固态工质射频离子电推进系统。
背景技术
与传统卫星相比,微小卫星的质量、尺寸、功率等设计参数受到严格限制,必须采用先进的设计实现卫星的低成本和高功能密度。先进的微小卫星需要先进的电推进系统完成阻尼补偿、轨道升降、位置保持、姿态控制、编队飞行、发射误差修正等任务,随着小卫星的使命增强和工作寿命延长,兼具高效率、高总冲、微推力、高精度连续可调、轻量化、集成化等特性的电推进系统将使得微小卫星的性能大幅提高,也是高性能微小卫星的必然选择。
射频离子推力器具备无电极放电、无需额外磁场约束、电子温度低、双荷离子比例低、栅极上游离子电流密度均匀性好、易于实现束流精确控制等特点。相比于考夫曼离子推力器和霍尔推力器,更易于在保证一定效率的前提下实现集成化、轻量化缩比设计;相比于真空弧推力器、脉冲等离子体推力器等,在微小功率下更容易获得高总冲,实现推力高精度连续可调;对反应气体的不敏感性使其适用于碘工质等新型推进剂,进一步满足微小卫星的低成本、轻量化需求。
目前主流的电推进都采用氙气作为推进剂,但氙气价格昂贵,且一般采用高压超临界贮存,其气瓶也会占用有效载荷的空间,降低整星的功能密度。
因此急需提出一种高性能的电推进系统方案。
发明内容
本申请的主要目的在于提供一种固态工质射频离子电推进系统,最大限度减小系统体积、提升系统紧凑度和集成度、提高推力输出精度和稳定度。
为了实现上述目的,本申请提供了一种固态工质射频离子电推进系统。
根据本申请的固态工质射频离子电推进系统,包括固态工质贮供单元、射频离子推力器、电源、以及控制单元,其中:固态工质贮供单元与射频离子推力器通过气体分配网连接;电源分别与固态工质贮供单元和射频离子推力器电连接,用于向固态工质贮供单元和射频离子推力器供电;控制单元与固态工质贮供单元、射频离子推力器、和电源分别电连接,用于接收固态工质贮供单元以及射频离子推力器的反馈信息,并根据反馈信息调节电源的输出。
进一步的,固态工质贮供单元包括贮罐、固态工质、加热薄膜、温度传感器、压力传感器,其中:贮罐内腔装填固态工质;加热薄膜包裹储罐对储罐进行加热,固态工质受热升华为气态,气态工质经气体分配网进入射频离子推力器;温度传感器设置在加热薄膜上,用于采集储罐的表面温度值;压力传感器贯穿储罐罐壁,用于采集储罐内腔的压力值;控制单元与温度传感器和压力传感器分别电连接,用于接收温度传感器采集的温度信号和压力传感器采集的压力信号。
进一步的,射频离子推力器包括放电腔室、射频线圈、屏栅极、以及加速栅极,其中:放电腔室与储罐内腔通过气体分配网连接,气态工质由储罐内腔经气体分配网进入放电腔室;射频线圈绕放电腔室缠绕,射频线圈在放电腔室内感应产生轴向的磁场和角向的电场;气态工质进入放电腔室后,在感应电磁场作用下发生电离,在放电腔室内形成等离子体,等离子体密度由进入放电腔室的气态工质流率和施加的射频功率大小决定;屏栅极、以及加速栅极并排设置在放电腔室末端,离子在屏栅极和加速栅极的作用下被引出,进而产生推力,推力大小取决于屏栅电流大小,屏栅电流大小由等离子体密度和屏栅电压决定。
进一步的,电源包括,用于为加热薄膜供电的加热电源,用于为屏栅极供电的屏栅电源,用于为加速栅极供电的加速电源,用于匹配等离子体负载的匹配网络以及用于为射频线圈提供射频激励的射频电源;控制单元与加热电源、射频电源、屏栅电源分别电连接,并控制加热电源、射频电源、屏栅电源的输出。
进一步的,屏栅电源线路上安装有用于采集屏栅电流信号的电流传感器;控制单元与电流传感器电连接,用于接收电流传感器采集的屏栅电流信号,并按照算法根据接收的屏栅电流信号实时自动调节射频电源的功率输出和屏栅电源的电压输出,保证屏栅电流稳定不变。
进一步的,控制单元根据接收的温度传感器采集的温度信号和压力传感器采集的压力信号的变化,实时自动调节加热电源的电流输出,保证压力和流率输出稳定不变。
进一步的,屏栅电源施加正电压900~2000V到屏栅极,加速电源施加负电压-300~0V到加速栅极,在屏栅极和加速栅极作用下,放电室内的离子被引出,进而产生推力,推力大小取决于屏栅极电流大小,屏栅极电流大小由等离子体密度和屏栅极电压决定。
进一步的,气体分配网采用绝热材料,避免放电腔室工作时产生的热量传导至贮罐,保证贮罐的温度只受加热薄膜独立控制。
进一步的,气体分配网的小孔均匀分布,保证气态工质均匀进入放电腔室,增加放电效率。
进一步的,传送到放电腔室的气态工质流率与气体分配网的小孔直径和数量以及贮罐内的压力值相关;贮罐内的压力值与贮罐的温度正相关;可以通过标定试验得到对应的关系曲线。给定的气态工质流率,可以通过不同的气体分配网小孔构型及贮罐的温度和压力组合实现。
在本申请实施例中,提供一种固态工质射频离子电推进系统,通过固态工质贮供单元、射频离子推力器、电源、以及控制单元的集成与闭环控制,最大限度减小了系统体积、提升了系统紧凑度和集成度、提高了推力输出精度和稳定度。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,使得本申请的其它特征、目的和优点变得更明显。本申请的示意性实施例附图及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例提供的一种固态工质射频离子电推进系统的系统布置示意图;
图中:11-贮罐、12-固态工质、13-加热薄膜、14-温度传感器、15-压力传感器、21-放电腔室、22-射频线圈、23-屏栅极、24-加速栅极、31-加热电源、32-屏栅电源、33-加速电源、34-射频电源、35-匹配网络、4-控制单元、5-气体分配网、6-电流传感器;
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本申请中的具体含义。
另外,术语“多个”的含义应为两个以及两个以上。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
如图1所示,本申请一种实施例的固态工质射频离子电推进系统,包括固态工质贮供单元、射频离子推力器、电源、以及控制单元4,其中:固态工质贮供单元与射频离子推力器通过气体分配网5连接;电源分别与固态工质贮供单元和射频离子推力器电连接,用于向固态工质贮供单元和射频离子推力器供电;控制单元4与固态工质贮供单元、射频离子推力器、和电源分别电连接,用于接收固态工质贮供单元以及射频离子推力器的反馈信息,并根据反馈信息调节电源的输出。
固态工质12具有很高的存储密度,以碘为例,其与氙的分子质量和电离能相近,且具有很高的固态存储密度和很低的价格,能够大幅提升系统集成度。
本申请的固态工质射频离子电推进系统,通过固态工质贮供单元、射频离子推力器、电源、以及控制单元4的集成与闭环控制,最大限度减小了系统体积、提升了系统紧凑度和集成度、提高了推力输出精度和稳定度;进而解决相关技术中氙气气瓶占用有效载荷空间的技术问题。
在本申请的固态工质射频离子电推进系统的上述实施例中,固态工质贮供单元包括贮罐11、固态工质12、加热薄膜13、温度传感器14、压力传感器15,其中:贮罐11内腔装填固态工质12;加热薄膜13包裹储罐对储罐进行加热,固态工质12受热升华为气态,气态工质经气体分配网5进入射频离子推力器;温度传感器14设置在加热薄膜13上,用于采集储罐的表面温度值;压力传感器15贯穿储罐罐壁,用于采集储罐内腔的压力值;控制单元4与温度传感器14和压力传感器15分别电连接,用于接收温度传感器14采集的温度信号和压力传感器15采集的压力信号。
进一步的,射频离子推力器包括放电腔室21、射频线圈22、屏栅极23、以及加速栅极24,其中:放电腔室21与储罐内腔通过气体分配网5连接,气态工质由储罐内腔经气体分配网5进入放电腔室21;射频线圈22绕放电腔室21缠绕,在放电腔室21内产生感应电磁场;气态工质在感应电磁场作用下发生电离,在放电腔室21内形成等离子体,等离子体密度由进入放电腔室21的气态工质流率和施加的射频功率大小决定;屏栅极23、以及加速栅极24并排设置在放电腔室21末端,离子在屏栅极23和加速栅极24的作用下被引出,进而产生推力。
固态工质贮供单元以及射频离子推力器所包含元器件的布置,如图1所示,是一种优选的布置方式,本领域技术人员也可根据实际进行调整,均属于本申请保护范围。
进一步的,电源包括,用于为加热薄膜13供电的加热电源31,用于为屏栅极23加热的屏栅电源32,用于为加速栅极24供电的加速电源33,用于匹配等离子体负载的匹配网络35以及用于为射频线圈22提供射频激励的射频电源34;控制单元4与加热电源31、射频电源34、屏栅电源32分别电连接,并控制加热电源31、射频电源34、屏栅电源32的输出。
具体的,屏栅电源32线路上安装有用于采集屏栅电流信号的电流传感器6;控制单元4与电流传感器6电连接,用于接收电流传感器6采集的屏栅电流信号,并根据接收的屏栅电流信号实时自动调节射频电源34的功率输出和屏栅电源32的电压输出,保证屏栅电流稳定不变。控制单元4根据接收的温度传感器14采集的温度信号和压力传感器15采集的压力信号的变化,实时自动调节加热电源31的电流输出,保证压力和流率输出稳定不变。
进一步的,屏栅电源32施加正电压900~2000V到屏栅极23,加速电源33施加负电压-300~0V到加速栅极24,在屏栅极23和加速栅极24作用下,放电室内的离子被引出,进而产生推力,推力大小取决于屏栅极电流大小,屏栅极电流大小由等离子体密度和屏栅极电压决定。
进一步的,气体分配网5采用绝热材料,避免放电腔室21工作时产生的热量传导至贮罐11,保证贮罐11的温度只受加热薄膜13独立控制。气体分配网5的小孔均匀分布,保证气态工质均匀进入放电腔室21,增加放电效率。
进一步的,传送到放电腔室21的气态工质流率与气体分配网5的小孔直径和数量以及贮罐11内的压力值相关;贮罐11内的压力值与贮罐11的温度正相关。可以通过标定试验得到对应的关系曲线。气态工质流率,可以通过不同的气体分配网5小孔构型及贮罐11的温度和压力组合实现。
本申请的固态工质射频离子电推进系统,采用闭环控制、集成化设计理念,将固态工质贮供单元与射频离子推力器一体化设计,避免使用阀门和管路进行流率调节,使系统整体结构更为紧凑,大幅降低系统体积。采用闭环控制方法,根据实时采集的温度信号和压力信号,实时调节加热电流,进而精确调节贮罐内部压力,使压力和流率输出保持稳定;根据实时采集的屏栅电流,实时调节射频功率和屏栅极电压,进而精确调节屏栅极电流大小,使屏栅极电流保持高度稳定状态,提进而升推力输出稳定度和宽范围调节精度。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种固态工质射频离子电推进系统,其特征在于,包括:固态工质贮供单元、射频离子推力器、电源、以及控制单元,其中:
所述固态工质贮供单元与所述射频离子推力器通过气体分配网连接;
所述电源分别与所述固态工质贮供单元和所述射频离子推力器电连接,用于向所述固态工质贮供单元和所述射频离子推力器供电;
所述控制单元与所述固态工质贮供单元、所述射频离子推力器、和所述电源分别电连接,用于接收所述固态工质贮供单元以及所述射频离子推力器的反馈信息,并根据反馈信息调节所述电源的输出。
2.如权利要求1所述的固态工质射频离子电推进系统,其特征在于,所述固态工质贮供单元包括贮罐、固态工质、加热薄膜、温度传感器、压力传感器,其中:
所述贮罐内腔装填所述固态工质;
所述加热薄膜包裹所述储罐对所述储罐进行加热,所述固态工质受热升华为气态,气态工质经所述气体分配网进入所述射频离子推力器;
所述温度传感器设置在所述加热薄膜上,用于采集所述储罐的表面温度值;
所述压力传感器贯穿所述储罐罐壁,用于采集所述储罐内腔的压力值;
所述控制单元与所述温度传感器和所述压力传感器分别电连接,用于接收所述温度传感器采集的温度信号和所述压力传感器采集的压力信号。
3.如权利要求2所述的固态工质射频离子电推进系统,其特征在于,所述射频离子推力器包括放电腔室、射频线圈、屏栅极、以及加速栅极,其中:
所述放电腔室与所述储罐内腔通过所述气体分配网连接,气态工质由储罐内腔经所述气体分配网进入所述放电腔室;
所述射频线圈绕所述放电腔室缠绕,在所述放电腔室内产生感应电磁场;气态工质在感应电磁场作用下发生电离,在所述放电腔室内形成等离子体;
所述屏栅极、以及加速栅极并排设置在所述放电腔室末端,离子在所述屏栅极和所述加速栅极的作用下被引出,进而产生推力。
4.如权利要求3所述的固态工质射频离子电推进系统,其特征在于:
所述电源包括,用于为所述加热薄膜供电的加热电源,用于为所述屏栅极供电的屏栅电源,用于为所述加速栅极供电的加速电源,用于匹配等离子体负载的匹配网络以及用于为射频线圈提供射频激励的射频电源;
所述控制单元与所述加热电源、射频电源、屏栅电源分别电连接,并控制所述加热电源、射频电源、屏栅电源的输出。
5.如权利要求4所述的固态工质射频离子电推进系统,其特征在于,
所述屏栅电源线路上安装有用于采集屏栅电流信号的电流传感器;
所述控制单元与所述电流传感器电连接,用于接收所述电流传感器采集的屏栅电流信号,并根据接收的屏栅电流信号调节所述射频电源的功率输出和屏栅电源的电压输出。
6.如权利要求4所述的固态工质射频离子电推进系统,其特征在于,所述控制单元根据接收的所述温度传感器采集的温度信号和所述压力传感器采集的压力信号的变化,调节加热电源的电流输出。
7.如权利要求5所述的固态工质射频离子电推进系统,其特征在于,
所述屏栅电源施加正电压900~2000V到所述屏栅极,所述加速电源施加负电压-300~0V到所述加速栅极,在屏栅极和加速栅极作用下,放电室内的离子被引出,进而产生推力,推力大小取决于屏栅极电流大小,屏栅极电流大小由等离子体密度和屏栅极电压决定。
8.如权利要求3所述的固态工质射频离子电推进系统,其特征在于,所述气体分配网采用绝热材料,避免所述放电腔室工作时产生的热量传导至所述贮罐。
9.如权利要求8所述的固态工质射频离子电推进系统,其特征在于,所述气体分配网的小孔均匀分布,保证气态工质均匀进入所述放电腔室。
10.如权利要求9所述的固态工质射频离子电推进系统,其特征在于,传送到所述放电腔室的气态工质流率与所述气体分配网的小孔直径和数量以及所述贮罐内的压力值相关;所述贮罐内的压力值与贮罐的温度正相关;给定的气态工质流率,可以通过不同的气体分配网小孔构型及贮罐的温度和压力组合实现。
CN202111479371.9A 2021-12-06 2021-12-06 一种固态工质射频离子电推进系统 Pending CN114320799A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111479371.9A CN114320799A (zh) 2021-12-06 2021-12-06 一种固态工质射频离子电推进系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111479371.9A CN114320799A (zh) 2021-12-06 2021-12-06 一种固态工质射频离子电推进系统

Publications (1)

Publication Number Publication Date
CN114320799A true CN114320799A (zh) 2022-04-12

Family

ID=81048043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111479371.9A Pending CN114320799A (zh) 2021-12-06 2021-12-06 一种固态工质射频离子电推进系统

Country Status (1)

Country Link
CN (1) CN114320799A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609363B1 (en) * 1999-08-19 2003-08-26 The United States Of America As Represented By The Secretary Of The Air Force Iodine electric propulsion thrusters
US7400096B1 (en) * 2004-07-19 2008-07-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Large area plasma source
DE102008015824A1 (de) * 2008-03-27 2009-10-01 Henri Dr. Wagner Verfahren und Vorrichtung zur kontrollierten und zuverlässigen Zündung von Plasmabeschleunigern unter Verwendung eines radioaktiven Strahlers
US20160083119A1 (en) * 2014-05-02 2016-03-24 Craig Davidson Thrust Augmentation Systems
US20180023550A1 (en) * 2016-04-07 2018-01-25 Busek Co., Inc. Iodine propellant rf ion thruster with rf cathode
CN209228552U (zh) * 2015-08-31 2019-08-09 综合工科学校 离子推进器、卫星和空间探测器
CN111140450A (zh) * 2019-12-24 2020-05-12 兰州空间技术物理研究所 一种霍尔推力器用碘介质地面供气装置及使用方法
CN112160884A (zh) * 2020-09-24 2021-01-01 上海交通大学 一体式射频离子推进装置
CN113202708A (zh) * 2021-05-16 2021-08-03 兰州空间技术物理研究所 一种离子电推进系统以及在全寿命周期下的工作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609363B1 (en) * 1999-08-19 2003-08-26 The United States Of America As Represented By The Secretary Of The Air Force Iodine electric propulsion thrusters
US7400096B1 (en) * 2004-07-19 2008-07-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Large area plasma source
DE102008015824A1 (de) * 2008-03-27 2009-10-01 Henri Dr. Wagner Verfahren und Vorrichtung zur kontrollierten und zuverlässigen Zündung von Plasmabeschleunigern unter Verwendung eines radioaktiven Strahlers
US20160083119A1 (en) * 2014-05-02 2016-03-24 Craig Davidson Thrust Augmentation Systems
CN209228552U (zh) * 2015-08-31 2019-08-09 综合工科学校 离子推进器、卫星和空间探测器
US20180023550A1 (en) * 2016-04-07 2018-01-25 Busek Co., Inc. Iodine propellant rf ion thruster with rf cathode
CN111140450A (zh) * 2019-12-24 2020-05-12 兰州空间技术物理研究所 一种霍尔推力器用碘介质地面供气装置及使用方法
CN112160884A (zh) * 2020-09-24 2021-01-01 上海交通大学 一体式射频离子推进装置
CN113202708A (zh) * 2021-05-16 2021-08-03 兰州空间技术物理研究所 一种离子电推进系统以及在全寿命周期下的工作方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
张余强: "射频离子电推进系统 PPU研究现状及发展建议", 航天器工程, vol. 29, no. 5, 31 October 2020 (2020-10-31) *
张天平;张雪儿;: "空间电推进技术及应用新进展", 真空与低温, no. 04, 15 December 2013 (2013-12-15) *
王少宁等: "离子推力器栅极放电分析和保护设计", 航天器工程, vol. 23, no. 6, 15 December 2014 (2014-12-15), pages 47 - 52 *
颜能文等: "碘工质空间电推进系统关键技术分析", 真空与低温, vol. 24, no. 5, 28 October 2018 (2018-10-28), pages 332 - 337 *

Similar Documents

Publication Publication Date Title
US10269526B2 (en) Hall current plasma source having a center-mounted cathode or a surface-mounted cathode
US20200294772A1 (en) Spacecraft Propulsion Devices and Systems with Microwave Excitation
KR102635775B1 (ko) 통합된 고체 추진제를 갖는 그리드 이온 스러스터
US5339623A (en) Singly fueled multiple thrusters simultaneously energized by a common power supply
Rafalskyi et al. Brief review on plasma propulsion with neutralizer-free systems
US20130327015A1 (en) Dual use hydrazine propulsion thruster system
CN102774511A (zh) 基于螺旋波等离子体的航天器电位主动控制装置及其应用
Brown et al. Air Force Research Laboratory high power electric propulsion technology development
Groh et al. State-of-the-art of radio-frequency ion thrusters
Koch et al. Status of the THALES high efficiency multi stage plasma thruster development for HEMP-T 3050 and HEMP-T 30250
Carroll et al. Propulsion unit for CUBESATS (PUC)
WO2019116371A1 (en) Narrow channel hall thruster
CN114320799A (zh) 一种固态工质射频离子电推进系统
Reissner The IFM 350 Nano Thruster-Introducing very high Δv Capabilities for Nanosats and Cubesats
CN108320879B (zh) 霍尔推力器柔性磁路调控方法
Walker et al. Hall thruster cluster operation with a shared cathode
Vavilov et al. Review of electric thrusters with low consumption power for corrective propulsion system of small space vehicles
Tsay et al. Micro radio-frequency ion propulsion system
JP6472320B2 (ja) 人工衛星
Collingwood Investigation of a miniature differential ion thruster
Nishiyama et al. The ion engine system for hayabusa2
CN115875224B (zh) 一种霍尔推力器用固体工质储备式阳极结构及金属流量控制方法
RU2796728C1 (ru) Многоканальный плазменный двигатель с полусферической газоразрядной камерой
CN115573875A (zh) 一种双天线结构的电感耦合等离子体微型推进器
CN113173266B (zh) 一种无运动部件的等离子体矢量推进器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination