CN114320557A - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
CN114320557A
CN114320557A CN202111134312.8A CN202111134312A CN114320557A CN 114320557 A CN114320557 A CN 114320557A CN 202111134312 A CN202111134312 A CN 202111134312A CN 114320557 A CN114320557 A CN 114320557A
Authority
CN
China
Prior art keywords
refrigerant
flow path
path
branch
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111134312.8A
Other languages
English (en)
Inventor
峰川秀人
前田治
上地健介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN114320557A publication Critical patent/CN114320557A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Supercharger (AREA)

Abstract

一种冷却装置,该冷却装置具备第一制冷剂回路(10)和第二制冷剂回路(20),第二制冷剂回路(20)包括连接流路(21)、并列地分支而成的第一流路(22)和第二流路(23)、汇合流路(24)、第一分支路径(25)和第二分支路径(26),在第一流路(22)串联地设置有逆变器(63)及中间冷却器(33),在第二流路(23)设置有涡轮增压器(31),第一分支路径(25)将汇合流路(24)和散热器(65)连接,第二分支路径(26)将汇合流路(24)和连接流路(21)连接,在从汇合流路(24)分支成第一分支路径(25)及第二分支路径(26)的分支部设置有流量调节装置(67)。

Description

冷却装置
技术领域
本公开涉及对混合动力车辆的动力源进行冷却的冷却装置。
背景技术
以往,提出了各种具备对控制行驶用电动机的逆变器进行冷却的冷却系统和对中间冷却器进行冷却的冷却系统的混合动力车辆。
在日本特开2014-83918号公报公开了在混合动力车辆中将对控制行驶用电动机的逆变器进行冷却的冷却系统和对中间冷却器进行冷却的冷却系统合并的冷却装置。
发明内容
然而,在日本特开2014-83918号公报公开的冷却装置中,未充分地考虑将增压器用的冷却系统合并于对逆变器进行冷却的冷却系统及对中间冷却器进行冷却的冷却系统的情况。
在将增压器用的冷却系统合并于对逆变器进行冷却的冷却系统及对中间冷却器进行冷却的冷却系统的情况下,要求考虑制冷剂的温度而使制冷剂循环。
本公开鉴于上述那样的问题而作出,本公开的目的在于提供一种冷却装置,能够在将对逆变器进行冷却的冷却系统、对中间冷却器进行冷却的冷却系统及增压器用的冷却系统合并后的冷却装置中对制冷剂流路进行控制。
基于本公开的冷却装置应用于以具备增压器的内燃机及由逆变器调节供给电极的行驶用电动机中的至少一方为车辆行驶用的动力源而行驶的混合动力车辆。该上述冷却装置具备:第一制冷剂回路,用于对上述内燃机进行冷却的第一制冷剂在该第一制冷剂回路循环;和第二制冷剂回路,相对于上述第一制冷剂回路独立设置,第二制冷剂在该第二制冷剂回路循环。上述第二制冷剂回路以将散热器、泵、上述逆变器、中间冷却器、涡轮增压器连接的方式设置,上述散热器通过与外部气体之间的热交换而能够对上述第二制冷剂进行冷却,上述泵用于使上述第二制冷剂在上述第二制冷剂回路循环,上述中间冷却器对由上述增压器加压的吸入空气和制冷剂进行热交换,上述涡轮增压器包含于上述增压器。上述逆变器、上述中间冷却器及上述涡轮增压器在上述第二制冷剂流动的流动方向上配置于上述泵的下游侧。上述散热器在上述流动方向上配置于上述泵的上游侧。上述第二制冷剂回路包括将上述散热器与上述泵连接的连接流路、在上述泵的下游侧并列地分支而成的第一流路和第二流路、上述第一流路与上述第二流路汇合的汇合流路、从上述汇合流路分支的第一分支路径和第二分支路径。在上述第一流路串联地设置有上述逆变器及上述中间冷却器。在上述第二流路设置有上述涡轮增压器。上述第一分支路径将上述汇合流路与上述散热器连接,上述第二分支路径以使上述第二制冷剂绕过上述散热器的方式将上述汇合流路与上述连接流路连接。在从上述汇合流路分支成上述第一分支路径及上述第二分支路径的分支部设置有流量调节装置,该的流量调节装置对从上述汇合流路流向上述第一分支路径的上述第二制冷剂的流量、及从上述汇合流路流向上述第二分支路径的上述第二制冷剂的流量进行调节。
根据上述结构,在第二制冷剂回路中对泵进行驱动,由此,第二制冷剂在第二制冷剂回路中循环,由散热器冷却后的第二制冷剂在泵的下游侧分为流向第一流路的第二制冷剂和流向第二流路的第二制冷剂。
流向第一流路的第二制冷剂对逆变器及中间冷却器进行冷却。流向第二流路23的第二制冷剂对涡轮增压器进行冷却。流过第一流路及第二流路的第二制冷剂在汇合流路处汇合。
在汇合流路汇合后的第二制冷剂由流量调节装置调节流量,并在第一分支路径及/或第二分支路径中流动。流向第一分支路径的第二制冷剂被导入散热器而被冷却。流向第二分支路径的第二制冷剂绕过散热器而被导入连接流路。
这样,通过从汇合流路分支成第一分支路径和第二分支路径,例如在由于环境温度等的影响而第二制冷剂的温度低的情况下,能够使通过与逆变器、中间冷却器及涡轮增压器进行热交换而被加热的第二制冷剂主要流向第二分支路径。在该情况下,由于能够使第二制冷剂未由散热器冷却而在第二制冷剂回路循环,因此能够抑制在中间冷却器内的结露或冻结。此外,由于第二制冷剂的温度升高,第二制冷剂的粘度下降,能够削减泵的消耗电力。而且,通过使第二制冷剂向第二分支路径流动,能够缩短第二制冷剂循环的第二制冷剂回路的流路长度,因此能够减少第二制冷剂的流动阻力。
另一方面,在第二制冷剂的温度高的情况下,使制冷剂主要流向第一分支路径,由此能够使冷却后的第二制冷剂在第二制冷剂回路循环。由此,能够高效地对逆变器、中间冷却器及涡轮增压器进行冷却。
如以上所述,在上述的冷却装置中,能够在将对逆变器进行冷却的冷却系统、对中间冷却器进行冷却的冷却系统及增压器用的冷却系统合并后的冷却装置中对制冷剂流路进行控制。
在上述的基于本公开的冷却装置中,上述流量调节装置可以对上述第二制冷剂从上述汇合流路流向上述第一分支路径的第一状态、和上述第二制冷剂从上述汇合流路流向上述第二分支路径的第二状态进行切换。
根据上述结构,能够切换第一状态与第二状态。在第一状态下,第二制冷剂未流向第二分支路径而仅流向第一分支路径,因此能够通过散热器对第二制冷剂进行冷却。在第二状态下,第二制冷剂未流向第一分支路径而仅流向第二分支路径,因此在第二制冷剂的温度低的情况下,能够不对第二制冷剂进行冷却而使其在第二制冷剂回路循环。
上述的基于本公开的冷却装置可以具备对上述流量调节装置的动作进行控制的控制部、以及推定朝向上述第一流路及上述第二流路的上述第二制冷剂的温度的温度推定部。在该情况下,上述控制部以在由上述温度推定部推定出的温度为设置的阈值以上的情况下成为上述第一状态,在由上述温度推定部推定出的温度小于设定的阈值的情况下成为上述第二状态的方式对上述流量调节装置的动作进行控制。
根据上述结构,能够由控制部基于由温度推定部推定出的温度信息对流量调节装置进行控制。由此,能够高精度地切换第一状态与第二状态。
在上述的基于本公开的冷却装置中,上述流量调节装置可以为恒温器。在该情况下,在上述汇合流路中流动的上述第二制冷剂的温度为规定的阈值以上的情况下成为上述第一状态,在上述汇合流路中流动的上述第二制冷剂的温度小于上述规定的阈值的情况下成为上述第二状态。
根据上述结构,通过对流量调节装置使用恒温器,可以不对流量调节装置进行电子性地控制。因此,能够将冷却装置的结构及流量调节装置的控制简化。
本发明的上述及其他的目的、特征、方面及优点根据与附图关联而理解的关于发明的如下的详细说明可以明确。
附图说明
图1是表示实施方式的冷却装置的构成图。
图2是表示参考例1的冷却装置的构成图。
具体实施方式
以下,参照附图对本公开的实施方式进行详细说明。需要说明的是,在以下所示的实施方式中,对于相同或共通的部分在图中标注同一标号,不再重复其说明。
(实施方式)
图1是表示实施方式的冷却装置的构成图。参照图1,说明实施方式的冷却装置100。
如图1所示,实施方式的冷却装置100应用于将具备增压器的内燃机30及由逆变器63调节供给电力的行驶用电动机70中的至少一方作为车辆行驶用的动力源而行驶的混合动力车辆。
从内燃机30输出的驱动力不仅作为车辆行驶用而使用,而且也为了使发电机工作而使用。能够将由发电机发电产生的电力及从外部电源供给的电力蓄积于蓄电装置。此外,蓄积于蓄电装置的电力不仅向行驶用电动马达供给,而且也向各种车载设备供给。
冷却装置100具备第一制冷剂回路10和第二制冷剂回路20,用于对具备涡轮增压器31作为增压器的内燃机30进行冷却的第一制冷剂在该第一制冷剂回路10循环,第二制冷剂回路20相对于该第一制冷剂回路10独立设置,第二制冷剂在该第二制冷剂回路20循环。需要说明的是,第一制冷剂例如为冷却水,第二制冷剂也例如为冷却水。优选第二制冷剂的温度比第一制冷剂的温度低。
第一制冷剂回路10以将散热器55、储备罐51、恒温器52、泵53、内燃机30、加热器芯54等连接的方式设置。
散热器55使从冷却风扇90送风的送风空气(外部气体)与在该散热器55内流动的第一制冷剂进行热交换从而对第一制冷剂进行冷却。储备罐51是积存剩余的第一制冷剂的罐。
恒温器52对如后所述由散热器55冷却后的第一制冷剂经由泵53流向内燃机30的流量、及由内燃机30等加热后的第一制冷剂不通过散热器55而经由泵53流向内燃机30的流量进行调节。
泵53是将第一制冷剂吸入并喷出的电动泵。需要说明的是,泵53可以是通过将内燃机30的驱动力经由传送带进行动力传递从而被驱动的带驱动式泵。加热器芯54为了对车室内进行取暖而使用,对通过了内燃机30内之后的第一制冷剂具有的热量进行散热。
第一制冷剂回路10包括多个路径11a、11b、12、13、14、15。路径11a将散热器55、储备罐51及恒温器52顺次连接。路径11b配设在内燃机30内,经由泵53连接于路径11a。在路径11b中流动的第一制冷剂对设置于内燃机30的水冷套等(未图示)进行冷却。
从设置于内燃机30的排出口34向内燃机30的外部引出的路径11b分支成路径12、路径13、路径14。
路径12将从排出口34引出的路径11b与散热器55连接。路径13以通过热交换器37的方式设置,该热交换器37用于与后述的ATF(Automatic Transmission Fluid:自动变速箱油)进行热交换。路径14以通过加热器芯54的方式设置。
路径13及路径14汇合而形成路径15。路径15作为绕过散热器55的旁通流路发挥功能,以朝向恒温器52的方式设置。
在第一制冷剂回路10中,通过使泵53驱动而能够使第一制冷剂在第一制冷剂回路10内循环。此时,如上所述,能够利用恒温器52对通过散热器55而被冷却的第一制冷剂被导入内燃机30内的流量、通过路径15的第一制冷剂被导入内燃机30内的流量进行调节。由此,能够调节在内燃机30内流动的第一制冷剂的温度。
在内燃机30搭载有变速器35。变速器35例如为自动变速器。在变速器35设有供ATF循环的循环路径40。ATF借助MOP(Mechanical Oil Pump:机械油泵)36在循环路径40中循环。在循环路径40配置有上述的热交换器37。ATF在通过热交换器37时,与在上述路径13中流动的第一制冷剂进行热交换。
第二制冷剂回路20以将散热器65、储备罐61、泵62、逆变器63、油冷却器64、中间冷却器33及涡轮增压器31连接的方式设置。
散热器65使从冷却风扇90送风的送风空气(外部气体)与在该散热器65内流动的第二制冷剂进行热交换,从而对第二制冷剂进行冷却。散热器65配置在散热器55的前方。需要说明的是,在散热器65的前方配置有散热器80,散热器80构成车辆的空调用的冷却系统的一部分。
储备罐61是积存剩余的第二制冷剂的罐。泵62是将第二制冷剂吸入并喷出的电动泵。泵62使第二制冷剂在第二制冷剂回路20循环。
逆变器63是将从蓄电装置供给的直流电力转换成交流电力而向行驶用电动机70输出的电力转换单元。
油冷却器64设置成能够对行驶用电动机70与第二制冷剂进行热交换。例如,油冷却器64通过对行驶用电动机冷却用的油与第二制冷剂进行热交换来对行驶用电动机70进行冷却。需要说明的是,可以不设置油冷却器64而在行驶用电动机70设置水冷套。在该情况下,通过第二制冷剂在水冷套中流动来将行驶用电动机70直接冷却。行驶用电动机70通过如上所述强力地冷却而能够小型化,能够降低成本价、质量。
涡轮增压器31是利用内燃机30的废气的残留能量使涡轮(未图示)旋转并对内燃机30的吸入空气进行增压的增压器。中间冷却器33是使由涡轮增压器31压缩而成为了高温的增压进气与第二制冷剂进行热交换而对增压进气进行冷却的进气冷却器。
第二制冷剂回路20包括连接流路21、从该连接流路21分支的第一流路22及第二流路23、该第一流路22及第二流路23汇合的汇合流路24、从汇合流路24分支的第一分支路径25及第二分支路径26。
连接流路21将散热器65及泵62连接。具体而言,连接流路21将储备罐61及泵62沿第二制冷剂的流动方向顺次连接。连接流路21在该流动方向上的泵62的下游侧并列地分支成第一流路22和第二流路23。
在第一流路22串联地配置有逆变器63、油冷却器64及中间冷却器33。在第二流路23配置有涡轮增压器31。
另外,在第二流路23设置有流量调节装置66,该流量调节装置66对流向涡轮增压器31的第二制冷剂的流量进行调节。通过流量调节装置66能够适当地控制流向涡轮增压器的第二制冷剂的流量。
流量调节装置66可以使用例如节流阀、电磁阀等。在使用节流阀作为流量调节装置66的情况下,不需要电子性的控制,能够将结构及流量的控制简化。
第一流路22及第二流路23汇合而形成汇合流路24。如上所述,汇合流路24分支成第一分支路径25和第二分支路径26。
第一分支路径25将汇合流路24与散热器65连接。第二分支路径26以第二制冷剂绕过散热器65的方式将汇合流路24与连接流路21连接。第二分支路径26连接于位于散热器65与泵62之间的部分的连接流路21,更确切而言,在储备罐61的上游侧连接于连接流路21。
在从汇合流路24分支成第一分支路径25及第二分支路径26的分支部设有流量调节装置67。流量调节装置67对从汇合流路24流向第一分支路径25的第二制冷剂的流量及从汇合流路24流向第二分支路径26的第二制冷剂的流量进行调节。
流量调节装置67可以对第二制冷剂从汇合流路24流向第一分支路径25的第一状态和第二制冷剂从汇合流路24流向第二分支路径26的第二状态进行切换。
在第一状态下,第二制冷剂未流向第二分支路径26而仅流向第一分支路径25,因此能够通过散热器65对第二制冷剂进行冷却。在第二状态下,第二制冷剂未流向第一分支路径25而仅流向第二分支路径26,因此在第二制冷剂的温度低的情况下,可以不对第二制冷剂进行冷却而使其在第二制冷剂回路20循环。
流量调节装置67例如由三通阀或者两个电磁阀等构成。冷却装置100具备对流量调节装置67的动作进行控制的控制部95。该控制部95包含温度推定部96,构成为能够利用由各种传感器检知到的信息等来推定朝向第一流路22及第二流路23的第二制冷剂的温度。
例如,温度推定部96可以基于由对车辆的外部气体的温度进行测定的温度传感器检测出的外部气体的温度信息来推定第二制冷剂的温度。在该情况下,上述温度传感器可以测定内燃机30停止的状态或者开始运转的状态下的外部气体的温度。而且,温度推定部96可以根据内燃机30的运转条件等来推定第二制冷剂的温度。
控制部95基于由温度推定部96推定出的温度信息来控制流量调节装置67的动作,由此能够高精度地切换第一状态和第二状态。
需要说明的是,在上述中例示并说明了流量调节装置67被电气性地控制的情况,但是没有限定于此。流量调节装置67可以是恒温器。在该情况下,可以不对流量调节装置67进行电气性地控制,从而能够省略控制部95。而且,可以将流量调节装置67的结构及其控制简化。
通过对泵62进行驱动,第二制冷剂在第二制冷剂回路20中循环。由散热器65冷却后的第二制冷剂在泵62的下游侧分为流向第一流路22的第二制冷剂、和流向第二流路23的第二制冷剂。
流向第一流路22的第二制冷剂对逆变器63、油冷却器64及中间冷却器33进行冷却。流向第二流路23的第二制冷剂对涡轮增压器31进行冷却。流过第一流路22及第二流路23之后的第二制冷剂在汇合流路24处汇合。
在汇合流路24处汇合后的第二制冷剂由流量调节装置67调节流量,在第一分支路径25及/或第二分支路径26中流动。流向第一分支路径25的第二制冷剂被导入散热器65并被冷却。流向第二分支路径26的第二制冷剂绕过散热器65并被导入连接流路21。
需要说明的是,在连接流路21中流动的第二制冷剂的最大流量为例如11L/min左右。在第一流路22中流动的第二制冷剂的最大流量为例如10L/min左右,在第二流路23中流动的第二制冷剂的最大流量为例如1L/min左右。
如以上所述,在第二制冷剂回路20从汇合流路24分支成第一分支路径25和第二分支路径26,由此,例如在由于环境温度等的影响而第二制冷剂的温度低的情况下,能够使由于与逆变器63、中间冷却器33及涡轮增压器31进行热交换而被加热了的第二制冷剂主要流向第二分支路径26。在该情况下,由于能够使第二制冷剂未由散热器65冷却而使第二制冷剂在第二制冷剂回路20循环,因此能够抑制在中间冷却器33内的结露或冻结。此外,由于第二制冷剂的温度升高,第二制冷剂的粘度下降,能够削减泵62的消耗电力。此外,通过使第二制冷剂在第二分支路径26流动,能够缩短第二制冷剂循环的第二制冷剂回路20的流路长,因此能够减少第二制冷剂的流动阻力。而且,通过油冷却器能够对ATF进行升温,由于与粘度下降相伴的摩擦力的下降,燃料利用率改善。
另一方面,在第二制冷剂的温度高的情况下,主要将制冷剂流向第一分支路径25,由此能够使冷却后的第二制冷剂在第二制冷剂回路20循环。由此,能够高效地对逆变器63、中间冷却器33及涡轮增压器31进行冷却。
如以上所述,在上述冷却装置100中,在将对逆变器63进行冷却的冷却系统、对中间冷却器33进行冷却的冷却系统、及增压器用的冷却系统合并的冷却装置中,能够对制冷剂流路进行控制。
(参考例)
图2是表示参考例的冷却装置的构成图。参照图2,说明参考例的冷却装置100A。
如图2所示,参考例的冷却装置100A与实施方式的冷却装置100相比,第二制冷剂回路20A的结构不同。关于其他的结构大致同样。
在第二制冷剂回路20A中,第一流路22在逆变器63的下游侧(更详细而言,在油冷却器64的正下方)并列地分支成第一分支路径221及第二分支路径222。
在第一分支路径221配置有中间冷却器33。第二分支路径222作为绕过中间冷却器33的旁通路径发挥功能。
第二流路23、第一分支路径221及第二分支路径222汇合而形成汇合流路24。汇合流路24未分支而连接于散热器65。即,与实施方式相比,在第二制冷剂回路20A中未设置绕过散热器65的分支路径。
在从上述第一流路22分支成第一分支路径221和第二分支路径222的分支部设置有流量调节装置67。
流量调节装置67对从第一流路22流向第一分支路径221的第二制冷剂的流量和从第一流路22流过第二分支路径222的第二制冷剂的流量进行调整。
在参考例中,流量调节装置67例如在第二制冷剂的温度低的情况下,使第二制冷剂不流向第一分支路径221而流向第二分支路径222。由此,能够防止在中间冷却器33内的结露、冻结,并能够减少泵62的消耗电力。
另一方面,在无增压时、内燃机30的轻负载时等中间冷却器33的所需散热量少的情况下,流量调节装置67使第二制冷剂流向第一分支路径221和第二分支路径222双方。由此,能够使第二制冷剂的压力损失下降,能够降低泵62的消耗电力。
虽然说明了本发明的实施方式,但是应认为本次公开的实施方式在全部的点上均为例示而非限制性的。本发明的范围由权利要求书所示,并意图包含与权利要求书等同的意思及范围内的全部变更。

Claims (4)

1.一种冷却装置,应用于以具备增压器的内燃机及由逆变器调节供给电极的行驶用电动机中的至少一方为车辆行驶用的动力源而行驶的混合动力车辆,其中,
所述冷却装置具备:
第一制冷剂回路,用于对所述内燃机进行冷却的第一制冷剂在该第一制冷剂回路循环;及
第二制冷剂回路,相对于所述第一制冷剂回路独立设置,第二制冷剂在该第二制冷剂回路循环,
所述第二制冷剂回路以将散热器、泵、所述逆变器、中间冷却器、涡轮增压器连接的方式设置,所述散热器能够通过与外部气体之间的热交换对所述第二制冷剂进行冷却,所述泵用于使所述第二制冷剂在所述第二制冷剂回路循环,所述中间冷却器对由所述增压器加压的吸入空气和制冷剂进行热交换,所述涡轮增压器包含于所述增压器,
所述逆变器、所述中间冷却器及所述涡轮增压器在所述第二制冷剂流动的流动方向上配置于所述泵的下游侧,
所述散热器在所述流动方向上配置于所述泵的上游侧,
所述第二制冷剂回路包括将所述散热器与所述泵连接的连接流路、在所述泵的下游侧并列地分支而成的第一流路和第二流路、所述第一流路与所述第二流路汇合的汇合流路、及从所述汇合流路分支的第一分支路径和第二分支路径,
在所述第一流路串联地设置有所述逆变器及所述中间冷却器,
在所述第二流路设置有所述涡轮增压器,
所述第一分支路径将所述汇合流路与所述散热器连接,
所述第二分支路径以使所述第二制冷剂绕过所述散热器的方式将所述汇合流路与所述连接流路连接,
在从所述汇合流路分支成所述第一分支路径及所述第二分支路径的分支部设置有流量调节装置,该流量调节装置对从所述汇合流路流向所述第一分支路径的所述第二制冷剂的流量、及从所述汇合流路流向所述第二分支路径的所述第二制冷剂的流量进行调节。
2.根据权利要求1所述的冷却装置,其中,
所述流量调节装置对所述第二制冷剂从所述汇合流路流向所述第一分支路径的第一状态和所述第二制冷剂从所述汇合流路流向所述第二分支路径的第二状态进行切换。
3.根据权利要求2所述的冷却装置,其中,
所述冷却装置具备对所述流量调节装置的动作进行控制的控制部,
所述控制部包含温度推定部,该温度推定部对朝向所述第一流路及所述第二流路的所述第二制冷剂的温度进行推定,
所述控制部以在由所述温度推定部推定出的所述第二制冷剂的温度为设置的阈值以上的情况下成为所述第一状态,在由所述温度推定部推定出的所述第二制冷剂的温度小于设定的阈值的情况下成为所述第二状态的方式对所述流量调节装置的动作进行控制。
4.根据权利要求2所述的冷却装置,其中,
所述流量调节装置为恒温器,在所述汇合流路中流动的所述第二制冷剂的温度为规定的阈值以上的情况下成为所述第一状态,在所述汇合流路中流动的所述第二制冷剂的温度小于所述规定的阈值的情况下成为所述第二状态。
CN202111134312.8A 2020-09-30 2021-09-27 冷却装置 Pending CN114320557A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-164973 2020-09-30
JP2020164973A JP7327335B2 (ja) 2020-09-30 2020-09-30 冷却装置

Publications (1)

Publication Number Publication Date
CN114320557A true CN114320557A (zh) 2022-04-12

Family

ID=81044742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111134312.8A Pending CN114320557A (zh) 2020-09-30 2021-09-27 冷却装置

Country Status (2)

Country Link
JP (1) JP7327335B2 (zh)
CN (1) CN114320557A (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079614A (ja) 2011-10-04 2013-05-02 Denso Corp ハイブリッド過給車用冷却装置
EP3623183B1 (en) 2018-09-11 2020-12-02 C.R.F. Società Consortile per Azioni A system for thermal management of the components of a hybrid vehicle

Also Published As

Publication number Publication date
JP2022056959A (ja) 2022-04-11
JP7327335B2 (ja) 2023-08-16

Similar Documents

Publication Publication Date Title
CN110884318B (zh) 用于混合动力车辆部件的热管理的系统
US11897309B2 (en) Vehicle heat management system
US11207947B2 (en) Cooling system for a motor vehicle and motor vehicle having such a cooling system
US9365090B2 (en) Climate control system for vehicles using thermoelectric devices
US20190070951A1 (en) Motor vehicle with a cooling system
JP3817844B2 (ja) ハイブリッド型電気自動車の冷却装置
JP7094907B2 (ja) バッテリ昇温装置
KR20010007284A (ko) 차량용 엔진 냉각장치
US8596201B2 (en) Engine warming system for a multi-engine machine
CN113446103B (zh) 车辆用冷却装置
CN113195294A (zh) 温度调整回路
US20040187505A1 (en) Integrated cooling system
CN112895843A (zh) 用于机动车的热管理系统和具有这种热管理系统的机动车
US11888139B2 (en) Temperature adjustment circuit
JP7327335B2 (ja) 冷却装置
US11345256B2 (en) Battery temperature control system
KR102483110B1 (ko) 냉각 시스템을 구비한 하이브리드 차량
JP6604540B2 (ja) エンジン冷却装置
JP7375648B2 (ja) 車両用冷却装置
JP2019132197A (ja) エンジン冷却系の制御装置
CN113733895A (zh) 混合动力车及其热管理系统
CN114320574A (zh) 冷却装置
CN113348117A (zh) 混合动力车辆的冷却装置
US20240254911A1 (en) Vehicle cooling device
JP2022042435A (ja) 電動車両用の熱マネージメントシステム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination