CN114317470A - Compound oxalicine B biosynthesis gene cluster and C-15 hydroxylase OxaL and application - Google Patents

Compound oxalicine B biosynthesis gene cluster and C-15 hydroxylase OxaL and application Download PDF

Info

Publication number
CN114317470A
CN114317470A CN202111627219.0A CN202111627219A CN114317470A CN 114317470 A CN114317470 A CN 114317470A CN 202111627219 A CN202111627219 A CN 202111627219A CN 114317470 A CN114317470 A CN 114317470A
Authority
CN
China
Prior art keywords
gene
compound
oxal
site
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111627219.0A
Other languages
Chinese (zh)
Other versions
CN114317470B (en
Inventor
余利岩
张涛
张德武
谷国威
苏静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Medicinal Biotechnology of CAMS
Original Assignee
Institute of Medicinal Biotechnology of CAMS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Medicinal Biotechnology of CAMS filed Critical Institute of Medicinal Biotechnology of CAMS
Priority to CN202111627219.0A priority Critical patent/CN114317470B/en
Publication of CN114317470A publication Critical patent/CN114317470A/en
Application granted granted Critical
Publication of CN114317470B publication Critical patent/CN114317470B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a biosynthetic gene cluster of a compound oxalicine B, C-15 hydroxylase OxaL and application thereof. The invention provides an application of OxaL protein shown in a sequence 3 or related biological materials thereof: use as hydroxylase; (a2) application in preparing hydroxylase. The invention also protects a 15-deoxyyoxaline B biosynthesis gene cluster shown in the sequence 1. The invention also protects the application of the 15-deoxyoxalicine B biosynthetic gene cluster in synthesizing the compound oxalicine B. All gene and protein information provided by the invention can help people to understand the biosynthesis mechanism of a-pyrone heteroterpene family natural products, and provide materials and knowledge for further genetic modification. The gene and the protein thereof provided by the invention can also be used for searching and discovering compounds or genes and proteins which can be used for medicine, industry or agriculture.

Description

Compound oxalicine B biosynthesis gene cluster and C-15 hydroxylase OxaL and application
Technical Field
The invention belongs to the fields of microbial gene resources, genetic engineering and biological enzyme development, and particularly relates to an anti-HIV (human immunodeficiency Virus) -compound oxalicine B biosynthetic gene cluster and C-15 hydroxylase OxaL and application thereof.
Background
Oxalicine B has a unique chemical structure, is a novel structural compound with a six-ring system framework and is formed by polymerizing a pyridyl-alpha-pyrone unit and a diterpene unit, and the molecular formula is C30H33NO7And the molecular weight is 519.
Oxalicine B belongs to a-pyrone-containing hetero terpene compound family (the structural schematic diagram of the a-pyrone-containing hetero terpene compound family is shown in figure 1). With the discovery and identification of other compounds of this family, this unique chemical structure has attracted many organic chemists to engage in their chemical synthesis studies. Oxalicines are secondary metabolites of fungi, mainly isolated from the genus Penicillium, and were first extracted from the mycelium of Penicillium oxalicum (Penicillium oxalicum) by Ubillas in 1989. To date, researchers have isolated oxalicines class of molecules from penicillium sp. The oxalicines compound mainly has insect-resistant activity, and researches show that the oxalicines B compound has strong insecticidal activity on Spodoptera frugiperda and also has certain cytotoxic activity. Meanwhile, early-stage research in laboratories finds that the oxalicine compound has antiviral activity, oxalicine B has anti-HIV (HIV-1) activity, and oxalicine A has good anti-influenza A virus (H1N1) activity.
The 15-deoxyoxalicine B was identified in 2015 by Yaegashi, J et al from Penicillium sp.canescens ATCC 10419The gene cluster (olc) is synthesized, and the 15-deoxyoxalicine B biosynthetic pathway is elucidated and analyzed by using bioinformatics and gene knockout strategies. The biosynthetic pathway of the biosynthetic gene cluster of 15-deoxyoxalicine B is shown in FIG. 2. The source of the non-terpene moieties (a-pyrone and nicotinamide elements) in the biosynthesis of the heteroterpene molecule 15-deoxyoxalicine B is the same as for pyripyropene A, but a significant difference occurs after the formation of the intermediate compound molecule 4-hydroxy-6- (3-pyridinyl) -2H-pyran-2-one (HPPO). Geranyl pyrophosphate (GGPP) is used as a donor, and is connected with HPPO under the action of Ubia protein isopentenyl transferase Olch, and the GGPP is completed by diterpene synthase coded by olcC gene. Subsequently, the flavin FAD dependent monooxygenase OlcE, which participates in the oxidation of the terminal double bond of a long-chain diterpene to form a ternary oxygen ring, and the diterpene cyclase OlcD, which cyclizes the long-chain diterpene, act in combination to form the key five-membered ring intermediate compound molecule predecaturerin E. P450 oxidase OlcG participates in the spiro formation of the right side of the 15-deoxyoxalicine B molecule to generate a decaturin E intermediate. Thereafter, a cascade reaction system involving a plurality of oxidoreductases comprises P450 oxidase (OlcJ) and short-chain dehydrogenase/reductase (OlcF) to generate the intermediate compound decaturin C with a hemiacetal structure. Finally, in dependence on Fe2+Under the combined action of alpha-KG dioxygenase (OlcK), transmembrane protein drug-resistant pump (OlcL) and P450 oxidase (OlcB), the target compound molecule 15-deoxyyoxaline B is generated.
Disclosure of Invention
The invention aims to provide a compound oxalicine B biosynthesis gene cluster and C-15 hydroxylating enzyme OxaL and application thereof.
The invention provides an OxaL protein or an OxaL protein-related biomaterial, which is (a1) or (a 2):
(a1) use of an OxaL protein or an OxaL protein-related biomaterial as a hydroxylase;
(a2) use of OxaL protein or an OxaL protein-related biomaterial in the preparation of a hydroxylase;
the OxaL protein is a protein shown in a sequence 3 in a sequence table;
the OxaL protein-related biomaterial is a gene encoding the OxaL protein, an expression cassette expressing the OxaL protein, an expression vector expressing the OxaL protein or a recombinant microorganism expressing the OxaL protein.
Illustratively, the hydroxylase has the following functions: compound 3 was converted to compound 8.
Illustratively, the hydroxylase has the following functions: compound 2 was converted to compound 9.
Illustratively, the hydroxylase has the following functions: converting compound 4 to the compound oxalicine B.
The invention also protects a 15-deoxyyoxaline B biosynthetic gene cluster, which comprises the following 13 genes: an oxaM gene, an oxaE gene, an oxaD gene, an oxaC gene, an oxaF gene, an oxaG gene, an oxaL gene, an oxaH gene, an oxaA gene, an oxaI gene, an oxaJ gene, an oxaK gene, and an oxaB gene;
the oxaM gene (coding strand) is shown as 409-1287 in the sequence 1 of the sequence table; the oxaE gene (template strand) has four exons, which correspond to the 1819-1889 th site, 1966-2227 th site, 2280-2650 th site and 2717-3392 th site of the sequence 1 in the sequence table in sequence; the oxaD gene (template strand) has two exons, which sequentially correspond to the 3699-3900 th site and the 3965-4476 th site of the sequence 1 in the sequence table; the oxaC gene (coding strand) has four exons and sequentially corresponds to the 4847-4897 th site, 4956-5110 th site, 5165-5491 th site and 5551-6001 th site of the sequence 1 in the sequence table; the oxaF gene (template strand) has four exons, which sequentially correspond to the 6024-6250 th site, the 6311-6397 th site, the 6453-6891 th site and the 6945-6971 th site of the sequence 1 in the sequence table; the oxaG gene (coding strand) has five exons and sequentially corresponds to the 7344-7568 th site, the 7620-7736 th site, the 7800-7971 th site, the 8033-8647 th site and the 8706-9145 th site of the sequence 1 of the sequence table; the oxaL gene (template strand) has three exons, which correspond to the 9903-th 10063-th, 10112-th 10563-th and 10625-th 11535-th sites of the sequence 1 in the sequence table in sequence; the oxaH gene (coding strand) has two exons and sequentially corresponds to the 11801-11912 th site and the 11971-12911 th site of the sequence 1 in the sequence table; the oxaA gene (coding strand) is shown as 13529-20836 in the sequence 1 of the sequence table; the oxaI gene (coding strand) has two exons and sequentially corresponds to the 21517-21729 th site and 21798-23435 th site of the sequence 1 in the sequence table; the oxaJ gene (template strand) has two exons, which correspond to the 23483 th and 24757 th sites and 24824 th and 25174 th sites of the sequence 1 in the sequence table in sequence; the oxaK gene (template strand) is shown as the 25296-26171 site in the sequence 1 of the sequence table; the oxaB gene (coding strand) has two exons and corresponds to position 26443-27567 and 27628-27975 in sequence No. 1 of the sequence table.
The 15-deoxyoxalicine B biosynthetic gene cluster is specifically shown as a sequence 1 in a sequence table.
The invention also protects the application of the 15-deoxyoxalicine B biosynthetic gene cluster in synthesizing the compound oxalicine B.
In said application, the synthesis of the compound oxalicine B is carried out in Penicillium.
In said application, the synthesis of the compound oxalicine B is carried out in Penicillium oxalicum.
In the application, the synthesis of the compound oxalicine B is carried out in P.oxalicium 114-2.
The invention also protects the OxaL protein, which is shown as a sequence 3 in a sequence table.
The invention also protects the gene encoding the OxaL protein.
The gene for coding the OxaL protein can be specifically shown as a sequence 2 in a sequence table.
The gene (template strand) encoding the OxaL protein has three exons, which correspond to sequence No. 9903-10063, No. 10112-10563, and No. 10625-11535 of the sequence listing in this order.
The invention also protects a recombinant microorganism expressing the OxaL protein.
The recombinant microorganism is specifically a recombinant microorganism obtained by introducing a gene encoding the OxaL protein into a host microorganism.
The host microorganism may be a yeast, in particular saccharomyces cerevisiae, more in particular s.
The gene encoding the OxaL protein can be specifically introduced into the host microorganism through an expression vector expressing the OxaL protein.
The expression vector for expressing the OxaL protein can be specifically an oxaL gene overexpression vector.
The expression vector for expressing the OxaL protein can be specifically as follows: the recombinant plasmid pXW06-oxaL is obtained by replacing a small fragment between NdeI and PmeI enzyme cutting sites of the yeast expression plasmid pXW06 with a DNA molecule shown in a sequence 2 in a sequence table.
The invention also protects the application of the OxaL protein in the synthesis of the compound oxalicine B.
The invention also protects the application of the recombinant microorganism, which is (b1) or (b2) or (b 3):
(b1) use in converting compound 3 to compound 8;
(b2) use in converting compound 2 to compound 9;
(b3) use in the conversion of compound 4 to the compound oxalicine B.
The invention also protects the total protein of the recombinant microorganism.
The total protein is microsomal.
The preparation method of the total protein sequentially comprises the following steps:
(1) culturing the recombinant microorganism, then centrifugally collecting thalli, and resuspending the thalli by using microsome extracting solution;
(2) cell wall breaking is carried out;
(3) centrifuging and collecting the supernatant containing total protein;
(4) and centrifuging and collecting the precipitate to obtain the total protein.
In the step (1), a liquid YPD medium is used for culturing the recombinant microorganism.
In the step (1), the conditions for culturing the recombinant microorganism are as follows: the culture was carried out at 28 ℃ and 200rpm for 2 days with shaking.
In step (2), cell wall disruption was performed by adding glass beads and vortexing.
In the step (3), the centrifugation conditions are as follows: centrifuging at 4000rpm for 5min at 4 deg.C.
In the step (4), the centrifugation conditions are as follows: centrifuging at 17000rpm for 50min at 4 ℃.
Microsome extract: TES buffer solution containing 10g/L bovine serum albumin, 2mM beta-mercaptoethanol and the balance of pH7.5.
The invention also protects the application of the total protein, which is (b1) or (b2) or (b 3):
(b1) use in converting compound 3 to compound 8;
(b2) use in converting compound 2 to compound 9;
(b3) use in the conversion of compound 4 to the compound oxalicine B.
The compound 3 is shown as a formula I. The compound 8 is shown as a formula II.
Figure BDA0003439060910000031
The compound 2 is shown as a formula III. The compound 9 is shown as a formula IV.
Figure BDA0003439060910000032
Compound 4 is represented by formula V. The compound oxalicine B is shown as a formula VI.
Figure BDA0003439060910000041
The inventor of the invention takes an oxalicine B compound from penicillium oxalicum as a target molecule, and positions an oxalicine B biosynthesis gene cluster oxa by combining genome excavation. In contrast, oxaL (encoding P450 oxidase) and oxaM (encoding NADPH dependent P450 oxidoreductase) in the oxa gene cluster were found to be absent from the biosynthetic gene cluster olc of 15-deoxyoxalicine B. In combination with bioinformatics alignment analysis, it is speculated that OxaL may be responsible for C-15 hydroxylation in the molecule of the oxalicine B compound. Meanwhile, the biosynthesis of the polypeptide is researched by adopting a method combining molecular genetics, bioinformatics, biochemistry and natural product chemistry. Through the biosynthetic studies of natural products of this family, studies from both gene and enzyme catalysis levels can help one understand how nature synthesizes such numerous structurally complex and similar compounds. On the basis of clarifying the biosynthesis pathway in the nature and understanding the natural combined biosynthesis mechanism of a-pyrone type heteroterpene compounds in the nature, people can produce a plurality of structural analogs which do not exist in the nature by using a combined biosynthesis method, and molecular and activity diversity is provided for discovery and drug development of new active 'non-natural' products.
The contribution of the invention is as follows: provides a biosynthetic gene cluster for producing an antibiotic-oxalicine B with anti-HIV-1 activity in penicillium oxalicum P.oxalicium 114-2, and functional research and application of an OxaL protein coded by the biosynthetic gene cluster. The invention reports the biosynthesis gene cluster oxa of the oxalicine B for the first time, and makes the clarification and analysis on the function of C-15 hydroxylation reaction enzyme-P450 oxidase OxaL in the molecule of the oxalicines compound and an enzyme catalytic machine for the first time. The invention provides all gene and protein information related to oxalicine B biosynthesis, which can help people to understand the biosynthesis mechanism of a-pyrone heteroterpene family natural products and provide materials and knowledge for further genetic modification. The gene and the protein thereof provided by the invention can also be used for searching and discovering compounds or genes and proteins which can be used for medicine, industry or agriculture.
Drawings
FIG. 1 is a schematic structural diagram of a family of a-pyrone-containing heteroterpenoids.
FIG. 2 is a schematic diagram showing the biosynthetic pathway of the biosynthetic gene cluster of 15-deoxyoxalicine B.
FIG. 3 is a schematic diagram of the elements of the 15-deoxyoxalicine B biosynthetic gene cluster and the oxalicine B biosynthetic gene cluster.
FIG. 4 is an electrophoretogram of PCR amplification products in example 2 and example 3.
FIG. 5 is an HPLC chromatogram of example 4.
FIG. 6 is a structural formula of each compound prepared in example 5.
FIG. 7 is a graph showing the results of example 6.
FIG. 8 shows the 4 possible biosynthetic pathways from decaturin C to the target compound oxalicine B at the later stage of oxalicine B biosynthesis, as predicted in example 7.
Detailed Description
The present invention is described in further detail below with reference to specific embodiments, which are given for the purpose of illustration only and are not intended to limit the scope of the invention. The examples provided below serve as a guide for further modifications by a person skilled in the art and do not constitute a limitation of the invention in any way.
The experimental procedures in the following examples, unless otherwise indicated, are conventional and are carried out according to the techniques or conditions described in the literature in the field or according to the instructions of the products. Materials, reagents and the like used in the following examples are commercially available unless otherwise specified. Yeast Transformation Kit (Frozen-EZ Yeast Transformation II Kit): ZYMO Corp; no. t 2001. Solution I, Solution II and Solution III are all components of the yeast transformation kit. Unless otherwise stated, the quantitative tests in the following examples were performed in triplicate, and the results were averaged.
Penicillium oxalicum (Penicillium oxalicum)114-2, also known as p.oxalicum114-2, is described in the following references: a Production of a high-efficiency cellulose complex via β -glucosidase engineering in Penicillium oxyalicum; guangshan Yao, Ruimei Wu, Qinbiao Kan, Liwei Gao, Meng Liu, Piao Yang, Jian Du, Zhonghai Li, Yinbo Qu; yao et al Biotechnol Biofuels (2016)9: 78.
The Yeast expression plasmid pXW06(Yeast expression plasmid pXW06) is described in the following documents: biosynthesis of Heataclic Duclauxins requirers Extensive modulators of the Phenalone Aromatic Polyketide; Shu-Shan, Gao, Tao, Zhang, Marc, Garcia-Borr as, Yiu-Sun, Hung, John, M; 10.1021/jacs.8b03705; 2018.
saccharomyces cerevisiae RC01, also known as s.cerevisiae RC01, is described in: genome Mining and Assembly-Line biosyntheses of the UCS1025A pyrrolidone Family of Fungal Alkaloids; li, Man-Cheng Tang, Shoubin Tang, Shushan Gao, Sameh Soliman, Leibnizz Hang, Wei Xu, Tao Ye, Kenji Watanabe, Yi Tang.J.Am.Chem.Soc.2018,140,6, 2067-.
MEPA medium (100 ml): 1.5g of malt extract, 0.2g of soybean cake powder, 2g of agar and the balance of water. Dichloromethane-methanol: from 1 part by volume of methylene chloride and 1 part by volume of methanol.
Liquid Trp-auxotrophic medium (100 mL): containing DifcoTM0.67g of basic nitrogen source (BD, 239210), 0.14g of Yeast synthetic Drop-out Medium supplements (Sigma, Y2001), 0.02g of L-leucine, 0.02g of uracil, 0.8g of glucose, and the balance of water. Solid Trp-auxotrophic media differ from liquid Trp-auxotrophic media only by the addition of agar.
Example 1 discovery of the oxalicine B biosynthetic Gene Cluster from P.oxalicium114-2
A contig region was obtained by screening genomic DNA of P.oxalicum114-2 using 15-deoxyoxalicine B biosynthesis key polyketide synthase (Olca) encoding gene. Gene cluster prediction is synthesized using genomic and microbial secondary metabolites. Analysis was performed by the anti SMASH and Softberry (http:// www.softberry.com /) database online tools. Functional Annotation of proteins A homology search for amino acid sequences was performed in the GenBank protein database by means of the BLAST program (http:// www.ncbi.nlm.nih.gov/Blastp /). The Clustalx program was used for amino acid sequence alignment. The oxalicine B biosynthetic gene cluster was found from P.oxalicum 114-2. The oxalicine B biosynthetic gene cluster has 13 genes, and is shown as a sequence 1 in a sequence table (in the sequence 1, part of the genes are coding chains, and part of the genes are template chains).
A schematic diagram of the elements of the 15-deoxyoxalicine B biosynthetic gene cluster and the oxalicine B biosynthetic gene cluster obtained according to the present invention is shown in FIG. 3.
The 13 genes in the oxalicine B biosynthetic gene cluster are: an oxaM gene, an oxaE gene, an oxaD gene, an oxaC gene, an oxaF gene, an oxaG gene, an oxaL gene, an oxaH gene, an oxaA gene, an oxaI gene, an oxaJ gene, an oxaK gene, an oxaB gene.
The proteins encoded by the respective genes are shown in Table 1.
TABLE 1 Gene and functional Annotation for the oxalicine B biosynthetic Gene Cluster
Figure BDA0003439060910000051
Figure BDA0003439060910000061
The oxaM gene is shown as the nucleotide at position 409-1287 in the sequence 1 of the sequence table (coding strand; without intron); the oxaM gene encodes an NADPH-P450 oxidoreductase. The oxaE gene is shown as nucleotide at position 1819-3392 in sequence 1 of the sequence table (template strand; intron; exon: 1819-1889, 1966-2227, 2280-2650, 2717-3392); the oxaE gene encodes a FAD-dependent monooxygenase. The oxaD gene is shown as nucleotides 3699-4476 in the sequence 1 of the sequence table (template strand; intron; exon: 3699-3900, 3965-4476); the oxaD gene encodes a terpene cyclase. The oxaC gene is shown as a nucleotide at the position of 4847-year 6001 in a sequence 1 of a sequence table (a coding strand; an intron; an exon: 4847-year 4897, 4956-year 5110, 5165-year 5491, 5551-year 6001); the oxaC gene encodes a diterpene synthase. The oxaF gene is shown as the 6024-6971 site nucleotide in the sequence 1 of the sequence table (template strand; containing intron; exon: 6024-6250, 6311-6397, 6453-6891, 6945-6971); the oxaF gene encodes a short-chain dehydrogenase/reductase. The oxaG gene is shown as the 7344-9145 site nucleotide in the sequence 1 of the sequence table (coding strand; containing intron; exon: 7344-7568, 7620-7736, 7800-7971, 8033-8647, 8706-9145); the oxaG gene encodes a P450 oxidase. The oxaL gene is shown as the nucleotide at position 9903-11535 in the sequence 1 of the sequence table (template strand; containing intron; exon: 9903-10063, 10112-10563, 10625-11535); the oxaL gene codes P450 oxidase shown in sequence 3 of the sequence table. The oxaH gene is shown as the 11801-12911 nucleotide in the sequence 1 of the sequence table (coding strand; containing intron; exon: 11801-11912, 11971-12911); the oxaH gene encodes isopentenyl transferase. The oxaA gene is shown as nucleotide 13529-20836 in sequence 1 of the sequence table (coding strand; without intron); the oxaA gene encodes polyketide synthase. The oxaI gene is shown as the 21517-23435 nucleotide in the sequence 1 of the sequence table (coding strand; intron; exon: 21517-21729, 21798-23435); the oxaI gene encodes CoA ligase. The oxaJ gene is shown as the 23483-25174 site nucleotide in the sequence 1 of the sequence table (template strand; intron; exon: 23483-24757, 24824-25174); the oxaJ gene encodes a P450 oxidase. The oxaK gene is shown as the 25296-26171 th nucleotide in the sequence 1 of the sequence table (template strand; intron-free); the oxaK gene encodes a Fe (II)/a-KG dependent dioxygenase. The oxaB gene is shown as 26443-27975 nucleotide in sequence 1 of the sequence table (coding strand; containing intron; exon: 26443-27567, 27628-27975); the oxaB gene encodes a P450 oxidase.
The biosynthetic pathway of oxalicine B in oxalicium114-2 is as follows: under the action of polyketide synthase coded by oxaA gene, a-pyrone is formed; ② CoA ligase coded by oxaI gene connects nicotinamide to alpha-pyrone to form HPPO intermediate compound; ③ the diterpene synthase coded by the oxaC gene is responsible for the synthesis from a precursor mevalonic acid to a long-chain diterpene; the isopentenyl transferase coded by the oxaH gene is responsible for transferring the long-chain diterpene to an HPPO biosynthesis intermediate; the monooxygenase coded by the oxaE gene and the terpene cyclase coded by the oxaD gene are responsible for oxidizing the tail end double bond of the intermediate long-chain diterpene to form ternary oxygen ring and cyclizing the diterpene to form intermediate predecatoxin E; sixthly, three oxidoreductases coded by the oxaG gene, the oxaJ gene and the oxaF gene participate in a cascade reaction system from predecaurin E to decacaturin C, wherein P450 oxidase (OxaG) participates in the spiro formation on the right side of an oxaicine B molecule; after this, in P450 oxidase (OxaL), Fe-dependent2+Under the combined action of the a-KG dioxygenase (OxaK) and the P450 oxidase (OxaB), the target compound molecule oxaticine B is generated, wherein OxaL is responsible for C-15 hydroxylation reaction, OxaK is responsible for introducing C-23 hydroxyl groups, and OxaB participates in left-side spiro formation of the oxaticine B molecule. The OxaM-encoded NADPH-P450 oxidoreductase does not participate in the oxalicineB molecular biosynthetic pathwayThe specific scaffold synthesis, ligation or modification reaction of (1) is a chaperone protein for P450 oxidase.
Example 2 preparation of an oxaA Gene knock-out Strain
Construction of first, knockout vectors
oxaA gene knockout vectors: is a recombinant plasmid pXW 06-delta oxaA obtained by replacing a small fragment between NdeI and PmeI enzyme cutting sites of a yeast expression plasmid pXW06 with a DNA molecule shown in a sequence 4 of a sequence table. In the DNA molecule shown in the sequence 4 of the sequence table, the 1-2200 th nucleotide is the oxaA-UP of the upstream homologous arm of the oxaA gene, the 2201-3802 th nucleotide is the hygromycin resistance gene, and the 3803-5926 th nucleotide is the oxaA-DN of the downstream homologous arm of the oxaA gene.
Second, protoplast transformation
1. Spores of P.oxalicum114-2 were washed with Osmotic buffer, suspended in 10mL of a Trichoderma lyase solution, and cultured at 30 ℃ for 4 hours with shaking at 120 rpm.
Osmatic buffer (pH5.8): containing 1.2M MgSO4And 20mM sodium phosphate, balance water. 10mL of Trichoderma lyase solution: consists of 10mg of Trichoderma lyase and 10mL of Osmotic buffer. Trichoderma lyase (1U/mg): sigma, L1412-5G.
2. After the step 1 is completed, collecting the upper layer liquid containing the protoplast, adding an equal volume of STC buffer solution, centrifuging at 3000rpm for 5min, and collecting the precipitate (the precipitate is the protoplast).
STC buffer (ph 7.0): contains 1.0M sorbitol and 0.1M Tris-HCl, the balance being water.
3. Suspending the precipitate obtained in step 2 in 200-500. mu.L STC buffer solution, adding 50. mu.L oxaA gene knockout carrier, standing on ice for 20min, and adding 1.0mL 60% PEG6000The buffer solution was spread on a screening medium plate and cultured upright at 28 ℃.
60%PEG6000Buffer (ph 7.5): containing 5mM CaCl250mM Tris-HCl and 60g/100mL PEG6000And the balance being water.
Screening a culture medium: PDA medium containing 200. mu.g/ml hygromycin B.
4. The clone that can normally grow in step 3 was transferred to a new screening medium plate and cultured upright at 28 ℃.
After completion of step 4, 130 hygromycin-resistant transformants were selected for normal growth.
Thirdly, screening recombinant bacteria
Randomly picking 10 hygromycin resistant transformants obtained in step two (4), and performing molecular identification by using P.oxalicum114-2 as a wild strain control (WT).
1. Extracting the genome DNA.
2. Taking genome DNA as a template, adopting a primer pair consisting of hph-for and hph-rev (the target sequence is positioned in the hygromycin resistance gene) to carry out PCR amplification, and then sequencing the amplified product. All 10 transformants showed amplification products of the expected size (515bp), and the sequencing showed that the amplification products were indeed the target amplification products.
hph-for:TCGTTATGTTTATCGGCACT;hph-rev:TGTTGGCGACCTCGTATT。
3. PCR amplification was performed using genomic DNA as a template and a primer set consisting of Check ALs for and Check hph rev. The Check ALs for gene is from the upstream region of the left homology arm, and the Check hph rev is from the hygromycin resistance gene region. The oxaA gene knockout strain can amplify a PCR fragment (3065bp), and a wild strain cannot realize amplification.
Check ALs for:GCAGATTTGATGCGAAGG;Check hph rev:GAACCCGCTCGTCTGGCTAAG。
4. PCR amplification was performed using genomic DNA as a template and a primer set consisting of Check hph for and Check ARs rev. The Check hph for gene region from hygromycin resistance, the Check ARs rev from the right homology arm downstream region. The oxaA gene knockout strain can amplify a PCR fragment (2524bp), and the wild strain cannot realize amplification.
Check hph for:TGGCTGTGTAGAAGTACTCGC;Check ARs rev:TTCCTATCACGGGTCAGC。
5. PCR amplification was performed using genomic DNA as a template and a primer set consisting of Check ALs for and Check ALs rev. The wild strain can amplify a PCR fragment (2467bp), and the oxaA gene knockout strain cannot realize amplification.
Check ALs rev:CTGTGGACTGGCATTGATA。
The electrophoretogram of each amplification product is shown in A of FIG. 4. In A of FIG. 4, lanes 1 and 5 are both amplification products obtained by PCR amplification using a primer pair consisting of Check ALs for and Check hph rev, lanes 2 and 6 are both amplification products obtained by PCR amplification using a primer pair consisting of Check hph for and Check ARs rev, and lanes 3 and 7 are both amplification products obtained by PCR amplification using a primer pair consisting of Check ALs for and Check ALs rev.
Example 3 preparation of oxaL Gene knock-out Strain
Construction of first, knockout vectors
oxaL gene knockout vectors: is a recombinant plasmid pXW 06-delta oxaL obtained by replacing a small fragment between NdeI and PmeI enzyme cutting sites of a yeast expression plasmid pXW06 with a DNA molecule shown in a sequence 5 in a sequence table. In the DNA molecule shown in the sequence 5 of the sequence table, the 1 st-2090 th nucleotide is the oxaL-UP of the upper homologous arm of the oxaL gene, the 2091 st-3692 th nucleotide is the hygromycin resistance gene, and the 3693 th-5716 th nucleotides are the oxaL-DN of the lower homologous arm of the oxaL gene.
Second, protoplast transformation
The same procedure as in example 2 was repeated except that the oxa L knock-out vector was used instead of the oxaA knock-out vector.
After completion of step 4, 120 hygromycin-resistant transformants were selected for normal growth.
Thirdly, screening recombinant bacteria
Randomly picking 10 hygromycin resistant transformants obtained in step two (4), and performing molecular identification by using P.oxalicum114-2 as a wild strain control (WT).
1. Extracting the genome DNA.
2. Taking genome DNA as a template, adopting a primer pair consisting of hph-for and hph-rev (the target sequence is positioned in the hygromycin resistance gene) to carry out PCR amplification, and then sequencing the amplified product. All 10 transformants showed amplification products of the expected size (515bp), and the sequencing showed that the amplification products were indeed the target amplification products.
hph-for:TCGTTATGTTTATCGGCACT;hph-rev:TGTTGGCGACCTCGTATT。
3. PCR amplification was performed using genomic DNA as a template and a primer pair consisting of Check LLs for and Check hph rev. The Check LLs for was derived from the upstream region of the left homology arm, and the Check hph rev was derived from the hygromycin resistance gene region. The oxaL gene knockout strain can amplify a PCR fragment (2994bp), and the wild strain cannot realize amplification.
Check LLs for:TCACGCTATACGAAACGA;Check hph rev:GAACCCGCTCGTCTGGCTAAG。
4. PCR amplification was performed using genomic DNA as a template and a primer pair consisting of Check hph for and Check LRs rev. The Check hph for gene region is derived from the hygromycin resistance gene region, and the Check LRs rev is derived from the right homology arm downstream gene region. The oxaL gene knockout strain can amplify a PCR fragment (2607bp), and a wild strain cannot realize amplification.
Check hph for:TGGCTGTGTAGAAGTACTCGC;Check LRs rev:TGGGCTGATGCTGAAGAAA。
5. PCR amplification was performed using genomic DNA as a template and a primer pair consisting of Check LRs for and Check LRs rev. The wild strain can amplify a PCR fragment (2532bp), and the oxaL gene knockout strain cannot realize amplification.
Check LRs for:TGCGGTAGGATGACGACG。
The results are shown in B of FIG. 4. In FIG. 4B, lanes 1 and 5 are both PCR-amplified products using a primer pair consisting of Check LLs for and Check hph rev, lanes 2 and 6 are both PCR-amplified products using a primer pair consisting of Check hph for and Check LRs rev, and lanes 3 and 7 are both PCR-amplified products using a primer pair consisting of Check LRs for and Check LRs rev.
Example 4 Metabolic Spectroscopy HPLC analysis
Test strains: p. oxalicum114-2 (WT), the oxaA gene knock-out strain (Δ oxaA) prepared in example 2, or the oxaL gene knock-out strain (Δ oxaL) prepared in example 3, respectively.
The test strains were inoculated onto MEPA medium plates (plate diameter: 3cm), and subjected to static culture at 28 ℃ for 6 days. Then, all the cultures (the whole culture system including the culture medium) were collected into a 15ml centrifuge tube, and 5ml of ethyl acetate was added for ultrasonic extraction at room temperature for 30min (ultrasonic frequency 25KHz, ultrasonic power 800W). Then centrifuged at 5000rpm for 10min, the supernatant was collected, the solvent was evaporated with a solvent evaporation station (GeneVac EZ-2), then 500. mu.L of acetonitrile (chromatographically pure) was added to dissolve the residue, and then centrifuged at 13000rpm for 10min, and the supernatant was collected.
The supernatant was applied to Agilent1290 for HPLC analysis.
Chromatograph: high performance liquid chromatograph (Agilent1290 tandem liquid phase evaporative light scattering detector ELSD);
a chromatographic column: agilent ZORBAX SB-C18,5 μm,4.6 × 250 mm; the flow rate was 1 mL/min.
And (3) an elution process: the elution time is 30 min; the eluent consists of acetonitrile and water; from the initial time to the end time, the volume fraction of acetonitrile in the eluent linearly increased from 5% to 99%.
The results are shown in FIG. 5. Oxalicum114-2 can produce the target compound molecule oxalicine B (the corresponding peak is labeled 1). The oxacicine B gene knockout strain cannot generate the oxacicine B, and further proves that the gene cluster discovered in the embodiment 1 is the oxacicine B biosynthesis gene cluster. The oxaL knock-out strain was also unable to produce oxalicine B while accumulating intermediate compound molecules (corresponding peaks are labeled 2, 3, and 4; 2 is compound 2, 3 in example 5, compound 3 in example 5, and 4 is compound 4 in example 5).
Example 5 isolation and purification of intermediate Compounds produced by OxaL Gene knock-out strains and structural characterization
Preparation, separation and purification of compound
1. The oxaL knock-out strain (. DELTA.oxaL) prepared in example 3 was collected and suspended in sterile water to give a spore concentration of (1-2). times.106Spore suspension of individual/ml; 300-400. mu.l of spore suspension was inoculated into a MEPA medium plate (15 cm in diameter) and incubated at 28 ℃ for 6 days. At least 150 repetitive treatments are set.
2. Mixing all the cultures (the whole culture system containing the culture medium) of the 150 plates completing the step 1, adding 5L ethyl acetate, performing ultrasonic extraction at room temperature for 3 hours, and collecting an organic phase; adding 5L ethyl acetate into the remainder, performing ultrasonic extraction at room temperature for 3h, and collecting an organic phase; adding 5L ethyl acetate into the remainder, performing ultrasonic extraction at room temperature for 3h, and collecting an organic phase; combining the organic phases obtained by three extractions, and concentrating under reduced pressure at 40 ℃ to constant weight to obtain 12g of extract. Ultrasound parameters of ultrasound extraction: the ultrasonic frequency is 25KHz, and the ultrasonic power is 800W.
3. Dissolving the extract obtained in the step 2 in dichloromethane-methanol, uniformly stirring with 20g of normal phase silica gel (60-100 meshes), concentrating to constant weight by adopting a rotary evaporator to obtain a solid sample, filling the solid sample into a sample column, connecting the sample column with a chromatographic column, and separating by using a chromatograph.
The chromatographic column is a normal phase silica gel chromatographic column, and the filling medium is column chromatography silica gel (200-300 meshes, 330 g).
The chromatograph is a Combiflash Rf200 preparative chromatograph manufactured by TELEDYNE ISCO.
Mobile phase A: dichloromethane; mobile phase B: acetone. Flow rate of mobile phase: 30 mL/min. Detection wavelength: 230 nm.
And (3) an elution process: 0-5min, wherein the mobile phase is all mobile phase A; 5-80min, the volume fraction of the mobile phase B in the mobile phase is linearly increased from 0% to 100%, and the volume fraction of the corresponding mobile phase A in the mobile phase is linearly decreased from 100% to 0%; 80-105min, and the mobile phase is the mobile phase B.
The eluent after passing through the column is collected continuously in the whole elution process, 1 bottle is collected every 150mL, and 21 bottles are collected. The 1 st to 4 th bottles were combined as the part stream Fr.1, the 5 th to 9 th bottles were combined as the part stream Fr.2, the 10 th to 12 th bottles were combined as the part stream Fr.3, the 13 th to 14 th bottles were combined as the part stream Fr.4, the 15 th to 19 th bottles were combined as the part stream Fr.5, and the 20 th to 21 th bottles were combined as the part stream Fr.6.
And (4) concentrating each flow part to constant weight by adopting a rotary evaporator to obtain dry matters.
4. The dry matter (79mg) of fraction fr.2 obtained in step 3 was dissolved in dichloromethane-methanol, then loaded and separated by gel column chromatography. The column specification for gel column chromatography was 30X 1700mm (diameter. times. length) and the packing medium was Sephadex LH-20(80 g). The mobile phase is as follows: dichloromethane-methanol. The eluate after passing through the column is collected continuously in 1-100mL (i.e. flow Fr.2-1), and then 10 bottles (flow Fr.2-2 to Fr.2-11) are collected in total every 20mL collection 1.
And (4) concentrating each flow part to constant weight by adopting a rotary evaporator to obtain dry matters.
5. The fraction Fr.2-5 (16mg) obtained in step 4 was dissolved in 0.5mL of methanol and then subjected to separation and purification by chromatography.
Chromatograph: hanbang NP 7000.
A chromatographic column: SunAire C18, 10mm 250mm, pore size 5 μm, Waters corporation.
Mobile phase: consisting of 45 parts by volume of acetonitrile and 55 parts by volume of water. Flow rate of mobile phase: 6 mL/min. Detection wavelength: 230 nm.
And collecting the eluate after passing through the column, which corresponds to the peak value and has a retention time of 12.1min, and concentrating the eluate to constant weight by using a rotary evaporator to obtain 2.3mg of a yellow solid product, namely the compound 3.
6. The dry matter of fraction fr.3 obtained in step 3 (117.8mg) was dissolved in dichloromethane-methanol, then loaded and separated by gel column chromatography. The column specification for gel column chromatography was 30X 1700mm (diameter. times. length) and the packing medium was Sephadex LH-20(80 g). The mobile phase is as follows: dichloromethane-methanol. The eluate after passing through the column is collected continuously in 1-100mL (i.e. flow Fr.3-1), and then 11 bottles (flow Fr.3-2 to Fr.3-12) are collected in total every 20mL collection 1.
And (4) concentrating each flow part to constant weight by adopting a rotary evaporator to obtain dry matters.
7. The fraction Fr.3-5 (20mg) as a dry substance obtained in step 6 was dissolved in 0.5mL of methanol, followed by separation and purification by chromatography.
Chromatograph: hanbang NP 7000.
A chromatographic column: SunAire C18, 10mm 250mm, pore size 5 μm, Waters corporation.
Mobile phase: consisting of 45 parts by volume of acetonitrile and 55 parts by volume of water. Flow rate of mobile phase: 6 mL/min. Detection wavelength: 230 nm.
And collecting the eluate after passing through the column, which corresponds to the peak value and has a retention time of 8.7min, and concentrating the eluate to constant weight by using a rotary evaporator to obtain 8.7mg of a yellow solid product, namely the compound 4.
8. The dry matter (115mg) of fraction fr.5 obtained in step 3 was dissolved in dichloromethane-methanol, then loaded and separated by gel column chromatography. The column specification for gel column chromatography was 30X 1700mm (diameter. times. length) and the packing medium was Sephadex LH-20(80 g). The mobile phase is as follows: dichloromethane-methanol. The eluate after passing through the column is collected continuously in 1-100mL (i.e. flow Fr.5-1), and then 14 bottles (flow Fr.5-2 to Fr.5-15 in sequence) are collected in every 20mL collection 1 bottle.
And (4) concentrating each flow part to constant weight by adopting a rotary evaporator to obtain dry matters.
9. The fraction Fr.5-5 (26.5mg) as a dry substance obtained in step 8 was dissolved in 0.7mL of methanol, followed by separation and purification by chromatography.
Chromatograph: hanbang NP 7000.
A chromatographic column: SunAire C18, 10mm 250mm, pore size 5 μm, Waters corporation.
Mobile phase: consisting of 40 parts by volume of acetonitrile and 60 parts by volume of water. Flow rate of mobile phase: 6 mL/min. Detection wavelength: 230 nm.
And collecting the eluate after passing through the column, which corresponds to the peak value and has a retention time of 7.0min, and concentrating the eluate to constant weight by using a rotary evaporator to obtain 13.9mg of a yellow solid product, namely the compound 2.
10. The dry matter (185.8mg) of fraction fr.6 obtained in step 3 was dissolved in dichloromethane-methanol, then loaded and separated by gel column chromatography. The column specification for gel column chromatography was 30X 1700mm (diameter. times. length) and the packing medium was Sephadex LH-20(80 g). The mobile phase is as follows: dichloromethane-methanol. The eluate after passing through the column is collected continuously in 1-100mL (i.e. flow Fr.6-1), and then 10 bottles (flow Fr.6-2 to Fr.6-11) are collected in total every 20mL collection 1.
And (4) concentrating each flow part to constant weight by adopting a rotary evaporator to obtain dry matters.
11. The fraction Fr.6-6 (15mg) as a dry substance obtained in step 10 was dissolved in 0.5mL of methanol, followed by separation and purification by chromatography.
Chromatograph: agilent 1100.
A chromatographic column: YMC-C18, 10mm by 250mm, pore diameter 5 μm, Japan YMC Co.
Mobile phase: consisting of 35 parts by volume of acetonitrile and 65 parts by volume of water. Flow rate of mobile phase: 4 mL/min. Detection wavelength: 230 nm.
And collecting the eluate after passing through the column, which corresponds to the peak value and has a retention time of 17.4min, and concentrating the eluate to constant weight by using a rotary evaporator to obtain 1mg of a light yellow solid product, namely the compound 7.
12. The dry matter of fraction fr.1 obtained in step 3 (138.1mg) was dissolved in dichloromethane-methanol, then loaded and separated by gel column chromatography. The column specification for gel column chromatography was 30X 1700mm (diameter. times. length) and the packing medium was Sephadex LH-20(80 g). The mobile phase is as follows: dichloromethane-methanol. The eluate after passing through the column is collected continuously in 1-100mL (i.e. flow Fr.1-1), and then 11 bottles (flow Fr.1-2 to Fr.1-12) are collected in total every 20mL collection 1.
And (4) concentrating each flow part to constant weight by adopting a rotary evaporator to obtain dry matters.
13. The fraction Fr.1-3 (0.8mg) obtained in step 12 was dissolved in 0.3mL of methanol and separated and purified by chromatography.
Chromatograph: hanbang NP 7000.
A chromatographic column: SunAire C18, 10mm 250mm, pore size 5 μm, Waters corporation.
Mobile phase: consisting of 50 parts by volume of acetonitrile and 50 parts by volume of water. Flow rate of mobile phase: 6 mL/min. Detection wavelength: 230 nm.
And collecting the eluate after passing through the column with the retention time of 22.5min corresponding to the peak value, and concentrating to constant weight by using a rotary evaporator to obtain 0.4mg of a yellow solid product, namely the compound 6.
14. The fraction Fr.1-5 (22.8mg) obtained in step 12 was dissolved in 0.5mL of methanol and separated and purified by chromatography.
Chromatograph: hanbang NP 7000.
A chromatographic column: SunAire C18, 10mm 250mm, pore size 5 μm, Waters corporation.
Mobile phase: consisting of 45 parts by volume of acetonitrile and 55 parts by volume of water. Flow rate of mobile phase: 6 mL/min. Detection wavelength: 230 nm.
Collecting eluate after passing through the column with retention time of 17.4min corresponding to the peak value, and concentrating to constant weight by using a rotary evaporator to obtain 4.5mg product, namely product Fr.1-5-1.
15. The whole product Fr.1-5-1 obtained in step 14 was dissolved in 0.3mL of methanol and separated and purified by chromatography.
Chromatograph: agilent 1100.
A chromatographic column: YMC-C18, 10mm by 250mm, pore diameter 5 μm, Japan YMC Co.
Mobile phase A: water; mobile phase B: and (3) acetonitrile. Flow rate of mobile phase: 4 mL/min. Detection wavelength: 230 nm.
Elution procedure: and (3) linearly increasing the volume fraction of the mobile phase B in the mobile phase from 70% to 100% in 0-10min, and linearly decreasing the volume fraction of the mobile phase A in the corresponding mobile phase from 30% to 0%.
And collecting the solution after passing through the column of the elution peak with the retention time of 4.1min corresponding to the peak value, and concentrating the solution to constant weight by adopting a rotary evaporator to obtain 0.9mg of a yellow solid product, namely the compound 5.
II, identification of the Compound
In the first step, 1oxalicine compound (compound 4) and 5 decaturin analogues (compound 2, compound 3, compound 7, compound 5 and compound 6) are separated. Through nuclear magnetic resonance and mass spectrometry analysis, 3 main compounds, namely 15-deoxyaxalicine B (compound 4), decaturin C (compound 3) and decaturin A (compound 2), are identified and are all intermediates for biosynthesis of the compound oxalicine B. By nuclear magnetic resonance and mass spectrometry analysis, 3 additional compounds were identified, decaturin H (compound 5), decaturin I (compound 6) and decaturin F (compound 7), respectively. decaturin I (Compound 6) and decaturin F (Compound 7) are novel decaturin derivatives.
The identification data for each compound is as follows:
process for preparation of Compound 5HRESIMS ion peak is M/Z504.2369 [ M + H ]]+, corresponding to formula C with 15 degree of unsaturation30H33NO6. Process for preparation of Compound 51H、13C and HSQC NMR data show the presence of 4 methyl groups [ Delta ]H 0.84(3H,s),δC17.1;δH1.04(3H,s),δC 26.1;δH 1.05(3H,s),δC 15.5;δH 1.64(3H,s),δC 18.0]One alkenylmethine [ delta ]H5.72(1H,d,J=5.4Hz),δC 128.4]And typically a pyridine-alpha-pyrrolidine group [ delta ]H 7.27(1H,s),δC94.1;δH 7.56(1H,br s),δC 124.1;δH 8.23(1H,d,J=7.8Hz),δC 133.1;δH 8.71(1H,br s),δC 151.4;δH 9.10(1H,br s),δC 146.7;δC 169.8,159.6,159.5,127.3,and 101.3]. Process for preparation of Compound 51H and13the C NMR spectrum was similar to decaturin C (Compound 3), with the obvious difference being the carbonyl signal (. delta.) in Compound 3C173.5) rather than having an oxymethylene signal [ (delta) as in compound 3H 4.07(1H,dd,J=9.0,3.0Hz),3.73(1H,d,J=9.0Hz);δC 66.3]. The location of the carbonyl group is further confirmed by correlation of C-29/H-19, H-23 and H-25 in HMBC. By means of the counter-current to the DEPT,1H-1detailed analysis of H COSY, HSQC, HMBC spectra established a complete assignment for compound 5. By analysis of1H and13c NMR data, NOESY correlation and ECD spectra and the basis of biogenetic, the relative and absolute configuration of compound 5 was the same as compound 3. In summary, compound 5 may not be a precursor to oxalicine B, but is apparently a product of other pathways.
The HRESIMS ion peak of the compound 6 is M/Z518.2528 [ M + H ]]+And C is31H35NO6The molecular formula (a) is consistent, indicating that a methyl group may be introduced compared to compound 5. Process for preparation of Compound 61H and13c NMR data was similar to that of Compound 5 except for the presence of a methoxy moiety (. delta.) (H 3.30;δC50.5). Correlation of H-34 to C-27 from the HMBC spectra confirms the position of the methoxy group. According to nuclear magnetic resonance numberOn the basis of NOESY experiments and ECD spectroscopy and biogenetic, the stereochemistry of compound 6 was similar to that of compound 5.
Of Compounds 5 and 61H-NMR and13the C-NMR data are shown in Table 3.
TABLE 3 of Compound 5 and Compound 61H-NMR and13C-NMR data
Figure BDA0003439060910000121
Figure BDA0003439060910000131
Spectroscopic data for compound 2: (+) ESI-MS M/z 506.5[ M + H]+1H-NMR(600MHz,DMSO-d6)δ:9.09(1H,d,J=2.4Hz),8.38(1H,dd,J=4.8,1.8Hz),8.24(1H,ddd,J=8.4,1.8,1.8Hz),7.55(1H,dd,J=8.4,4.8Hz),7.35(1H,s),5.67(1H,d,J=5.4Hz),3.98(1H,dd,J=9.0,3.0Hz),3.73(1H,d,J=9.0Hz),3.05(1H,d,J=16.2Hz),2.84(1H,d,J=16.2Hz),2.17(1H,dd,J=12.6,5.4Hz),1.99(1H,m),1.95(1H,m),1.93(1H,m),1.84(1H,m),1.80(1H,m),1.69(1H,m),1.61(3H,s),1.54(1H,m),1.48(1H,m),1.46(1H,m),1.19(1H,m),0.93(3H,s),0.83(3H,s),0.81(3H,s);13C-NMR(150MHz,DMSO-d6)δ:170.1,159.6,159.5,151.4,146.7,133.0,131.0,128.2,127.2,124.0,101.2,99.7,97.5,94.1,72.9,66.4,46.3,40.0,38.9,37.7,29.1,28.5,27.7,24.7,24.5,22.6,21.1,20.0,18.4,15.3。
Spectroscopic data for compound 3: (+) ESI-MS M/z 490.6[ M + H]+1H-NMR(600MHz,DMSO-d6)δ:9.09(1H,br s),8.70(1H,br s),8.25(1H,br d,J=7.8Hz),7.56(1H,dd,J=7.8,4.8Hz),7.30(1H,s),5.68(1H,br d,J=5.4Hz),4.07(1H,dd,J=9.0,2.4Hz),3.73(1H,d,J=9.0Hz),3.04(1H,d,J=16.2Hz),2.85(1H,d,J=16.2Hz),2.10(1H,m),2.08(1H,m),1.99(1H,m),1.78(1H,m),1.67(1H,dd,J=12.0,4.2Hz),1.64(1H,m),1.61(3H,s),1.55(1H,m),1.50(2H,m),1.25(1H,m),1.23(1H,m),1.12(1H,m),0.91(3H,s),0.88(3H,s),0.83(3H,s);13C-NMR(150MHz,DMSO-d6)δ:169.9,159.5,159.5,151.2,146.5,133.3,131.1,128.1,127.3,124.1,101.3,99.5,96.9,94.2,66.2,49.5,41.8,40.1,40.1,34.4,34.1,29.8,29.5(C-26),27.6,27.2,22.7,18.6,18.5,17.9,15.8。
Spectroscopic data for compound 4: (+) ESI-MS M/z 504.5[ M + H ]]+1H-NMR(600MHz,DMSO-d6)δ:9.10(1H,br s),8.69(1H,d,J=4.8Hz),8.27(1H,ddd,J=8.4,2.4,1.8Hz),7.57(1H,dd,J=8.4,4.8Hz),7.36(1H,s),5.71(1H,br d,J=5.4Hz),5.09(1H,s),4.88(1H,s),4.48(1H,d,J=12.6Hz),4.43(1H,d,J=12.6Hz),3.07(1H,d,J=16.2Hz),2.87(1H,d,J=16.2Hz),2.61(1H,dd,J=12.0,4.8Hz),2.42(1H,dd,J=16.0,6.0,6.0Hz),2.33(1H,m),2.27(2H,m),2.17(1H,m),2.10(1H,m),1.94(1H,m),1.79(3H,s),1.65(3H,s),1.45(1H,m),1.41(1H,m),1.22(1H,m),0.85(1H,m);13C-NMR(150MHz,DMSO-d6)δ:173.5,170.1,159.5,159.4,151.1,150.5,146.4,133.3,130.7,127.8,127.3,124.1,114.3,101.2,99.9,94.2,75.0,66.9,43.6,41.6,40.1,29.6,27.9,27.6,25.7,24.8,23.5,21.6),18.1,15.2。
Spectroscopic data for compound 7: (+) ESI-MS M/z 492.4[ M + H ]]+1H-NMR(600MHz,DMSO-d6)δ:9.08(1H,br s),8.68(1H,br s),8.24(1H,ddd,J=8.4,1.8,1.8Hz),7.54(1H,dd,J=8.4,4.8Hz),7.36(1H,s),5.65(1H,br s),3.79(1H,d,J=12.0Hz),3.76(1H,d,J=12.0Hz),3.04(1H,d,J=16.2Hz),3.01(1H,dd,J=11.4,4.8Hz),2.88(1H,d,J=16.2Hz),2.65(1H,m),2.24(1H,ddd,J=13.2,3.6,3.6Hz),2.05(1H,m),1.61(3H,s),1.60(1H,overlap),1.58(1H,m),1.55(1H,m),1.44(2H,m),1.42(1H,m),1.34(1H,m),1.02(3H,s),0.89(3H,s),0.78(1H,dd,J=11.4,2.4Hz),0.71(3H,s),0.68(1H,dd,J=13.2,3.6Hz);13C-NMR(150MHz,DMSO-d6)δ:170.0,159.6,159.5,151.4,146.7,133.1,130.3,129.4,127.2,123.9,101.1,100.6,94.3,77.1,59.3,54.7,48.1,40.5,40.5),38.4,32.7,32.1,29.0,27.9,27.5,24.6,18.1,17.2,16.5,16.4。
According to the identification results, the structural formula of each compound is shown in FIG. 6.
Example 6 heterologous expression and functional characterization of P450 oxidase OxaL
Construction of recombinant plasmid
oxaL gene overexpression vector: is a recombinant plasmid pXW06-oxaL obtained by replacing a small fragment between NdeI and PmeI enzyme cutting sites of a yeast expression plasmid pXW06 with a DNA molecule shown in a sequence 2 in a sequence table. The DNA molecule shown in the sequence 2 of the sequence table encodes the OxaL protein shown in the sequence 3 of the sequence table.
II, heterogenous expression and functional identification of P450 oxidase OxaL (Agilent1290 tandem liquid phase evaporation light scattering detector ELSD detection analysis)
1. Washing S.cerevisiae RC01 with Solution I, then re-suspending with Solution II, then adding an oxaL gene over-expression vector, then adding Solution III, vortex-suspending and mixing uniformly, then incubating for 1h at 30 ℃ (vortex-suspending for 1-3 times), then coating on a Trp-auxotrophic culture medium plate, and culturing overnight at 30 ℃.
2. Collecting the clone (yeast gene engineering strain RC01-oxaL) which normally grows on the plate, inoculating the clone into 100ml of liquid Trp-auxotrophic culture medium, and carrying out shaking culture at 30 ℃ and 150rpm for 1 day to obtain the seed solution.
3. 2mL of the seed solution obtained in step 2 was inoculated into 20mL of a liquid YPD medium and cultured at 28 ℃ for 36 hours with shaking at 200 rpm.
4. After completion of step 3, 0.1mg of the test compound was added to the system, and the mixture was cultured at 28 ℃ for 1 day with shaking at 200 rpm.
The test compounds were: compound 2, compound 3, compound 4 or compound 7 prepared in example 5.
A control was set up without the test compound added.
5. After the step 4 is finished, collecting all cultures (the whole culture system containing the culture medium), adding equal volume of ethyl acetate, performing ultrasonic extraction at room temperature for 1 hour, and collecting an organic phase; adding the remainder into ethyl acetate with the same volume, performing ultrasonic extraction at room temperature for 1 hour, and collecting an organic phase; and combining the organic phases obtained by the two extractions, and concentrating to constant weight by adopting a rotary evaporator to obtain an extract. Ultrasound parameters of ultrasound extraction: the ultrasonic frequency is 25KHz, and the ultrasonic power is 800W.
6. Taking the extract in the step 5, adding 500 mu L of acetonitrile (chromatographic purity) to dissolve, then centrifuging at 13000rpm for 10min, and collecting the supernatant; the supernatant was applied to Agilent1290 for HPLC analysis.
Chromatograph: high performance liquid chromatograph (Agilent1290 tandem liquid phase evaporative light scattering detector ELSD);
a chromatographic column: agilent ZORBAX SB-C18,5 μm,4.6 × 250 mm; the flow rate was 1 mL/min.
And (3) an elution process: the elution time is 30 min; the eluent consists of acetonitrile and water; from the initial time to the end time, the volume fraction of acetonitrile in the eluent linearly increased from 5% to 99%.
The results are shown in A of FIG. 7. In a of fig. 7: i OxaL +3 represents the result of adding Compound 3 in the above method, iv OxaL +4 represents the result of adding Compound 4 in the above method, v OxaL +2 represents the result of adding Compound 2 in the above method, vi OxaL +7 represents the result of adding Compound 7 in the above method, ii 8 represents Compound 8 (Standard), iii represents Compound 3 (Standard), and vii OxaL represents the result of the control in which Compound 3 was not added in the above method. The result shows that the compound 3 can be completely converted into the compound 8 through the yeast genetic engineering bacteria RC 01-oxaL; comparing compound 3 with compound 8, hydroxylation occurred at the C-15 position, indicating that OxaL protein is a hydroxylase. From a in fig. 7, no significant conversion was seen for compound 2, compound 4 and compound 7.
Thirdly, heterologous expression and functional identification (UPLC-MS identification analysis) of P450 oxidase OxaL
Steps 1 to 5 are the same as steps 1 to 5 of step two.
6. The product of step 5 was dissolved in 200. mu.l acetonitrile and then subjected to UPLC-MS identification analysis.
The instrument comprises the following steps: ultra high performance liquid mass spectrometry detector (Waters acquisition UPLC-Class-MS tandem Xevo-G2-S Q-TOF).
A chromatographic column: waters ACQUITY UPLC-BEH-C18,1.7 μm, 2.1X 100 mm;
mobile phase A: acetonitrile containing 0.02% (by volume) formic acid; mobile phase B: 0.02% (by volume) aqueous formic acid solution.
Flow rate of mobile phase: 0.5 mL/min.
Mobile phase: the volume fraction of the mobile phase A in the mobile phase is linearly increased to 20% from 10% and the volume fraction of the corresponding mobile phase B in the mobile phase is linearly decreased to 80% from 90% from 0-5 min; 5-7min, wherein the mobile phase A accounts for 20% of the volume fraction of the mobile phase, and the corresponding mobile phase B accounts for 80% of the volume fraction of the mobile phase; and 7-25min, the volume fraction of the mobile phase A in the mobile phase is linearly increased from 20% to 100%, and the volume fraction of the corresponding mobile phase B in the mobile phase is linearly decreased from 80% to 0%.
ESI positive and negative ion detection mode.
The results are shown in B of FIG. 7. In B of fig. 7: i represents the result of adding compound 3 in the above method, v represents the result of adding compound 2 in the above method, and iv represents the result of adding compound 4 in the above method. The results show that: compound 3 can be completely converted into compound 8(M/z 504.2380[ M-H ] through yeast genetic engineering bacteria RC01-oxaL biotransformation]-) Comparing the retention time and the ultraviolet absorption spectrum (lambda max 205,235,335nm), the product generated by the OxaL catalytic compound 3 is the same as the standard compound 8, and the OxaL is further proved to be hydroxylating enzyme; the compound 2 can partially generate a compound 9(M/z 564.2224[ M + HCOOH-H) through the biotransformation of yeast genetic engineering bacteria RC01-oxaL]-) (ii) a Compound 4 can be partially converted into compound 1 (compound 1 namely oxalicine B) (M/z 566.2399[ M + HCOOH-H) through yeast genetic engineering bacteria RC01-oxaL bioconversion]-) (ii) a The yeast genetically engineered bacterium RC01-oxaL cannot carry out biotransformation on the compound 7.
Spectroscopic data for compound 8: (+) ESI-MS M/z 506.6[ M + H]+1H-NMR(600MHz,DMSO-d6)δ:9.13(1H,br s),8.74(1H,br s),8.27(1H,d,J=7.8Hz),7.59(1H,dd,J=8.4,4.8Hz),7.32(1H,s),5.74(1H,d,J=5.4Hz),5.17(1H,s),4.08(1H,d,J=8.4Hz),3.73(1H,overlap),2.60(1H,m),2.08(1H,m),2.04(1H,m),1.99(1H,m),1.86(1H,m),1.66(1H,m),1.63(1H,m),1.50(1H,m),1.42(1H,m),1.46(3H,s),1.15(1H,m),1.11(3H,s),0.92(3H,s),0.85(3H,s);13C-NMR(150MHz,DMSO-d6)δ:170.1,160.6,158.9,151.4,146.7,133.5,130.6,130.3,127.2,124.2,105.6,99.6,96.9,94.4,73.0,66.4,49.5,43.6,40.1,39.8,39.3,34.7,34.5,29.9,29.4,27.2,23.0,18.9,18.6,15.7。
Spectroscopic data for compound 9: (+) ESI-MS m/z 522.4[M+H]+1H-NMR(600MHz,DMSO-d6)δ:9.11(1H,d,J=4.8Hz),8.70(1H,dd,J=4.8,1.8Hz),8.27(1H,ddd,J=8.4,2.4,1.8Hz),7.57(1H,dd,J=8.4,4.8Hz),7.34(1H,s),5.72(1H,dd,J=4.2,1.8Hz),5.16(1H,s),4.00(1H,dd,J=9.0,2.4Hz),3.73(1H,d,J=9.0Hz),2.25(1H,dt,J=13.2,3.6Hz),2.14(1H,t,J=9.0Hz),2.03(1H,m),1.98(1H,m),1.92(1H,m),1.91(1H,m),1.68(1H,m),1.53(1H,m),1.48(1H,m),1.47(3H,s),1.37(1H,dt,J=14.4,3.6Hz),1.07(3H,s),0.93(3H,s),0.84(3H,s);13C-NMR(150MHz,DMSO-d6)δ:170.3,160.6,158.9,151.5,146.8,133.3,130.4,130.4,127.2,124.1,105.5,99.9,97.5,94.3,73.0,72.5,66.5,46.0,40.0,39.8,39.3,29.2,28.6,24.8,24.1,22.9,21.1,20.1,19.0,15.6。
Spectral data of compound 1 (compound 1, oxalicine B): (+) ESI-MS M/z 520.4[ M + H [)]+1H-NMR(600MHz,CDCl3)δ:9.03(1H,br s),8.71(1H,d,J=4.8Hz),8.13(1H,ddd,J=7.8,1.8,1.8Hz),7.42(1H,dd,J=8.4,4.8Hz),6.70(1H,s),5.82(1H,br d,J=5.4Hz),5.52(1H,s),5.20(1H,s),5.08(1H,s),4.51(1H,d,J=12.6Hz),4.41(1H,d,J=12.6Hz),2.65(1H,dd,J=12.6,4.8Hz),2.53(1H,ddd,J=14.4,14.4,4.8Hz),2.45(1H,m),2.43(1H,m),2.33(1H,m),2.33(1H,m),2.26(1H,ddd,J=13.2,13.2,3.6Hz),2.16(1H,ddd,J=18.0,5.4,5.4Hz),1.90(3H,s),1.61(1H,m),1.61(3H,s),1.45(1H,ddd,J=14.4,3.6,3.6Hz),1.30(1H,m),1.20(1H,s);13C-NMR(150MHz,CDCl3)δ:173.4,170.4,161.9,160.1,152.0,150.7,147.2,133.4,130.7,129.9,127.3,123.7,115.1,105.6,101.1,93.9,76.3,74.4,67.8,44.6,43.6,41.1,29.9,29.3,26.0,24.5,24.5,21.7,19.4,15.9。
Four, UPLC-MS identification of OxaL microsome in vitro biochemistry
1. Washing S.cerevisiae RC01 with Solution I, then re-suspending with Solution II, then adding an oxaL gene over-expression vector, then adding Solution III, vortex-suspending and mixing uniformly, then incubating for 1h at 30 ℃ (vortex-suspending for 1-3 times), then coating on a Trp-auxotrophic culture medium plate, and culturing overnight at 30 ℃.
2. Collecting the clone (yeast gene engineering strain RC01-oxaL) which normally grows on the plate, inoculating the clone into 100ml of liquid Trp-auxotrophic culture medium, and carrying out shaking culture at 30 ℃ and 150rpm for 1 day to obtain the seed solution.
3. 2mL of the seed solution obtained in step 2 was inoculated into 20mL of a liquid YPD medium and cultured at 28 ℃ for 2 days with shaking at 200 rpm.
4. After completion of step 3, the cells were collected by centrifugation at 4 ℃ and resuspended in 2mL of microsomal extract.
Microsome extract: TES buffer solution containing 10g/L bovine serum albumin, 2mM beta-mercaptoethanol and the balance of pH7.5.
5. A2 mL Eppendorf centrifuge tube was added 1mL of the resuspension from step 4, followed by 2/3-height glass beads (Sigma, G9268, 425 μm-600 μm) and vortexed (1 min/time, 6 times total, each time after vortexing and ice-cooling) to disrupt the cell walls.
6. After completion of step 5, 750. mu.l of the suspension was centrifuged at 4000rpm for 5min at 4 ℃ and the supernatant was collected.
7. And (4) centrifuging the supernatant obtained in the step (6) at the temperature of 4 ℃ and at the rpm of 17000 for 50min, discarding the supernatant, and collecting the precipitate.
8. And (3) adding an appropriate amount of TEG buffer solution into the precipitate obtained in the step (7), gently stirring, and subpackaging in 1.5ml Eppendorf centrifuge tubes, 100 mul/tube.
TEG buffer (ph 7.5): containing 50mM Tris-HCl, 1mM EDTA, 30% glycerol, and the balance water.
9. Preparing a reaction system and carrying out reaction.
Reaction system: 50. mu.l of the solution obtained in step 8,1. mu.l of a test compound stock solution, and 49. mu.l of 50mM Tris-HCl buffer (pH 7.5).
Reaction conditions are as follows: the reaction was allowed to stand at 30 ℃ for 12 hours.
The test compounds were: compound 2, compound 3, compound 4 or compound 7 prepared in example 5.
Test compounds were dissolved in DMSO to give a test compound stock solution having a compound concentration of 50 mg/ml.
10. After step 9, adding 50 μ l of methanol into the system, vortexing and shaking for 1min, then centrifuging at 13000rpm for 10min, and taking 30 μ l of supernatant to perform UPLC-MS identification analysis.
And identifying and analyzing parameters of the UPLC-MS in the same way as the step three 6.
The results are shown in C of FIG. 7. The results are consistent with those of step three.
The results show that: compound 3 can generate compound 8(M/z 504.2392[ M-H ] through oxaL catalysis]-) (ii) a The compound 2 can partially generate a compound 9(M/z 564.2217[ M + HCOOH-H) through oxaL catalysis]-) (ii) a Compound 4 can partially generate compound 1(M/z 520.2348[ M-H ] through oxaL catalysis]-). OxaL does not catalyze the formation of other compounds from compound 7.
Example 7 Oxalicine B biosynthesis late pathway analysis
The separation and identification of intermediate compounds such as a gene knockout strain delta oxaL and the like are combined, and the intermediate compounds are obtained by carrying out separation and identification on P450 oxidase OxaL and Fe dependence2+The analysis of the functions of the a-KG dioxygenase OxaK and the P450 oxidase OxaB predicts 4 possible biosynthetic pathways from decaturin C to the target compound Oxalicin B in the later stage of the Oxalicin B biosynthesis, but mainly takes the 1 st pathway, as shown in FIG. 8. OxaL is responsible for the hydroxylation reaction of C-15, OxaK is responsible for the introduction of a C-23 hydroxyl group, and OxaB participates in the spiro formation on the left side of an oxalicine B molecule.
The present invention has been described in detail above. It will be apparent to those skilled in the art that the invention can be practiced in a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation. While the invention has been described with reference to specific embodiments, it will be appreciated that the invention can be further modified. In general, this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains. The use of some of the essential features is possible within the scope of the claims attached below.
Sequence listing
<110> institute of medical and Biotechnology of Chinese academy of medical sciences
<120> compound oxalicine B biosynthesis gene cluster and C-15 hydroxylase OxaL and application
<130> GNCYX213577
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 28137
<212> DNA
<213> Penicillium oxalicum
<400> 1
cagggagatc acgaggaaga cacaggaaaa caaaagttgc gtgaatagac ccacaagcat 60
gatattttgt ccgacgtccg ccatcgatgc ttgggttatc atgccgccac cgccggcttg 120
gagaaggatg gcaataacgt caccgcatac aaagacttta gtcactcgag ccgaaggaat 180
catgcttgtc ttaggcgtgc tgacgaagag cgcaatacat ccgtacatca tatcatagag 240
agttgcagcg taaaggtggg tggggggggg gggggggtgg gcaggacgac gagcagagat 300
tcaatgcatg atgtatgggc ctaggtcgaa aggtgacttg gcggaaaaga tctcgcaatg 360
taaccggtgg tcatccctac ctaagaacag ggattatgag ctgcatcgat gggggagatt 420
caagacggac tcctcctgca tatggagttc gacacgagat ccggaggtca gactatccaa 480
tatgaaagcg aggatcacct tgcgacatgg caaatcaacc caaacggtga agtcattctc 540
atcgcaagcc tgttcaagtg ggacaagaag accttgaagg caaacattga aatcagaccg 600
catggttctg cccttgacgg ctccgtcgca gtcttcggcg ttgcaccaac cacaagggaa 660
acactgctac attatcagct cgacatctgc ggaccagtca ctcctgaaat gctggagctg 720
cttgccgcct atagcccggg gccagcagcc aagaagtatc taaatcgcta ccgattcgaa 780
tgcctgagta cctcggacat ctccagaaat ctcctcaccc gtgggcagct gatgaagcag 840
gctgccagca aagcagtgtg gcccgaggaa gaattctcta ccttgatctc cattatgccg 900
agactccgcc tgtggtattt ctccatcgtc tcctcgcctc gtgtgaaccc atcttccatc 960
gccatcaccg ctggtgtcct cgaaacaaca attgcacaca ctgatcgagg attcattggc 1020
ttgacggcgg gctacctgca ttctttgcac ctgaaagaaa accaactcaa ctcaagcgat 1080
gaacctgagt cttccaacaa ccttgaagga ccacgatcta tcgtgaaaga ccacaagcta 1140
ttcgcccaca tccgcaaatc aaggttcagg cttccagaca gtgatgagac tccaattatc 1200
ttcatcgctg ccggaagtgg catcacacca ttcagagcct ttgttcagaa gcggaagctt 1260
ctttcaagta agggtatcag tgggtaagat ggttcttttc tatgagtctc gctccgagga 1320
ggattgtctg taaaaggacg tctagatgga agtggaggcg atagggatct tagacaccca 1380
cttcgtgtac tcgtctcgat tggtggatgg aaagaatttc tacgtgcagg acaaaatgta 1440
cacattttgc agagaccatg aatcaattga ttcagacgga ggatgcgtca atttatgtct 1500
gcggaggctc tagcatggcc aatgatgtga aagccatcac ggtcactcga gtccttggcg 1560
gcatcggggc tgtccagcaa ttgaagagat ctagacggct ataggaaggt gtttgggggt 1620
agcaagtgtt tcattcatgc tatttgtttc tccgcaatga caagatctac atattgaaca 1680
aaaacgtatg gaaagtgtga ccttcatgac tcacatgagt ctgcatgtca ggctagcaag 1740
tcaaggcccg aattttgaac gctagagatc ttctagatgc tcatcctctc cgtgtccaaa 1800
ttagccctag tacaaacatc aatcccagaa taacgcccca tatttctttt ccactccctg 1860
tagtattttc agtccatcca ttggcggccc tagttggaat tggaatgaag ttcaaccttg 1920
cagcgccttt aattgcttgt gatgctcccc tggcttgtat tttaccggca tatggtaata 1980
catatcgggc gaaaaagcgg aggaagaaag tgtcccgcgc ttgtaaacgg acaaccagcc 2040
gcgcaacttt gtgaatttta tgcattcgtg cttttcgctc agccgtatac cgccttagcc 2100
tattgtccaa ttgttccgtg cttggtttgc tgcttgggct ggcaatgagg aattcatgaa 2160
gcagattggc taggccggcg gcatcttcaa tagcacaatt ggcgccttgt ccggtgttgg 2220
gggcgatcta cctggagtta gcttctgctt tgatgtagga aaattaaggt ggtatgtacc 2280
ttatgtatac tgtccccaat gcaaactatg cgcttatgat gccagttctc aaatacattc 2340
tcttcgagaa ctgtcatgtt atgccttgtt ctccgagtcc agaggtcgcg aaacgccacc 2400
tcgccccaga taatatcgtt tgcgtatttt tcaaccacgg atgccacatc ggttgttgcg 2460
aaacgaggca tatcgccatc ggaatagagc cgatcaagtt tccagatcaa aaaccaaaat 2520
gtgcgatcat ggtttccagg aaaggttaag aatgaccgtt tgtcgttgag gctggcaacg 2580
tgctcgccgg gtgggaatcc cggcactgcg gaggatatgc cgaaaacgca gccatactcc 2640
gctgtgagac ctgttcactg ttagctgcct tctttgatgt atgaagtata ttcaacaagg 2700
gacaattggc acaaaccgtc tctcccaaca ggttccataa tttctccgtc ttcggcagag 2760
attctccaca tttcccggcg gacaatgcta tgcaccccat cacaacccac cactagatct 2820
cccttatagt cttctccatc cttcgttctt accaagactc cttctcgctt tcctcccgaa 2880
tcagcaatga gctcaacccg tgcaacttcc ttatcacaga gaacctggct gccttcaccc 2940
ccgtctttag tcactttccc acgttgccca agaccaagcc tatcagcaag aatacacaat 3000
agcgtcctcc gctctaaaaa tgcaaagggg aacccaaagc tctcgccgat tacccgagga 3060
gagtcattcg tcagcacaaa cctatttgtg tccgggaagc gaagatgagc ggtatgtagg 3120
ggagcaatct ccttctcaac gcactcgaag agccctagct ggtcgagaat ccgaccgcca 3180
tgggggagaa tcccgatgga ggcaccttct tgtggtgtaa gtgacgtgcg cttttcgagc 3240
accgtgaatc gaatttttgc tctgtgtgtt tgggtgttgt cttggagaag agaggtattg 3300
agggcagtca gagcgtgtgc gagcgttaga ccagcgatgg agcctccaat aatgataata 3360
tgcagctcgt ctgatgcaga cttctcggtc atcgcgaatc atggattccc ccgcggagaa 3420
tggcacttat gatggtagtg cggcgtagag agttcgtaga ggcagtgtgc tattgcaagt 3480
aggtaaaaaa gtaacgctcc ttgattgact acagggatag ccattgtacg ttaggtctag 3540
ccgagaggcg taatagtagg atgatgtaag tcgtgtatta ttgtaagcat aaatttgatt 3600
taatacatcg gctcatcagg cgagactgta gatcttatcg ttacctaact cataccttgc 3660
ttaatgatga atcaatagca aacatgctct gtgaaatctc actcagtctt tttgccagcc 3720
tttgcttcag cctgtttcac aaaggcaaaa aacaagccgt acgccccatc aaagattaca 3780
aatgctgcgg tggaccagta gaacaacggg ttcatcgtcc acgcccacag ctcaggccag 3840
tagtgtgcac gaaaaaacac acctgcaagg gcacttcctg tcccagtcac acgagacgac 3900
ctatctctca gtcagcaagg caaggaagtt cgttgtcgaa gtcaggggga cggaagaaac 3960
gtaccagatg agccaactag caccacgcga ttggctcgat cgcacgagct cacacagcgc 4020
ggtcacactg gtcatgatct ggcagcccag tccaccatag tagaacgctg taaggggtcc 4080
cacgaggttt gcgagggaga catgtcccgc agcccagata gcggtgacga tgacgaaggt 4140
aagatagaag taatagccgc ggagcatcga atcatccccc aatgctaggg gatggtattt 4200
gagagccgca tatattgaag caaggttcag cataaaccat gcggtgacta ttggaaggcg 4260
gggcggggga tagagagtcg cgtagacgag ctcccaggcg aggttacagg atactgggac 4320
gatggggacc cagcaggctt tgtcgcggca agcggtgcga atcgtggcgg cgtagcaagt 4380
cagccagccc gctgccatgg cgaagagcag tgtgtcggat atccatttaa ccgattgaaa 4440
ggattcgggc gctttggtga aatccagtga gtccatagtc actttgaagg gtgagcgtgt 4500
tggtggctgc aagagggaat ggggttgatc cttgaaatat tatcctgcac aacacagtcg 4560
aagtggaacc aaaggcgccc tccaggagga actcatattt atgagaatgc gtacactttc 4620
aagtcgcaca ccgtcctcgc aaggaaatat gcaggggtac cgttgtggag ccctccttgc 4680
atcgcgtgct ccaacttgat aagccatagg tccaagctgt cacacctgac gagatgaagg 4740
gttgctcaca acgaaaaacc tttcacatcg atttcgaaga cccgtggcga atcttgcctc 4800
taggttcacc gtcacgacga ccccgagcat cgcagcgcct ctagctatga ctggtcaagg 4860
tgtcacccag cagaaggcga ctctaagtcc cgagaaggta tcgaagcata tcacttcacc 4920
ttatgtcttc gaattttaat actcacaaac aatagatcat agcagccccg atagactacc 4980
tcttatccca accaggaaag gacctccgca gccgcctaat cactgctttc aacgagtggc 5040
tgaatgtccc agaggagaag ctcgatctca tcagaagagt gattgagctt ctgcacacgg 5100
cctcactcct gtaggcttct ttaatcgttc gcacaagttg aaaatgccta attcagcgtc 5160
ctagaattga tgacattcag gactcctcta agctgcgccg gggtcaacca gtcgcccaca 5220
gtctatttgg gattccacag actatcaact ctgcgaacaa tgcatatttc gaagcgcaaa 5280
atgaactgca caagctgaat gacccgcgag cagtccagat cttcacagag gagcttctcc 5340
ggctgcatcg cgggcaggga atggatttgt actggcgaga ctccatgatc tgcccgtccg 5400
aagaagaata cctcgatatg gtagctgata agacgggagg tctgtttcga ctcgcgatca 5460
agttgatgca gtgttcaagc tttagtacat agtaagctgg cacgtctgac tctgggcaaa 5520
cggtttgaat gagctgacta gagataatag cgactacgtt cccctggttg acttgatggg 5580
cgtcatcttc cagattcggg acgactacca gaatctccag agcggaacat atattcagaa 5640
caaaggtttt ggagaggatt tgactgaggg aaagttttca ttcccaatca tccatggact 5700
caatcatggg acgcagagcc tgcagctttt caatatcctg aagcagaaga cggaggatgt 5760
gtctgtcaaa cgatacgcgc taagcatcat ggaagcagct ggaagctttg catattgccg 5820
cgcaaggctc gcggaactgg ggacggaggc gaggttgatg cttcaggaaa ttgagcgtac 5880
cacagaggga gcatgcgccg gtgacacaaa aggcaaagct gtcgccgaat ttttggattt 5940
gctcgagatc aaacaggaca gctcatgttc caactgtgct aattgcacac aaggcttatg 6000
aatgttctag tgtgcgagtg ttattaaata gtagaccagc catcgtcaat aggaagaaca 6060
gctccattta tccgcgaagc ctgatctgag cacatgaaca caataataga cgctacttcg 6120
tccggcatca tcatcgcgta tccatctctc cggttggcat acacagcgga aagaacaggc 6180
ttgattgtcg aagtggcttc cggatcaaac cttgatggat caacactgtt taatataccg 6240
gtcgccactc ctactgatag tgagtgcctg taacaaaata tgggcttaat ggaagaacaa 6300
gacatcttac ctcctgggca cagcacgttg catcgtatgt tctccccttt gaatctccag 6360
gccacgttct tcgtcgctcc gataaggcca tgcttaccta cgactggtta gaggtatctt 6420
ttaatgagac tgaccaagaa agagaaacgt actcgccgta tacgccacgc ctgctgcagc 6480
accgctcatt ccagctcgac tcgccatgtt caagatcaca ccagacttct gcatcctcat 6540
ctccccgata acctctctca tcagtctcac cggtgccgta aggttcacag ccatacaacg 6600
attccagtct gcgtctgtga ctgtgtccac actggcattg tgatcgagga ctccagcgat 6660
attcatgaga atgtcaatcc ggttaccgaa ggctgaaaga caagctttga caattgtctt 6720
agggatatct aggtctgtga ggtcacattg catcgtctga cagttctcgt tggcttccag 6780
gacggctgga aatggcgata tgtcaacggc gaatacattg gccccagcct ctaaagcagc 6840
ctcagcagca gccagcccaa tgcctgagga ggcgccggtg atgattgcga cctgccctga 6900
gtgttactat gccatcgatt ggcgattatt cgggcaatac taacacgatt ttgaagacag 6960
cctgattcca tcgtgatagt cattctgcct ctctgtgcag aggacgtgag ttacacgtag 7020
ctcaattctc acccaggtac tgagcgcaga tcatttcaca aaatgactta aagcttttct 7080
agaagtgaca ttgaccgccc agatggggcc agttcccatt tagttggcag acaccctaag 7140
aggaagttct ccatcaggta tgtggtgtat ctgatgcgga ctggacccct tgcattagtg 7200
ttacacaggg gaactacacc gcttcactag tgcagcgact acatattgat atcacaaata 7260
ttttcaagga cagtacaatg ctctttccag gccgtatatt ctacgctttg caaaggttgt 7320
ctacgtcgga tagacaagca atcatgattg caagtatact tgaaaagtcc cgagatgctg 7380
accacttcac tattatcatc gccgcatctt ttctcttgag cgtcgcgatt tctcttgtct 7440
ttttacgttc aactacgcct cagctgcctt tgttaaatgg acccaagcgt tgggaattca 7500
cgttcacgaa tgcgaagaag cgctattact tgaatgcgaa tcaaattata caagatggat 7560
tcaagaaggt ctttcctcca tctgcgacag aatactagca agatctcact aagccacagt 7620
ctaaagatgg gttttatgct gtcaccgaga atggaatcga gctgattctc gcaccgaaat 7680
atgctcacgc tatacgaaac gacaagagac tcgactttca cacttacagg acgcatgtaa 7740
gtatagtagc tatacttatc tggtcttttt gccctttctc atttaaaaat cactcacaga 7800
ctatgctccc caatgtcgca ggcctgaaag tctttgagat ggatcaggtc ggaagggaga 7860
taatgagtta catcatccgc caaaaactaa cacatcattt ggtcgatctc atcagaccgc 7920
tgtctgagga ggccgatgat tgtttacacc ggagttggac agataattca ggtactccaa 7980
atctccatgt cgtagctcgt ccatgaggat ccattcactt attaatcctt agattggcac 8040
gaaatttctc tcaaatccac cctcctcgac atgatatccc agcaatcggc ccacgtcttc 8100
ctcggccgca gcttttccca taacgtgagt tggctagcgc tgtcgcgcag cataaccttg 8160
caggccttcg gcgccgtccg cgagcttcgc gtatacccat ccttcatacg cccgcttgtt 8220
ggctggtttc tccccgcatg taaatcactt cgcggagaga ttgccaaagc ccggaagctt 8280
gttgagcccc ttatactagc tcgaagactc gaaagagagc gatgcatcgc cagtggccgg 8340
gaaccacccg tctatcatga cactattgca tgggcagagg aatgtgcacg tggacgaaaa 8400
tacgatccag ctcttattca gctcacgctc gcgctttcgg ctatgcacaa cacctctgac 8460
tttctcacgc aagtaatata tgacatagcg gcgaggccga aactcgtgga ggagttgagg 8520
aaagagatca tcgatgttcg gacgtgtgga gatgcaacag agtcatggaa taagggggcg 8580
gttcacaagt tgaagttgat ggatagtgtc atgaaagaaa gtcagcgatt gaagcctacg 8640
ggattgggta agttttgctg ggatcaacgc ttattctcta caaggctaat atgctaatca 8700
tatagtaaac atgcggcgct atgcaactga ggacatccag ctctcttccg tcattcccga 8760
gcacaaggaa ggcagcatca caatccgaaa gggggatctg gtcatgatat cgcaacacag 8820
ccactgggac gaggatattt accaagacgc ggcgtctttc aacccatacc gattctgcag 8880
gatgcgcgaa caacccacgc aggagcacac agcacacttt gtcgccacaa gtgtcaacca 8940
tatcggcttc gggcatgggg tgcatggctg tcctggtcga ttctttgccg ccgctgagac 9000
gaagcttgca atgtgtcaca ttttgatgaa atacgacatt aagcttatcg atcagcctaa 9060
ggtcctcaat gtaggttcgc ttatggttgc aaatcccgtt gcgaaggttg cagtgagaag 9120
gaggaaggag gaggtttcat tgtgattgtg aacagtgagc tcgcccacat ctcactcagc 9180
ccaaggagta ccaaaggtag gtggagatgg accgtaacca cattactgct ttcggacaaa 9240
ctcaatttac tacatacctc gtggaatact caccttcgcg taaatgaaag tctcccaacc 9300
tttgtaatca cagtatatat tgggcttcca agcttccgtc tatgtctgtg aattctaaag 9360
cgttactatc gtcccttgaa cctctgtccc aaacttgaat gatatccttt ctcgtccatc 9420
atgttgtcaa tgatcgtaag gggaagaatg ataaaataaa ttgaagtatg gttattcagt 9480
tgaatctctg gcagactcaa attcacctat tcaatctgaa ttctaacttg tccaggttcc 9540
atgtccgggt ggtttgtgac cgttgatata cctatcgagc atacgtaatc ttccaaagtt 9600
taaggttgcg acccaccaat acctgaacca gggcgtagat cacacctaga tacgtgtaca 9660
acggctcata ttcgatcggt gtatcatata tgcctaggat aatggctaaa tgcagcctgc 9720
ctaagaagcg gtcgggagac ggtgctccac ctacctagta gtagtagtag gactaggtac 9780
tccctatgct acgtgtgtaa tgactcaaca ctttctcttg gctatgaccg cctctctgga 9840
tgcaggtgaa ttcacaatta ctaagtaagg tcaagaaagc ggacataatg caagagtgga 9900
cattatgctc ttcttcgcac tctcactacc acatccggag gcacagcatg ctctcccatg 9960
aaaaagttcg gaggccgtcc atcaatctct tcgatgtcgt aatgcaggac gatgtaagaa 10020
agcatcattt tcaatatgcg ggttgcaaac tgtcttccgg cgctacaaaa ccattagaat 10080
tacatagaaa atgagaggta tcagacctac caggccgagc gaccgtgtcc aaaggacaga 10140
aatgtgtcgc ttgtcgagac acaagactct gatttcccat cctgcacaaa acgaaaaggc 10200
ttgaattgtt ctgcattctc gtagaatctc ttatcgttat gaatgggaat tgaaggaaca 10260
gccagccagc tgcctttgtt aaggagttgt ccatttggca gcgccagccc atctcgggga 10320
acgacctcgc gcaacagagc catcgaggtg ggtggcgccc gccgcagact ctctcgaagg 10380
gtgctatcga tgtatcctaa acgatgaaca gtagctgggt cagcccattt agcaggacca 10440
tcaaacaccg actcagcctc gcttcgaaga atttggtaaa tctctgcctt ttcgctcgag 10500
ccgagtatgt cgagcaaggc atggtgcgcc gtcaatacgg tacttgtaaa tgcagctcca 10560
agctggcgga agttgtcaga tcatgataga atcttccaga tgaggtagag ttgataaccg 10620
taccagtaag ttaaaagcgt cagcgaacac cccctcagct ccttctgggc cgcgtgtctt 10680
gaggatggct tgacagagcc aagtgaccat gtcttccggg acctgtgaat cctcctgcaa 10740
tttgttcaat ctctctttta caattggcat caggtaagcc aggtaccggc gctggacata 10800
tccgatgggc ttctgcagca cccacccgat gacgcctcga aaaggggccg gcaaacattg 10860
ccctgttatc gtagaggccg ccccaaacca ctgtgagctc gatatgatcg cctctacaaa 10920
gcgctcattt ttggccaatt cgcgacccgc cagaacggga accaaggtat ggtaaacggc 10980
gtagcgcaac gcgtcgccaa gtgacacctt actgacacag tttgcggtgc caaaactgcg 11040
atcaatcgcc caactcagtt ggtcatacat agccggttgc aacctgtcaa acttcttgtt 11100
caggtggact ttgatcgcgg tgtgcagtat ctcacttgtg gctggtgtga agccaggcgc 11160
cacgtaccgc acgcccatcc gggagtatgc ggcgcggcgt gggcacagga ccgtgggcgg 11220
ttgatcgata atccattgta tgtgctcttg cggtaggatg acgacgggct caaaactaat 11280
caacggcata agaaaggctt tgccagtttt gttgaaggct ttgtagccgg cctcgaggat 11340
ggccggattg tactgccatt gagcaagaca ggcacggaac gcgctgagca agccctgctc 11400
gcgacctatc catgagatgt cctttggccg gcgttggaga ggaaaacagg ctcgggcgag 11460
atggtatagg ctgagtccca ggactaaggg agctatgagg atgagaatgg ttggggctga 11520
aagttggtac tgcatcttgg tcacggcggt catgggcacg ccacggagca aggaattacc 11580
actgtttagt atgagagact gaaaatatag atggtcgatc ccgattgccc tgattaaaga 11640
gcggtatgga tggtgtgacg tccttgcatc aagttttctt cgactttgca tgtaaggggt 11700
ccctagccac ggactcgcct gttctgagaa tgctgatata agaggcacag ctctctatca 11760
tggaattatt tacaggccac agttctatcc cttcgtcaca atgatccgca gtcccactgc 11820
cccaagcagg cccctaggcc agatctcgtg ggacctgatc cgcatctcgc gatttgacaa 11880
gtacaactca tttctagccc tctttgccgg aggttagtcc acccatccca aattcataca 11940
ctctaggcag tgggtgctaa caacacacag tatggtcaac ccttcttgcg gggagcgcac 12000
gacttcgcga agaccctgag cacgtctccg ttcaatatat ccttagtcgt gcttttctgt 12060
gctccatagc cgcatatata ttctctgggg caggcatggt gtggaatgac tgggttgacc 12120
gggacatcga tgctcgcgtg gcacgcacca aggatcgtcc tttagctgca ggcagactga 12180
gcacagaaga agcaatgctt tggatgctgc ttcaagctgg tgtagcaacg acatttttgt 12240
attggatgat ggacggacaa catgtgttcg tgagcccctg gaaaagtcat ctctctctct 12300
ctgctgtacc aaggtcgact aacgaagcgg ggctacctag cttgcattcc atgattcctc 12360
caacattagg aacattgata tatccatatt gcaagcgtcc tctcgctcgc cgacttggta 12420
tctaccctca atatgttctc ggtctgacag cttcctgccc tgtcctcttt ggccgtgctt 12480
cgatataccc tgatatagaa tccttctctc gactcgtatc gtctagcctc ccgctttgcc 12540
tagtggtgtt tacatggact ctctatttca ataccgcata cagctaccag gacatcgttg 12600
atgacaagaa attgggggtg aactcactat acaaccttgc gggaaagcac atacatggcg 12660
tgcttgtggc cctcgtgaca atcatggtga gcgcactgtg gtgggcactg taccccttgg 12720
gatcagcttg gttgtggatc tcttggatgg gagtctggat cgtgggatgt gtggaccaaa 12780
tgcgcagatt tgatgcgaag gatccttcaa gtggacagta cgtcttccgt agcaatgtcc 12840
ttatggggct ctggacgatg cttgcttgtc ttttggaggt tttttctaca gggaagagag 12900
tggctttgtg aacgaaatgg ggaagacata gcgacacaaa taaatattag ctgccagccc 12960
agcaagcgca gagcaagatc atgtgagact ggatgaagca cctgctagaa atatcatggc 13020
atttgatcag gttgaagtga gatcagtatc ccagtagagt agcggggtgt tcttttccaa 13080
aggaatgttc caccctggcc gaacgttctt ctcttccttg cccgtgaatc tttaatgttc 13140
tagcaaccac agacggagaa agactcagct gagaccagcg gctatacagg aacaccagct 13200
actatttaca cgtgttatgc tagattgatg gatatttgag tcatttgtct ttgacatctg 13260
cgctcaagac ttgacgaaga aagggcaaat tcaaaaaccc acagagaccg aacaacaggc 13320
tgaaagccct gatgggagtt cataggttgg taatgagcag taaaactggt actgggcagt 13380
catatgcaat tattcctgta ggagtaaggg gctcgcctag cccaattgcc ttgcaagata 13440
agctagtcac caaataaata tagatcaatt cggttggttt ggactctcat ctccatttct 13500
tgtcttcatc atcctgtaga tatcgccaat gtccctcgag cccatagcta ttgttggaac 13560
aggatgccgc tttccgggtt cctcttcctc accgaatcgt ctctggcact tgcttcaaaa 13620
tccgcaaaat gtcgcctcca aagtccccag tgagcgcttc aacgtggact cattctacca 13680
ccctaatagc cagcagcatg gctcgacaag cgtggccgag tcttattttc ttgaggaaga 13740
tataagagcc tttgacgcgc ctttcttcag catcagccca gcggaagcgg ctgccatgga 13800
tccacagcaa cgcttgcttc tggagacggt ttatcactcc ctcgaggccg gtggccatag 13860
acttgacgct ttgcagggct cggccacagg agtctactgt ggctttctcc ggactgatta 13920
cagccagata cagtttacag acccggactc gttgccaccg tacacggtta caggaaattc 13980
tcccgcaatc atggcaaacc gcatctcata ctttttcaac tggactgggc catcgttcgc 14040
ggtggatacc gggtgctctt cgagcttgct ggcagttcac ctggctgttg aatcgttgag 14100
gaaaagagac tgtgatttgg ctgtcgcggt ggggagtaat ctgcttctat cgcccaaccc 14160
ttatatcgcg gatgcaaaga cgggaatgtt gtcagctaca ggccgatcgc ggatgtggga 14220
tgcatccgcg gatggctacg cgcgcggaga aggggttgcg tcggtagtac tcaagcgatt 14280
gagcgacgcc gtcgctgcag gggacgagat tgagtgtgta attcgagcta cagggatgaa 14340
cagcgacggc cggacaatgg gtatcaccat gcccagtgga gaggcacagc ggaaactgat 14400
tgagtcgacc tatgccagta ttggacttga tcccaaaaat gctcaggaca gatgtcaata 14460
tttcgaggcg cacgggacgg gaacgcaggc gggagatcca caagaggcca gtgcgattca 14520
tgcggcattc tttgggaacg aagctgaaaa cgacagctct aacgtcctgc atgtcggttc 14580
aatcaagaca gtaatcggtc atacggaagc aactgctggc ctggctggct tgatcaaggc 14640
atctctgtgt ctacagcatg gggagatcac accgaacctt ctgttctcca cgcctaaccc 14700
tcgcataaca ccgcatctta ctcgactcca ggtgccgagt gagtctgtag catggcctac 14760
cctgccgccc ggggcaccac gtagggcttc ggtgaactcg tttggctttg gcggtgctaa 14820
tgttcatgcc atcctggaaa gctatgaacc cccttcttca tctcgccgag gctcagaaga 14880
tgcagaggcg gattgtttgc ttcttccctt tgtggtttca gcggcatcag aaccctcatt 14940
gaggacagca ctggagaggc ttttccaatt ccttgaggat cagccggtga caaacatgat 15000
cgactttgct cagaccctct tgacgcggcg ttcgtgccat aaacatcgta tagtatttat 15060
cgctagctca tcggacgagc tcagagacaa gattctgcat gaaatatcct acccatccag 15120
tggccagata tccgcgaaaa ttcatcgccc tgtccaggca aatcggagct ttggcatatt 15180
gggaatattc actggccagg gggcacagtg gccgcagatg agtctcgata ttatcaatgc 15240
cagtccacag gctcaaaggt ggatggctga tatgcagaaa gcccttgaca cgctccctca 15300
acaataccgg cctgattttg atctattggc agaacttgca gtcccaaagt ccgactctcg 15360
aattcatgaa gctagaatct cacaggttct acgcactgct gttcagatcg tgcaaaccaa 15420
cctccttcgt acccttgggg tcaactttga tactgtgatt ggccactcat cgggcgaaat 15480
cgccgccgct tttgctgctg ggattctcga cctctcagat accatccgga ttgcttacct 15540
acgagggtgg gcgatcaaac agtctcaaaa tcagcaacaa tgcccaggga gcatgattgc 15600
agtgatgctt gattggaacc aagcagaggc catttgctgc aaccttgccc agtacacagg 15660
gaagattcaa atagcagcct acaattccct cagaagtgtc acactatctg gcgaccgcaa 15720
catgatcgat gaactggcct ggctactttc aagtttgggt catgctgtgc accggctcca 15780
cgttgatact gcgtaccatt cccaccacat ggagcctgcc gccaagctgt atcggcaagc 15840
cttgaaagct tgcaacatcc aggcaaaaaa gcccagatcg acaatgcgct ggttttcatc 15900
cgttcatcct ggggtagacc tcaatgctac cgggatttct caaccgaggg agtactgggt 15960
agccaatatg ctggagtcag tttcattctc acaagctgtt tcgaccgcgc tcctgtcatc 16020
ttcagatacc cagtatagct gtgccattga gattggtccg caccctgtgc tcggtggacc 16080
agtcaagcag atccttgagg ggatggcgag accgatagac ctgccgtatt ttggcctagc 16140
gaggcgcgcc acatcaggaa tacaatcatt cgccttggcg attggacaac tctggactat 16200
ctttggtcct ggcgaactag atttccaggg ctatctccgc gcattcaata tcaatgcttc 16260
accttctctg ttgaaagacc tgccgagtta cccatttgac catagccaat catattgggc 16320
cgagtcacga ttatcacgag ctcgcttacg tgcacaaaat cctccaaatg cattgttagg 16380
ccgattgctt cccacctctg gccaaggaga acgacgctgg agaaattatt tgcgccccga 16440
ggagcttttg tggttggatg ggtacaaatt agaggggagg ccagttcttc cgccagcaac 16500
atacgtctcc atgatggttg aagcggccct tgagatttcc ggggtatctc cagtacaact 16560
actcgagctt cgtgatctag aattctatca agatgtcccg ctcccatcag atcaggctgg 16620
acttgaggta ttgttcgctg cggaggtaag ctcaaatgaa tctcatgcgt tgggcaggtt 16680
cagctgtcaa gcagctgttg atggtgagct ttgccgtgct gcttcaggcc aattcgaaat 16740
tacctatgat gtacctggct ttcaagctct ggctgcacga gccacacctc tgacgctcca 16800
gccaatggat gtgaacggat tttaccgcga tttatctgct ctaggtcatg acagatgtgg 16860
agatttcaaa ggcctttcta cacttgcttg caatcggaaa gtcgcttctg caaccatagt 16920
ccatccaggc agcaacagcc atcaaccctt gaattttcac cctgccacaa tcgaccacgc 16980
ttttcagact gtattagcaa cttcgatctc caaaacgagg gatcaggcca ccggctcgcg 17040
ctacacaatc tccagaatat cttatttggg catcaatccg accttgcgcc cggcagatag 17100
cgaagcactg aacattgacg gctcaatcgt tactaaagtc ccgggtttga tcaccggcgc 17160
tgcagaaatt ttccggtcaa atgacgagtg cctgctatct tgcgagggaa tacaaatctc 17220
tagaaccgcc aatgcctcca gcccacctca attgtttagc accattgact ggatacctct 17280
tcaacccagc gcaaccgcag gtggaaatgt actatgccga ccaggggccg tgaggacgct 17340
gatggctcgt gaacagctcg cactactgct cctgcgtgat atatgcagga aagatgcgcg 17400
gaagtcaagg gaaaccctcc cagaaggcaa ggctgcattc ctaaactggg ctgatcatgt 17460
cctggcccat gtcagagagg gcatgcatcc agtctgtcgc ccggagtggc tcgcgggtaa 17520
atctgacgag atctgcacac ctccacttga acctctgatg cgcattggtg aagattgggg 17580
aaaccttctc gcttctgagt gtgaggatgt tattcctgct gtggagcttc tggatcgata 17640
ctacgctaca aatatgcaag acttcaaccc gtggtattac cgcttcgtgt cgctagtcaa 17700
acagctgaca gcactctatc cagtgatgga tatcattgag gtgacagtca gtccgagtta 17760
tcgactgaca aaccgtgttt tgagcgagat cgggactgcc tataagacct atacacgcgc 17820
ggtggtcaac atgtccacgg cagcatcaag cacgaagcca gctgcacaac cacaaatcca 17880
cgagaagaac ttcgaggccg acgcgttcaa gcagaattcc gtcgatctaa ttatcgtcca 17940
tcaggcgctt tacagcacaa agtcgttaga cgatgccttc aaaagactgc gccgaatgat 18000
caagcctggc ggctacctcc tcattcttga agatacaaac cccaacctca ttcatcggaa 18060
actgctgctt ccattcagcg gctggaaaaa gacaagtaca gaacatctgt ccaatggccc 18120
tattcagaca cgtgacgcat ggaaatccct ccttttcaag catggtttca gcgggattga 18180
ttcaataacc tcaattcatg acgaggtgat agctggtctt tccatcatgg taagccgcgc 18240
ggtggaacct gcggcccaag agattcaaag tccatctcac gagtcaaaca agcccagcga 18300
tttggtgatc gtggcggcgc agaataagtg gatgaatcgt acatggattg ccgtctctga 18360
gcgctttcgc cgtatggaac tagtcgagaa tattcgcgag attaaatttg ggacaggaag 18420
aaatccgcct gtcgtccttg ttgtgacaga ctctttgcag ccaacagtct tttcagggcc 18480
ccatgaggag gagaaacagc taagacggtt gtttgctggg gccagcaaag ttctctgggt 18540
tgtttctcgc tctgatttca gaagccctgt ggctttgtcc aacgctgtta cagcgggaat 18600
tctttctagc ctctcagttg agtacccaga cacaatgttc cagcgcctcg agcttccctg 18660
cgatctgcct tctaaggaaa atgtcgatgc tgtggtcacc cttctgatgc gcctggtgtt 18720
cacatcttca aaagaaagtc tctcgctaga atcgcacatg cgactgtctg agaagggtgt 18780
ccttcatgtt ccgcgtcata catattccga ctctatgaat cagcgctgtc tagcagcgca 18840
cgtcgaagtt caaggtgaca ttttgttcaa tcggaatcaa aaatatactg tactgcaggt 18900
tgagcatgtg ggaacgaccg agaaacaagt cgctcgcctg catgcatatc catccatcgg 18960
actcatgtct ggtgtctcga gaacaaatat cgaggtcgaa gttgattatt ccacagcaca 19020
tagtatcaaa attgaagggg cgggatcttt ctacctttct ttaggtacag cctcccgtca 19080
tagcagcggt ctccaccctc gcacgggaaa aggccactcc agtcgcgtct tcgcactctc 19140
tgagcgcaat gcgtcacgcg tgcatacccc aatcttgtgg tgctgggatg tccctgccgc 19200
tgtttccgcg gcgcaggaag ctgggttcct agcgaatata gtggctgtct tgatcgcgaa 19260
agatatccta tccaagactg aacccgactc ttcaatattg cttttagaac ctgatgtgac 19320
catcctgaag atcctcgatt cactcgcgcc tttgcacaag acaaagatta tatcggtcac 19380
acacaaggca actgccaaag ccaacagaaa gagtctgatt tatatccccg agcgtacgcc 19440
ctctcatcgc atacggcaaa tgattccaca caaaaaagtt gtcagagccg ttgtttttga 19500
ttctaaccgc gtctgtaacg gacgaaatga tcgcatctgc aacctctttc cgaatgctcg 19560
acagcttgat atcgcgtcct tctatcaaac tgtgccgatg ccaaactcac cagaacatgg 19620
ttccatactg tgtattcctg cagcggttca gagtgtagcg gggtggcttc accccgaaga 19680
ttccactttt gcagtaacct cgatcacaaa acttatttca gaagaaatcg atctacgacc 19740
aacctctgtg atcaaatggt catctgagac tcagaacccg atcaaagcgc agatacgttc 19800
agcgacagat gcggtcaatt tgtcgcaaca aggcgcatat gttttgtggg agctgcccaa 19860
ggccttgaga aggaccgttg ccgattggct tgtctcccat ggagcgcagc atcttgtttt 19920
tgttcagaaa attcccgatg atacccagtg ggtgtccagc attacatgtg gtggtgcaga 19980
agttgttatt gtgcctcctc aggaagatct cgttcacacg gttcttgcgc tccgagacca 20040
ctcgtctgtg ccgcttgttc ggggtattgt atttactggg gcactcgata atgctgtggc 20100
tgctgagacg atccaacggg ctaaatgctt gtcccaacat tacgactctc ccaatctaga 20160
gatgttcttg agcattgact gctgcccagc gataccgaat ccgcagcagt gcgctgtgac 20220
cgaatttctc gcagcactag cacatcaacg agcaatgatc aatcttgcgg caagtgtcct 20280
ctgtcttgga cccgggtttg atctcgacaa tccacacgga gatgatattg cggagatact 20340
tgcagaggct gccttagccg gccatccctt tgccggtggc gatcgcgtgg ttacagctgg 20400
cctctgtccc ggtactggca gtccagagta caaggcgtgg gacactatcc actcgcggaa 20460
cccagcaatg tcgaacatcc ttgctttgtc aaggaaaggt gggcaagaag agactgctgg 20520
cgttgaggca gccacggagc atatcccttt gaaagtccaa ctcgagcgtg ctaaagaaac 20580
cacatcggca gccttggctg tgcgggctat tttgaatcag tactttacca gatacctccg 20640
gatgcggctc cagtccacgg ccgagatcaa tgagaatacc ttattcaacg aacttggtgt 20700
ggactcgatg gtcgcggcac agttggttgg gtggtttatg aaagaagttg gcgtggaggt 20760
ttcggttgtt ttcattctcg ctggcgcatc tgttggcgag gtcctccagg atgtcacgga 20820
gaagcttatc ccttgaggtc gagatttttc tgtgtgaata aatatagctc tcctgacgcg 20880
accttagaaa accacatgcg taccagatgc aaatttttag gtcattcaat attaacatct 20940
acatgcagaa gcaattactt ccttcattat cagtctcatt tataatctgt gcactagact 21000
gtaatagagg ctgtgcagca tgactcaaaa actaggaaaa ggtcacttca acaggctagg 21060
tacgtttatc accaacaaaa gatggaatct gatccactca gctcatttga tgtagacatg 21120
gataaatatt ggcaccgaag gcatatttac actactgccg gcgagattga gccaaacata 21180
acaagctgcc cgaggtgcgg atttgcaatt gatccgtgac atttccttga aggacccaac 21240
cgcctcccat cacaacgccc cagctgaggc aaaacggcgc tcggagaaga cttgaacgta 21300
aattgaacga gagttcctaa ggaatttcac gcaatggaaa gcgccgcccg ctcagcccag 21360
acgtaggtgt ggtatacccg ctgacccgtg ataggaagct cagcgaccac ctatttctat 21420
aagcttttgc ccctcgcatg ggtaagtcct ataaaaaaga gccctcttcg gttcgatgca 21480
atcccttctg tgtttacttt caagtatcaa gtgatcatgt ctgactctaa ctgttacgac 21540
ctggtcagct ttgccttcaa cgggccgttc ctccacagcg aacagccacc gattttcatc 21600
gatgccaaaa gtccctctcg agcgttgagt gccgggccgt tcaagcgact tctttgctcg 21660
ctgattgccg gtctcactgc tcaccagatc cagccagggg actgcgtgct tgttcaaatg 21720
gataactatg taactgaacc tggacctagg cctcagtctg tggatgagac ctttactgac 21780
ggatgcgcga gcaccagatc cttcattccg ccgtctatct cgcaatcatc ggtgcaggag 21840
gtgtctacat gggctgtagc ccgacgactc ctcgccacga gctcgagcat tttgtgaagc 21900
tctctgatcc acgtatcatt ttgacagcag agagtgctct ccctctggtt cgagaagtct 21960
gcgcttcttc tccttcgccg cgccaaatct gcctcgtcac cgaaactgga attgatgagc 22020
ttattgcctt cgcgaacgaa cacgacccta gcaacggttc tctgtcctcg acggggaaca 22080
aaaatgacgg aagaaacaat gacccggagt tgcagcctga ataccccatc actgaactta 22140
caggccatgg ctcagccccc tggcgtcgta tacccacatt ggaacttgcc aaaacgacac 22200
cagcggccat gtttactact agtggcacta gcggactccc caaagcagcg atccgcacgc 22260
accacaccat catctcgcag cacctgagcg tctactacca gaccccctac agcatctcca 22320
ccgagatcac agaggaaggt gtcgaaattg acgcaagttc aaaaacccaa catggtcgaa 22380
tccgtcgcct tctcgccctt cccgcctacc attccttcgg tgacttctgg aataacctgt 22440
tcccgctccg ctatggcgag ccgctataca tcgtcccacg cttcgatctc gctgacttca 22500
tcgccgcggt cgagcgcttc cgcatcacgg agacctatct cgtccccgtc gcggtgcaga 22560
tgctcgcgca ggcgggccgg gcagccaatg gtgcgcgggt ccgcgagggt ctcgcctcgt 22620
tgcgatatat cggtgtgtcg ggggcgccgg tcgatgcggc ctctttgcaa agatgtgagg 22680
aggtcttgca tccagatgcg tgtgtgagtc agctgtgggg gatgaccgag gttggggtcg 22740
ttttccaaaa tcgctatggg gatcgcctgc atcctggaag tttgggaatg ctgcttgacc 22800
ggtacgaggt gcgattggtg gatcccgttg ggggtgaggg agttgatgga tcgcttggtg 22860
aacttgggtc agggcaacca gccacaggag agctgtatgt tcgtggaccg gggctcatgg 22920
ctgggtacaa aggacgaagt gaccccgttg tggatgcgga ggggtggttc ccgaccggag 22980
acatggtcta cgagaaagac ggacactggt ttattgtggg tcggaccaag gagctgatta 23040
aggtaagggg gtactcggtc gctccggcag agatcgaggc gcttctgctc gacaaggagg 23100
agggcatagc agacgtggct gttttaggag tcaaatcggg gaatggggac ggagaggaag 23160
tcccacgggc ctacgtggtc cgttcaaagg agcaaagtca aggcagtggt aagatagcaa 23220
cgtccggggt agtcaccgag gagcggattc gggcgatcat gcagcaacat ctggccagct 23280
acaaggcgtt ggaaggcggc gtggtctttg tcgacagcat tccacgcaca gacatcggga 23340
agccggctcg gtccaagctg gcgagattga atcagcagcg tgacgagctg gcagccttgc 23400
tccaggcgac ttgtacaagt gtcagagaga agtagaagat agaatggcac actctagcgg 23460
tggtttattc acttatatat gactacgttg atgagtttcg ccgcttcatc aagacttggg 23520
cctgcggatc cgccagaaga atctcatcga tcatcatatt cctcggtcgc tccttcccat 23580
caggcaagcg gaactcatac ccgaccaaca aatgggccag gatgatcttg atctcgttgg 23640
cagcaaagaa tctcccgggg caagcgtact tgccatggcc aaagtgaaga ctatttttgt 23700
cggttgtggc gaactgatgc cggtgtgctt ctgcgggatc gaccctacgc cgccgtgagt 23760
agcgatatcc gtcgaactcg gggtcataat ctgtgctatt ggtgatatct gcagcgggta 23820
ccgcgagatg tgtccccttg gggagaacgg tgccgtcaga tagggtaaga tcgcgcatga 23880
cgatgcgttg gaagctcact aaagcagggt tagatcggag ttggcccaaa gaactcggtg 23940
ggatgattaa agacttgggg ggtaacgaac gtagagcagg cgggttcaaa cgctgcactt 24000
ccttgatgaa gctgtcgaga tcccacatct tcgtcagagt cgtcttctta tattcgccgc 24060
catcttcgac gagggcctga agcacctctc gacgtaaggg ctcaatatag tcttggtgcg 24120
cgcagagatc gtatacagcc tgggttgccg aggcggtagt ggtgtggatt gctgccagac 24180
tgaggatgag ctgacgatgc gcgagttttt cgggctgact gtcatacgga ttcgccttgt 24240
ccatcatcca ctgcaggaga tcggctggct ttttcttctc cgcatcgcct gggctcgtgg 24300
attgctggga tcgtcgctca cgaaccaagg tgccgatgat tcgatttccc gtcgagagcc 24360
cgcggcggat cgccctgtat cgaggaataa gaggagcgat gagcgggcgc atccagcgtg 24420
gaaagcgacg caggatggcc agggtaagga aaacatcctc ggtaaaatgg atcgagagat 24480
tgagccattc ctcattacgg caggtaggga gcccgacaaa gacgcgtgcc gaaatgcgcg 24540
cgacgatgcg cagaatgacc tcgtagatac aaactggagt ccattcgtcg atagtgagat 24600
tgcttggccg gaactcctgc gcgaaagcaa agtctagctc ggatttgaca tcgtggatca 24660
gattgccgag tcgcggggtc aactcggttt gcaagacgtg tgtatgcagg gtcccctcat 24720
caaggatgtc gatggtcgaa tacctgccga gaagattctg cagagttcaa aattcaaggg 24780
gtcattgaca tgctcgatcg agagcaatat gtgtaagaag taccttcata tgtgccttga 24840
tcgcactcag ctgctcatcc ggcttggagt gtagctcgtc cacaaatcgc cttggaacga 24900
ccagaatgtt cgtgtccacg cgtgcgatcc tgaacatccc atccttgtat tgtcgacacc 24960
cctgcgtgat ctggtggagc gcatcttgcg aaaaacggac agcaaccagc cagcggggct 25020
cccagcgaga gcggaaacca acaaaaggcg cttgcaggcg atgtgagtgg aagaccaact 25080
tctgcaggaa tacaatgcct agggcgacca ggctgatttg gacgagggaa ctcgactcta 25140
cgagccagga agtggtgagg tccagtttcg tcatattcag tgaacgtgta ggtagctagc 25200
ggaagggaaa atggtaaaga gggcttgcca actatgccta catcgcatca aacgacttta 25260
taagaggcac acgctgaagc ctgcaagggg ctctatcagg cagacttcaa cgccagctca 25320
tcctccatcc tgcgatctct caccgtccac accggcactc catgataccc gcaccaactc 25380
cgccacgcga tcatcttctg cgcgaggggc gtcatttctt ccagaatatc tcgcgacagg 25440
tcaacatggg cctccatcgg ggtaaaatgc gcgggatgca tcgtcacact caacccacgg 25500
cggctctgca tggactgatt ctcgccagcc ccatgccaga cgcttcccaa gtacaagaca 25560
gcgtcacccg gccgcatcac cgcgcccact gtgttttctg gaactgcccc ggaaatctcg 25620
tctccactcc agcgatggct cccgggaatc agcctggtgg caccattatc ctcgcgaaat 25680
tcggtcagcg cgatgaaaaa gttcatcatg agttctggcg cgcccggtcc cagatacttc 25740
gtgaccccgt atagactgtc atcgcggtgc agaccctggg gtttctcacc gggttcaacc 25800
tggagaacgg cggctcggtt gacccaatag tcgccaaagg gtgcggtgaa gaaagagtcg 25860
gagacggcat gcatcatagg gtggttcagg atagtcgtgc ggtatgtcgg ggagatggcg 25920
gctaggtttc ccatatgctt cgtgcgcgag ccgacggtct ttttgtacaa ctcgccggat 25980
cttgcctggg ggccggtgat ggtggcattc aggtatgggt cgacttcttc attgagggca 26040
gcgacaaccg agattggaac aaactgtcgc acgatgacgg cgccgtcact cacgatgagc 26100
ttgctgattt cctctgtgga cgttgagggg tcgacagtac ggatggcctt tggagaaacc 26160
gagacagtca tggcgacgga gatcccagcg tgcacttctt tgaaatgagc tgatgcttgg 26220
attctttgaa cgagcttata acttagcttg atcgcaccaa atgcaatggt gaacggcggt 26280
gtgatgttga tctattagag gccatgttta tcccactgga aatgcaaggg gtagttagta 26340
gcgaaggggg cggatcaggg gagacagact tataatcatt gatgcaatca gggtcgtgac 26400
ggagagaagg aggcttgtcg taacagcgcc caccaaacca agatgatcgc ttttgtgctc 26460
tgtgcggtga tcacggtact gtatgtgatc ggaaccgccc ttcgagacct ttacctccac 26520
cctctgcgtc gagtcccttg ccactggcca tgggtggctt ttcctctgct ccgtcatata 26580
tccgccgtgc gcggcaacgt tgacctcgac atcaaacaat ggcacgaccg atacggcccg 26640
gtggtccggt tctctccaaa tgaggtctcc ttcaccacct ctgaagcctg gagtgaaatc 26700
tacggccgcc atggccgata ccaatgcctc ccaaagacca agttctcaaa cacgagcaca 26760
atagatctca tccacgcaaa cgatgcggat catgcccgat accgcaaggc tctcgcccat 26820
ggcttctcta ccaagggtgt tcgcgagcaa gagtccctaa ttcagggtta tatcgacaag 26880
ctcgtctccc aacttcaagc gtttgcagat gcacaccagc aggtagatct ggtgatttgg 26940
taccgactca ccactttcga tatcattggc gatttggcat ttggcgagca ctttggtggc 27000
ctcgacaagg ggcgctatca tccctgggtt accttcatga ccgggtacac gcgcatgatt 27060
cctttcttca aagcaatgga tgcgtatcca gctatctttc gcaccgcatt cgctttcatg 27120
tcatcctcat ctcaggcaat tgcgcagcag atgcagtaca gtcgggaact agtccagaaa 27180
cggatcaaat cggcctcatc gagccgtccg gactttgtgg actcgatcat gcgccagcag 27240
ggaaccaagg atgagctctc cgatgcggaa atcgaggcaa acgctagtgt cattataatt 27300
gctggaagtg agaccccggc tgatctgcta tgttcggtga catattggct cttacggact 27360
cccaacgttt ttgctcgtgt acggaatgag ttgcaagatg cgatcacctg cccagcggat 27420
ataacttttc agaccgtcac tcaaggacta cctctcctca cagcatgcct gaatgaggct 27480
ctgcggctct atccctctgt acctgggggc ctacagcgcg atacagtggg ctcggccacc 27540
ctctcgggat ataccatcgc tcccaatgtg aggaatccaa agatattggc catcagtgtc 27600
ctctgctgat cataaaaaaa acaacagacg caggtcggcc ttcatcaata cgcagcctac 27660
acttcgtcat ccaacttcca tctgcctgag tccttttgcc cagaacgctg ggacccagat 27720
gtgccgaata atccggcgtc cctgttttac aacgacaatc gtgacgtatt tcagcccttc 27780
tcggctggac cccggaattg tatcggcaag aacctggcgt acgcgatcat gcgaacggct 27840
ttagcaagag ttctatggga attcgaccta aagttgtgcc ctgaaagtga gaattggcat 27900
gtccagaaaa cttatgggct atgggacaag gggccgctgc tttgtcaact gagccgaagg 27960
gaatgcagaa agtgattctt gttggaagct ttacgtctca atgccagtag atcattgtcc 28020
aggagaatgt cccttcattc tggaattttc taatacaatc cgaacaagtt gttctattcg 28080
ttaacgctgg tatggtggct ttgacttgtt gtgtgaacac gcagtacaat ggtctag 28137
<210> 2
<211> 1524
<212> DNA
<213> Penicillium oxalicum
<400> 2
atgcagtacc aactttcagc cccaaccatt ctcatcctca tagctccctt agtcctggga 60
ctcagcctat accatctcgc ccgagcctgt tttcctctcc aacgccggcc aaaggacatc 120
tcatggatag gtcgcgagca gggcttgctc agcgcgttcc gtgcctgtct tgctcaatgg 180
cagtacaatc cggccatcct cgaggccggc tacaaagcct tcaacaaaac tggcaaagcc 240
tttcttatgc cgttgattag ttttgagccc gtcgtcatcc taccgcaaga gcacatacaa 300
tggattatcg atcaaccgcc cacggtcctg tgcccacgcc gcgccgcata ctcccggatg 360
ggcgtgcggt acgtggcgcc tggcttcaca ccagccacaa gtgagatact gcacaccgcg 420
atcaaagtcc acctgaacaa gaagtttgac aggttgcaac cggctatgta tgaccaactg 480
agttgggcga ttgatcgcag ttttggcacc gcaaactgtg tcagtaaggt gtcacttggc 540
gacgcgttgc gctacgccgt ttaccatacc ttggttcccg ttctggcggg tcgcgaattg 600
gccaaaaatg agcgctttgt agaggcgatc atatcgagct cacagtggtt tggggcggcc 660
tctacgataa cagggcaatg tttgccggcc ccttttcgag gcgtcatcgg gtgggtgctg 720
cagaagccca tcggatatgt ccagcgccgg tacctggctt acctgatgcc aattgtaaaa 780
gagagattga acaaattgca ggaggattca caggtcccgg aagacatggt cacttggctc 840
tgtcaagcca tcctcaagac acgcggccca gaaggagctg agggggtgtt cgctgacgct 900
tttaacttac tgcttggagc tgcatttaca agtaccgtat tgacggcgca ccatgccttg 960
ctcgacatac tcggctcgag cgaaaaggca gagatttacc aaattcttcg aagcgaggct 1020
gagtcggtgt ttgatggtcc tgctaaatgg gctgacccag ctactgttca tcgtttagga 1080
tacatcgata gcacccttcg agagagtctg cggcgggcgc cacccacctc gatggctctg 1140
ttgcgcgagg tcgttccccg agatgggctg gcgctgccaa atggacaact ccttaacaaa 1200
ggcagctggc tggctgttcc ttcaattccc attcataacg ataagagatt ctacgagaat 1260
gcagaacaat tcaagccttt tcgttttgtg caggatggga aatcagagtc ttgtgtctcg 1320
acaagcgaca catttctgtc ctttggacac ggtcgctcgg cctgcgccgg aagacagttt 1380
gcaacccgca tattgaaaat gatgctttct tacatcgtcc tgcattacga catcgaagag 1440
attgatggac ggcctccgaa ctttttcatg ggagagcatg ctgtgcctcc ggatgtggta 1500
gtgagagtgc gaagaagagc ataa 1524
<210> 3
<211> 507
<212> PRT
<213> Penicillium oxalicum
<400> 3
Met Gln Tyr Gln Leu Ser Ala Pro Thr Ile Leu Ile Leu Ile Ala Pro
1 5 10 15
Leu Val Leu Gly Leu Ser Leu Tyr His Leu Ala Arg Ala Cys Phe Pro
20 25 30
Leu Gln Arg Arg Pro Lys Asp Ile Ser Trp Ile Gly Arg Glu Gln Gly
35 40 45
Leu Leu Ser Ala Phe Arg Ala Cys Leu Ala Gln Trp Gln Tyr Asn Pro
50 55 60
Ala Ile Leu Glu Ala Gly Tyr Lys Ala Phe Asn Lys Thr Gly Lys Ala
65 70 75 80
Phe Leu Met Pro Leu Ile Ser Phe Glu Pro Val Val Ile Leu Pro Gln
85 90 95
Glu His Ile Gln Trp Ile Ile Asp Gln Pro Pro Thr Val Leu Cys Pro
100 105 110
Arg Arg Ala Ala Tyr Ser Arg Met Gly Val Arg Tyr Val Ala Pro Gly
115 120 125
Phe Thr Pro Ala Thr Ser Glu Ile Leu His Thr Ala Ile Lys Val His
130 135 140
Leu Asn Lys Lys Phe Asp Arg Leu Gln Pro Ala Met Tyr Asp Gln Leu
145 150 155 160
Ser Trp Ala Ile Asp Arg Ser Phe Gly Thr Ala Asn Cys Val Ser Lys
165 170 175
Val Ser Leu Gly Asp Ala Leu Arg Tyr Ala Val Tyr His Thr Leu Val
180 185 190
Pro Val Leu Ala Gly Arg Glu Leu Ala Lys Asn Glu Arg Phe Val Glu
195 200 205
Ala Ile Ile Ser Ser Ser Gln Trp Phe Gly Ala Ala Ser Thr Ile Thr
210 215 220
Gly Gln Cys Leu Pro Ala Pro Phe Arg Gly Val Ile Gly Trp Val Leu
225 230 235 240
Gln Lys Pro Ile Gly Tyr Val Gln Arg Arg Tyr Leu Ala Tyr Leu Met
245 250 255
Pro Ile Val Lys Glu Arg Leu Asn Lys Leu Gln Glu Asp Ser Gln Val
260 265 270
Pro Glu Asp Met Val Thr Trp Leu Cys Gln Ala Ile Leu Lys Thr Arg
275 280 285
Gly Pro Glu Gly Ala Glu Gly Val Phe Ala Asp Ala Phe Asn Leu Leu
290 295 300
Leu Gly Ala Ala Phe Thr Ser Thr Val Leu Thr Ala His His Ala Leu
305 310 315 320
Leu Asp Ile Leu Gly Ser Ser Glu Lys Ala Glu Ile Tyr Gln Ile Leu
325 330 335
Arg Ser Glu Ala Glu Ser Val Phe Asp Gly Pro Ala Lys Trp Ala Asp
340 345 350
Pro Ala Thr Val His Arg Leu Gly Tyr Ile Asp Ser Thr Leu Arg Glu
355 360 365
Ser Leu Arg Arg Ala Pro Pro Thr Ser Met Ala Leu Leu Arg Glu Val
370 375 380
Val Pro Arg Asp Gly Leu Ala Leu Pro Asn Gly Gln Leu Leu Asn Lys
385 390 395 400
Gly Ser Trp Leu Ala Val Pro Ser Ile Pro Ile His Asn Asp Lys Arg
405 410 415
Phe Tyr Glu Asn Ala Glu Gln Phe Lys Pro Phe Arg Phe Val Gln Asp
420 425 430
Gly Lys Ser Glu Ser Cys Val Ser Thr Ser Asp Thr Phe Leu Ser Phe
435 440 445
Gly His Gly Arg Ser Ala Cys Ala Gly Arg Gln Phe Ala Thr Arg Ile
450 455 460
Leu Lys Met Met Leu Ser Tyr Ile Val Leu His Tyr Asp Ile Glu Glu
465 470 475 480
Ile Asp Gly Arg Pro Pro Asn Phe Phe Met Gly Glu His Ala Val Pro
485 490 495
Pro Asp Val Val Val Arg Val Arg Arg Arg Ala
500 505
<210> 4
<211> 5926
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
cgacacaaat aaatattagc tgccagccca gcaagcgcag agcaagatca tgtgagactg 60
gatgaagcac ctgctagaaa tatcatggca tttgatcagg ttgaagtgag atcagtatcc 120
cagtagagta gcggggtgtt cttttccaaa ggaatgttcc accctggccg aacgttcttc 180
tcttccttgc ccgtgaatct ttaatgttct agcaaccaca gacggagaaa gactcagctg 240
agaccagcgg ctatacagga acaccagcta ctatttacac gtgttatgct agattgatgg 300
atatttgagt catttgtctt tgacatctgc gctcaagact tgacgaagaa agggcaaatt 360
caaaaaccca cagagaccga acaacaggct gaaagccctg atgggagttc ataggttggt 420
aatgagcagt aaaactggta ctgggcagtc atatgcaatt attcctgtag gagtaagggg 480
ctcgcctagc ccaattgcct tgcaagataa gctagtcacc aaataaatat agatcaattc 540
ggttggtttg gactctcatc tccatttctt gtcttcatca tcctgtagat atcgccaatg 600
tccctcgagc ccatagctat tgttggaaca ggatgccgct ttccgggttc ctcttcctca 660
ccgaatcgtc tctggcactt gcttcaaaat ccgcaaaatg tcgcctccaa agtccccagt 720
gagcgcttca acgtggactc attctaccac cctaatagcc agcagcatgg ctcgacaagc 780
gtggccgagt cttattttct tgaggaagat ataagagcct ttgacgcgcc tttcttcagc 840
atcagcccag cggaagcggc tgccatggat ccacagcaac gcttgcttct ggagacggtt 900
tatcactccc tcgaggccgg tggccataga cttgacgctt tgcagggctc ggccacagga 960
gtctactgtg gctttctccg gactgattac agccagatac agtttacaga cccggactcg 1020
ttgccaccgt acacggttac aggaaattct cccgcaatca tggcaaaccg catctcatac 1080
tttttcaact ggactgggcc atcgttcgcg gtggataccg ggtgctcttc gagcttgctg 1140
gcagttcacc tggctgttga atcgttgagg aaaagagact gtgatttggc tgtcgcggtg 1200
gggagtaatc tgcttctatc gcccaaccct tatatcgcgg atgcaaagac gggaatgttg 1260
tcagctacag gccgatcgcg gatgtgggat gcatccgcgg atggctacgc gcgcggagaa 1320
ggggttgcgt cggtagtact caagcgattg agcgacgccg tcgctgcagg ggacgagatt 1380
gagtgtgtaa ttcgagctac agggatgaac agcgacggcc ggacaatggg tatcaccatg 1440
cccagtggag aggcacagcg gaaactgatt gagtcgacct atgccagtat tggacttgat 1500
cccaaaaatg ctcaggacag atgtcaatat ttcgaggcgc acgggacggg aacgcaggcg 1560
ggagatccac aagaggccag tgcgattcat gcggcattct ttgggaacga agctgaaaac 1620
gacagctcta acgtcctgca tgtcggttca atcaagacag taatcggtca tacggaagca 1680
actgctggcc tggctggctt gatcaaggca tctctgtgtc tacagcatgg ggagatcaca 1740
ccgaaccttc tgttctccac gcctaaccct cgcataacac cgcatcttac tcgactccag 1800
gtgccgagtg agtctgtagc atggcctacc ctgccgcccg gggcaccacg tagggcttcg 1860
gtgaactcgt ttggctttgg cggtgctaat gttcatgcca tcctggaaag ctatgaaccc 1920
ccttcttcat ctcgccgagg ctcagaagat gcagaggcgg attgtttgct tcttcccttt 1980
gtggtttcag cggcatcaga accctcattg aggacagcac tggagaggct tttccaattc 2040
cttgaggatc agccggtgac aaacatgatc gactttgctc agaccctctt gacgcggcgt 2100
tcgtgccata aacatcgtat agtatttatc gctagctcat cggacgagct cagagacaag 2160
attctgcatg aaatatccta cccatccagt ggccagatat ggaggtcaac acatcaatgc 2220
ctattttggt ttagtcgtcc aggcggtgag cacaaaattt gtgtcgtttg acaagatggt 2280
tcatttaggc aactggtcag atcagcccca cttgtagcag tagcggcggc gctcgaagtg 2340
tgactcttat tagcagacag gaacgaggac attattatca tctgctgctt ggtgcacgat 2400
aacttggtgc gtttgtcaag caaggtaagt ggacgacccg gtcatacctt cttaagttcg 2460
cccttcctcc ctttatttca gattcaatct gacttaccta ttctacccaa gcatccaaat 2520
gaaaaagcct gaactcaccg cgacgtctgt cgagaagttt ctgatcgaaa agttcgacag 2580
cgtctccgac ctgatgcagc tctcggaggg cgaagaatct cgtgctttca gcttcgatgt 2640
aggagggcgt ggatatgtcc tgcgggtaaa tagctgcgcc gatggtttct acaaagatcg 2700
ttatgtttat cggcactttg catcggccgc gctcccgatt ccggaagtgc ttgacattgg 2760
ggagttcagc gagagcctga cctattgcat ctcccgccgt gcacagggtg tcacgttgca 2820
agacctgcct gaaaccgaac tgcccgctgt tctccagccg gtcgcggagg ccatggatgc 2880
gatcgctgcg gccgatctta gccagacgag cgggttcggc ccattcggac cgcaaggaat 2940
cggtcaatac actacatggc gtgatttcat atgcgcgatt gctgatcccc atgtgtatca 3000
ctggcaaact gtgatggacg acaccgtcag tgcgtccgtc gcgcaggctc tcgatgagct 3060
gatgctttgg gccgaggact gccccgaagt ccggcacctc gtgcatgcgg atttcggctc 3120
caacaatgtc ctgacggaca atggccgcat aacagcggtc attgactgga gcgaggcgat 3180
gttcggggat tcccaatacg aggtcgccaa catcctcttc tggaggccgt ggttggcttg 3240
tatggagcag cagacgcgct acttcgagcg gaggcatccg gagcttgcag gatcgccgcg 3300
cctccgggcg tatatgctcc gcattggtct tgaccaactc tatcagagct tggttgacgg 3360
caatttcgat gatgcagctt gggcgcaggg tcgatgcgac gcaatcgtcc gatccggagc 3420
cgggactgtc gggcgtacac aaatcgcccg cagaagcgcg gccgtctgga ccgatggctg 3480
tgtagaagta ctcgccgata gtggaaaccg acgccccagc actcgtccga gggcaaagga 3540
atagctcgag tttctccata ataatgtgtg agtagttccc agataaggga attagggttc 3600
ctatagggtt tcgctcatgt gttgagcata taagaaaccc ttagtatgta tttgtatttg 3660
taaaatactt ctatcaataa aatttctaat tcctaaaacc aaaatccagt actaaaatcc 3720
agatcccccg aattaattcg gcgttaattc agtacattaa aaacgtccgc aatgtgttat 3780
taagttgtct aagcgtcaat ttgtttccgc ggcgcaggaa gctgggttcc tagcgaatat 3840
agtggctgtc ttgatcgcga aagatatcct atccaagact gaacccgact cttcaatatt 3900
gcttttagaa cctgatgtga ccatcctgaa gatcctcgat tcactcgcgc ctttgcacaa 3960
gacaaagatt atatcggtca cacacaaggc aactgccaaa gccaacagaa agagtctgat 4020
ttatatcccc gagcgtacgc cctctcatcg catacggcaa atgattccac acaaaaaagt 4080
tgtcagagcc gttgtttttg attctaaccg cgtctgtaac ggacgaaatg atcgcatctg 4140
caacctcttt ccgaatgctc gacagcttga tatcgcgtcc ttctatcaaa ctgtgccgat 4200
gccaaactca ccagaacatg gttccatact gtgtattcct gcagcggttc agagtgtagc 4260
ggggtggctt caccccgaag attccacttt tgcagtaacc tcgatcacaa aacttatttc 4320
agaagaaatc gatctacgac caacctctgt gatcaaatgg tcatctgaga ctcagaaccc 4380
gatcaaagcg cagatacgtt cagcgacaga tgcggtcaat ttgtcgcaac aaggcgcata 4440
tgttttgtgg gagctgccca aggccttgag aaggaccgtt gccgattggc ttgtctccca 4500
tggagcgcag catcttgttt ttgttcagaa aattcccgat gatacccagt gggtgtccag 4560
cattacatgt ggtggtgcag aagttgttat tgtgcctcct caggaagatc tcgttcacac 4620
ggttcttgcg ctccgagacc actcgtctgt gccgcttgtt cggggtattg tatttactgg 4680
ggcactcgat aatgctgtgg ctgctgagac gatccaacgg gctaaatgct tgtcccaaca 4740
ttacgactct cccaatctag agatgttctt gagcattgac tgctgcccag cgataccgaa 4800
tccgcagcag tgcgctgtga ccgaatttct cgcagcacta gcacatcaac gagcaatgat 4860
caatcttgcg gcaagtgtcc tctgtcttgg acccgggttt gatctcgaca atccacacgg 4920
agatgatatt gcggagatac ttgcagaggc tgccttagcc ggccatccct ttgccggtgg 4980
cgatcgcgtg gttacagctg gcctctgtcc cggtactggc agtccagagt acaaggcgtg 5040
ggacactatc cactcgcgga acccagcaat gtcgaacatc cttgctttgt caaggaaagg 5100
tgggcaagaa gagactgctg gcgttgaggc agccacggag catatccctt tgaaagtcca 5160
actcgagcgt gctaaagaaa ccacatcggc agccttggct gtgcgggcta ttttgaatca 5220
gtactttacc agatacctcc ggatgcggct ccagtccacg gccgagatca atgagaatac 5280
cttattcaac gaacttggtg tggactcgat ggtcgcggca cagttggttg ggtggtttat 5340
gaaagaagtt ggcgtggagg tttcggttgt tttcattctc gctggcgcat ctgttggcga 5400
ggtcctccag gatgtcacgg agaagcttat cccttgaggt cgagattttt ctgtgtgaat 5460
aaatatagct ctcctgacgc gaccttagaa aaccacatgc gtaccagatg caaattttta 5520
ggtcattcaa tattaacatc tacatgcaga agcaattact tccttcatta tcagtctcat 5580
ttataatctg tgcactagac tgtaatagag gctgtgcagc atgactcaaa aactaggaaa 5640
aggtcacttc aacaggctag gtacgtttat caccaacaaa agatggaatc tgatccactc 5700
agctcatttg atgtagacat ggataaatat tggcaccgaa ggcatattta cactactgcc 5760
ggcgagattg agccaaacat aacaagctgc ccgaggtgcg gatttgcaat tgatccgtga 5820
catttccttg aaggacccaa ccgcctccca tcacaacgcc ccagctgagg caaaacggcg 5880
ctcggagaag acttgaacgt aaattgaacg agagttccta aggaat 5926
<210> 5
<211> 5716
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
atcatccgcc aaaaactaac acatcatttg gtcgatctca tcagaccgct gtctgaggag 60
gccgatgatt gtttacaccg gagttggaca gataattcag gtactccaaa tctccatgtc 120
gtagctcgtc catgaggatc cattcactta ttaatcctta gattggcacg aaatttctct 180
caaatccacc ctcctcgaca tgatatccca gcaatcggcc cacgtcttcc tcggccgcag 240
cttttcccat aacgtgagtt ggctagcgct gtcgcgcagc ataaccttgc aggccttcgg 300
cgccgtccgc gagcttcgcg tatacccatc cttcatacgc ccgcttgttg gctggtttct 360
ccccgcatgt aaatcacttc gcggagagat tgccaaagcc cggaagcttg ttgagcccct 420
tatactagct cgaagactcg aaagagagcg atgcatcgcc agtggccggg aaccacccgt 480
ctatcatgac actattgcat gggcagagga atgtgcacgt ggacgaaaat acgatccagc 540
tcttattcag ctcacgctcg cgctttcggc tatgcacaac acctctgact ttctcacgca 600
agtaatatat gacatagcgg cgaggccgaa actcgtggag gagttgagga aagagatcat 660
cgatgttcgg acgtgtggag atgcaacaga gtcatggaat aagggggcgg ttcacaagtt 720
gaagttgatg gatagtgtca tgaaagaaag tcagcgattg aagcctacgg gattgggtaa 780
gttttgctgg gatcaacgct tattctctac aaggctaata tgctaatcat atagtaaaca 840
tgcggcgcta tgcaactgag gacatccagc tctcttccgt cattcccgag cacaaggaag 900
gcagcatcac aatccgaaag ggggatctgg tcatgatatc gcaacacagc cactgggacg 960
aggatattta ccaagacgcg gcgtctttca acccataccg attctgcagg atgcgcgaac 1020
aacccacgca ggagcacaca gcacactttg tcgccacaag tgtcaaccat atcggcttcg 1080
ggcatggggt gcatggctgt cctggtcgat tctttgccgc cgctgagacg aagcttgcaa 1140
tgtgtcacat tttgatgaaa tacgacatta agcttatcga tcagcctaag gtcctcaatg 1200
taggttcgct tatggttgca aatcccgttg cgaaggttgc agtgagaagg aggaaggagg 1260
aggtttcatt gtgattgtga acagtgagct cgcccacatc tcactcagcc caaggagtac 1320
caaaggtagg tggagatgga ccgtaaccac attactgctt tcggacaaac tcaatttact 1380
acatacctcg tggaatactc accttcgcgt aaatgaaagt ctcccaacct ttgtaatcac 1440
agtatatatt gggcttccaa gcttccgtct atgtctgtga attctaaagc gttactatcg 1500
tcccttgaac ctctgtccca aacttgaatg atatcctttc tcgtccatca tgttgtcaat 1560
gatcgtaagg ggaagaatga taaaataaat tgaagtatgg ttattcagtt gaatctctgg 1620
cagactcaaa ttcacctatt caatctgaat tctaacttgt ccaggttcca tgtccgggtg 1680
gtttgtgacc gttgatatac ctatcgagca tacgtaatct tccaaagttt aaggttgcga 1740
cccaccaata cctgaaccag ggcgtagatc acacctagat acgtgtacaa cggctcatat 1800
tcgatcggtg tatcatatat gcctaggata atggctaaat gcagcctgcc taagaagcgg 1860
tcgggagacg gtgctccacc tacctagtag tagtagtagg actaggtact ccctatgcta 1920
cgtgtgtaat gactcaacac tttctcttgg ctatgaccgc ctctctggat gcaggtgaat 1980
tcacaattac taagtaaggt caagaaagcg gacataatgc aagagtggac attatgctct 2040
tcttcgcact ctcactacca catccggagg cacagcatgc tctcccatga ggaggtcaac 2100
acatcaatgc ctattttggt ttagtcgtcc aggcggtgag cacaaaattt gtgtcgtttg 2160
acaagatggt tcatttaggc aactggtcag atcagcccca cttgtagcag tagcggcggc 2220
gctcgaagtg tgactcttat tagcagacag gaacgaggac attattatca tctgctgctt 2280
ggtgcacgat aacttggtgc gtttgtcaag caaggtaagt ggacgacccg gtcatacctt 2340
cttaagttcg cccttcctcc ctttatttca gattcaatct gacttaccta ttctacccaa 2400
gcatccaaat gaaaaagcct gaactcaccg cgacgtctgt cgagaagttt ctgatcgaaa 2460
agttcgacag cgtctccgac ctgatgcagc tctcggaggg cgaagaatct cgtgctttca 2520
gcttcgatgt aggagggcgt ggatatgtcc tgcgggtaaa tagctgcgcc gatggtttct 2580
acaaagatcg ttatgtttat cggcactttg catcggccgc gctcccgatt ccggaagtgc 2640
ttgacattgg ggagttcagc gagagcctga cctattgcat ctcccgccgt gcacagggtg 2700
tcacgttgca agacctgcct gaaaccgaac tgcccgctgt tctccagccg gtcgcggagg 2760
ccatggatgc gatcgctgcg gccgatctta gccagacgag cgggttcggc ccattcggac 2820
cgcaaggaat cggtcaatac actacatggc gtgatttcat atgcgcgatt gctgatcccc 2880
atgtgtatca ctggcaaact gtgatggacg acaccgtcag tgcgtccgtc gcgcaggctc 2940
tcgatgagct gatgctttgg gccgaggact gccccgaagt ccggcacctc gtgcatgcgg 3000
atttcggctc caacaatgtc ctgacggaca atggccgcat aacagcggtc attgactgga 3060
gcgaggcgat gttcggggat tcccaatacg aggtcgccaa catcctcttc tggaggccgt 3120
ggttggcttg tatggagcag cagacgcgct acttcgagcg gaggcatccg gagcttgcag 3180
gatcgccgcg cctccgggcg tatatgctcc gcattggtct tgaccaactc tatcagagct 3240
tggttgacgg caatttcgat gatgcagctt gggcgcaggg tcgatgcgac gcaatcgtcc 3300
gatccggagc cgggactgtc gggcgtacac aaatcgcccg cagaagcgcg gccgtctgga 3360
ccgatggctg tgtagaagta ctcgccgata gtggaaaccg acgccccagc actcgtccga 3420
gggcaaagga atagctcgag tttctccata ataatgtgtg agtagttccc agataaggga 3480
attagggttc ctatagggtt tcgctcatgt gttgagcata taagaaaccc ttagtatgta 3540
tttgtatttg taaaatactt ctatcaataa aatttctaat tcctaaaacc aaaatccagt 3600
actaaaatcc agatcccccg aattaattcg gcgttaattc agtacattaa aaacgtccgc 3660
aatgtgttat taagttgtct aagcgtcaat tttgagaatg gttggggctg aaagttggta 3720
ctgcatcttg gtcacggcgg tcatgggcac gccacggagc aaggaattac cactgtttag 3780
tatgagagac tgaaaatata gatggtcgat cccgattgcc ctgattaaag agcggtatgg 3840
atggtgtgac gtccttgcat caagttttct tcgactttgc atgtaagggg tccctagcca 3900
cggactcgcc tgttctgaga atgctgatat aagaggcaca gctctctatc atggaattat 3960
ttacaggcca cagttctatc ccttcgtcac aatgatccgc agtcccactg ccccaagcag 4020
gcccctaggc cagatctcgt gggacctgat ccgcatctcg cgatttgaca agtacaactc 4080
atttctagcc ctctttgccg gaggttagtc cacccatccc aaattcatac actctaggca 4140
gtgggtgcta acaacacaca gtatggtcaa cccttcttgc ggggagcgca cgacttcgcg 4200
aagaccctga gcacgtctcc gttcaatata tccttagtcg tgcttttctg tgctccatag 4260
ccgcatatat attctctggg gcaggcatgg tgtggaatga ctgggttgac cgggacatcg 4320
atgctcgcgt ggcacgcacc aaggatcgtc ctttagctgc aggcagactg agcacagaag 4380
aagcaatgct ttggatgctg cttcaagctg gtgtagcaac gacatttttg tattggatga 4440
tggacggaca acatgtgttc gtgagcccct ggaaaagtca tctctctctc tctgctgtac 4500
caaggtcgac taacgaagcg gggctaccta gcttgcattc catgattcct ccaacattag 4560
gaacattgat atatccatat tgcaagcgtc ctctcgctcg ccgacttggt atctaccctc 4620
aatatgttct cggtctgaca gcttcctgcc ctgtcctctt tggccgtgct tcgatatacc 4680
ctgatataga atccttctct cgactcgtat cgtctagcct cccgctttgc ctagtggtgt 4740
ttacatggac tctctatttc aataccgcat acagctacca ggacatcgtt gatgacaaga 4800
aattgggggt gaactcacta tacaaccttg cgggaaagca catacatggc gtgcttgtgg 4860
ccctcgtgac aatcatggtg agcgcactgt ggtgggcact gtaccccttg ggatcagctt 4920
ggttgtggat ctcttggatg ggagtctgga tcgtgggatg tgtggaccaa atgcgcagat 4980
ttgatgcgaa ggatccttca agtggacagt acgtcttccg tagcaatgtc cttatggggc 5040
tctggacgat gcttgcttgt cttttggagg ttttttctac agggaagaga gtggctttgt 5100
gaacgaaatg gggaagacat agcgacacaa ataaatatta gctgccagcc cagcaagcgc 5160
agagcaagat catgtgagac tggatgaagc acctgctaga aatatcatgg catttgatca 5220
ggttgaagtg agatcagtat cccagtagag tagcggggtg ttcttttcca aaggaatgtt 5280
ccaccctggc cgaacgttct tctcttcctt gcccgtgaat ctttaatgtt ctagcaacca 5340
cagacggaga aagactcagc tgagaccagc ggctatacag gaacaccagc tactatttac 5400
acgtgttatg ctagattgat ggatatttga gtcatttgtc tttgacatct gcgctcaaga 5460
cttgacgaag aaagggcaaa ttcaaaaacc cacagagacc gaacaacagg ctgaaagccc 5520
tgatgggagt tcataggttg gtaatgagca gtaaaactgg tactgggcag tcatatgcaa 5580
ttattcctgt aggagtaagg ggctcgccta gcccaattgc cttgcaagat aagctagtca 5640
ccaaataaat atagatcaat tcggttggtt tggactctca tctccatttc ttgtcttcat 5700
catcctgtag atatcg 5716

Claims (10)

  1. Use of an OxaL protein or an OxaL protein-related biomaterial as follows (a1) or (a 2):
    (a1) use of an OxaL protein or an OxaL protein-related biomaterial as a hydroxylase;
    (a2) use of OxaL protein or an OxaL protein-related biomaterial in the preparation of a hydroxylase;
    the OxaL protein is a protein shown in a sequence 3 in a sequence table;
    the OxaL protein-related biomaterial is a gene encoding the OxaL protein, an expression cassette expressing the OxaL protein, an expression vector expressing the OxaL protein or a recombinant microorganism expressing the OxaL protein.
  2. The 15-deoxyoxalicine B biosynthetic gene cluster, which has 13 genes: an oxaM gene, an oxaE gene, an oxaD gene, an oxaC gene, an oxaF gene, an oxaG gene, an oxaL gene, an oxaH gene, an oxaA gene, an oxaI gene, an oxaJ gene, an oxaK gene, and an oxaB gene;
    the oxaM gene is shown as 409-1287 th site in the sequence 1 of the sequence table; the oxaE gene has four exons, which sequentially correspond to the 1819-1889 th site, 1966-2227 th site, 2280-2650 th site and 2717-3392 th site of the sequence 1 of the sequence table; the oxaD gene has two exons and sequentially corresponds to the 3699-3900 th site and the 3965-4476 th site of the sequence 1 of the sequence table; the oxaC gene has four exons and sequentially corresponds to the 4847-4897 th site, 4956-5110 th site, 5165-5491 th site and 5551-6001 th site of the sequence 1 in the sequence table; the oxaF gene has four exons and sequentially corresponds to the 6024-6250 th site, the 6311-6397 th site, the 6453-6891 th site and the 6945-6971 th site of the sequence 1 in the sequence table; the oxaG gene has five exons and sequentially corresponds to the 7344-7568 site, the 7620-7736 site, the 7800-7971 site, the 8033-8647 site and the 8706-9145 site of the sequence 1 of the sequence table; the oxaL gene has three exons and sequentially corresponds to the 9903-th 10063 site, the 10112-th 10563 site and the 10625-th 11535 site of the sequence 1 in the sequence table; the oxaH gene has two exons and sequentially corresponds to the 11801-11912 site and the 11971-12911 site of the sequence 1 in the sequence table; the oxaA gene is shown as position 13529-20836 in a sequence 1 of a sequence table; the oxaI gene has two exons and sequentially corresponds to the 21517-21729 th site and the 21798-23435 th site of the sequence 1 of the sequence table; the oxaJ gene has two exons, which sequentially correspond to the 23483 th and 24757 th sites and 24824 th and 25174 th sites of the sequence 1 in the sequence table; the oxaK gene is shown as the 25296-26171 site of the sequence 1 in the sequence table; the oxaB gene has two exons, which correspond to the 26443-27567 th site and the 27628-27975 th site of the sequence 1 in the sequence table in sequence.
  3. 3. Use of the gene cluster according to claim 2 for the synthesis of the compound oxalicine B.
  4. OxaL protein, shown as sequence 3 in the sequence table.
  5. 5. A gene encoding the OxaL protein according to claim 4.
  6. 6. A recombinant microorganism expressing the OxaL protein of claim 4.
  7. 7. Use of the OxaL protein according to claim 4 in the synthesis of the compound oxalicine B.
  8. 8. The use of the recombinant microorganism of claim 6, which is (b1) or (b2) or (b3) as follows:
    (b1) use in converting compound 3 to compound 8;
    (b2) use in converting compound 2 to compound 9;
    (b3) application in converting compound 4 into compound oxalicine B;
    the compound 3 is shown as a formula I; the compound 8 is shown as a formula II; the compound 2 is shown as a formula III; the compound 9 is shown as a formula IV; compound 4 is represented by formula V; the compound oxalicine B is shown as a formula VI;
    Figure FDA0003439060900000011
    Figure FDA0003439060900000021
  9. 9. the recombinant microorganism of claim 6, wherein said recombinant microorganism comprises total protein.
  10. 10. The use of total protein according to claim 9 as (b1) or (b2) or (b 3):
    (b1) use in converting compound 3 to compound 8;
    (b2) use in converting compound 2 to compound 9;
    (b3) application in converting compound 4 into compound oxalicine B;
    the compound 3 is shown as a formula I; the compound 8 is shown as a formula II; the compound 2 is shown as a formula III; the compound 9 is shown as a formula IV; compound 4 is represented by formula V; the compound oxalicine B is shown as a formula VI;
    Figure FDA0003439060900000022
CN202111627219.0A 2021-12-28 2021-12-28 Compound oxalicine B biosynthesis gene cluster and C-15 hydroxylase OxaL and application Active CN114317470B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111627219.0A CN114317470B (en) 2021-12-28 2021-12-28 Compound oxalicine B biosynthesis gene cluster and C-15 hydroxylase OxaL and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111627219.0A CN114317470B (en) 2021-12-28 2021-12-28 Compound oxalicine B biosynthesis gene cluster and C-15 hydroxylase OxaL and application

Publications (2)

Publication Number Publication Date
CN114317470A true CN114317470A (en) 2022-04-12
CN114317470B CN114317470B (en) 2024-04-30

Family

ID=81015106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111627219.0A Active CN114317470B (en) 2021-12-28 2021-12-28 Compound oxalicine B biosynthesis gene cluster and C-15 hydroxylase OxaL and application

Country Status (1)

Country Link
CN (1) CN114317470B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107699581A (en) * 2017-08-21 2018-02-16 上海交通大学 3,7 dihydroxy Zhuo phenolic ketone biological synthesis gene clusters and its application
CN110777155A (en) * 2019-11-22 2020-02-11 武汉大学 Minimal mycin biosynthesis gene cluster, recombinant bacterium and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107699581A (en) * 2017-08-21 2018-02-16 上海交通大学 3,7 dihydroxy Zhuo phenolic ketone biological synthesis gene clusters and its application
CN110777155A (en) * 2019-11-22 2020-02-11 武汉大学 Minimal mycin biosynthesis gene cluster, recombinant bacterium and application thereof

Also Published As

Publication number Publication date
CN114317470B (en) 2024-04-30

Similar Documents

Publication Publication Date Title
Tsunematsu et al. Yeast-based genome mining, production and mechanistic studies of the biosynthesis of fungal polyketide and peptide natural products
JP7247153B2 (en) Noscapinoid-producing microorganisms and methods for producing and using the same
KR20180016396A (en) Method for producing epimerase and benzylisoquinoline alkaloid
US10519460B2 (en) Use of heterologous expressed polyketide synthase and small molecule foldases to make aromatic and cyclic compounds
CN106754993B (en) Gene, recombinant saccharomyces cerevisiae strain and construction method and application thereof
CN115197172B (en) Sesterterpene compound, synthetic gene cluster and synthetic method thereof
EP2507368A1 (en) Production of non-yeast sterols by yeast
CN114507648B (en) P450 enzyme mutant and application thereof
KR20220158770A (en) Biosynthesis of cannabinoids and cannabinoid precursors
CN112175918A (en) 7 alpha-hydroxysteroid dehydrogenase mutant St-2-2 delta C10 and application thereof
EP3423475A2 (en) Production of gibberellins in recombinant hosts
CN112322596B (en) 7 alpha-hydroxysteroid dehydrogenase mutant J-1-1 delta C6 and application thereof
CN114317470B (en) Compound oxalicine B biosynthesis gene cluster and C-15 hydroxylase OxaL and application
US20230279377A1 (en) Modified terpene synthases and their use for production of pseudopterosin intermediates and/or pseudopterosins
CN114134054A (en) Aspergillus oryzae chassis strain capable of producing terpenoids at high yield and construction of automatic high-flux excavation platform for terpenoids natural products
CN114072511B (en) Recombinant yeast strain with sterol production capacity, preparation method and application thereof
CN108504640B (en) Steroid side chain modifying gene and application thereof
CN111363753B (en) Method for the heterologous production of linear triterpenes
CN107903227B (en) Succinic anhydride compound, gene and protein related to succinic anhydride compound and preparation method of succinic anhydride compound
CN114774443B (en) Recombinant saccharomyces cerevisiae strain for producing parthenolide and construction method thereof
Li et al. Genome mining of fungal globin-like enzymes for catalyzing the synthesis of linear terpenes
CN105849258B (en) Armillaria mellea pentamycin biosynthesis gene cluster and application thereof
CN112322675B (en) Preparation method of epoxy squalene and engineering bacteria
CN114196641B (en) Steroid C14 alpha hydroxylase, expression vector, engineering bacteria and application thereof
CN111778222A (en) NRPS-PKS hybrid protein capable of producing flavonoid compounds in fungi and coding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant